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Abstract

Background: Many animals are known to have improved navigational efficiency when moving together as a social
group. One potential mechanism for social group navigation is known as the ‘many wrongs principle’, where information
from many inaccurate compasses is pooled across the group. In order to understand how animal groups may use
the many wrongs principle to navigate, it is important to consider how directional information is transferred and
shared within the group.

Methods: Here we use an individual-based model to explore the information-sharing and copying dynamics of a

influential neighbours.

individual and group navigation behaviour in animals.

model

leaderless animal group navigating towards a target in a virtual environment. We assume that communication
and information-sharing is indirect and arises through individuals partially copying the movement direction of
their neighbours and weighting this information relative to their individual navigational knowledge.

Results: We find that the best group navigation performance occurs when individuals directly copy the direction
of movement of a subset of their neighbours while only giving a small (6%) weighting to their individual navigational
knowledge. Surprisingly, such a strategy is shown to be highly efficient regardless of the level of individual navigational
error. We find there is little relative improvement in navigational efficiency when individuals copy from more than 7

Conclusions: Our findings suggest that we would expect navigating group-living animals to predominantly copy the
movement of others rather than relying on their own navigational knowledge. We discuss our results in the context of

Keywords: Many wrongs principle, Collective behaviour, Animal movement, Navigation, Animal group, Individual-based

Background

Many animal species are highly social and belonging to a
group is known to have a number of benefits such as
predator avoidance, foraging, mating, etc. [1]. Group mem-
bership may also improve consensus decision-making [2-4]
and can provide navigational benefits to animals [5-8].
Here, we investigate group navigation, the ability of animal
groups to direct their movement towards a spatial target
(e.g. a source of food or a roosting site [5-8]), a process
known as ‘taxis’ if it is based on local environmental cues
[9]. At the level of the group, ‘collective taxis’ does not ne-
cessarily require individual level taxis to be present. For ex-
ample, [10] demonstrated how a combination of individual
kinesis (an undirected movement response to a stimulus)
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and group cohesion results in taxis at the group level.
However, many animal species are known to perform taxis
at the individual level [9]. In this context, improved group
navigation can be explained by mechanisms ranging along
a continuum of shared decision-making mechanisms. At
one end of this continuum, decisions may not be shared
and group navigation can be explained by the ‘leader-fol-
lower’ model, where individuals with little or no naviga-
tional knowledge follow leaders (who have good or perfect
directional information), and the group is able to make de-
cisions and navigate efficiently [6,11-13]. In such cases, in-
dividuals with little or no navigational knowledge perform
improved navigation by following leaders. At the other end
of the continuum, decisions can be considered to be shared
evenly between group members since all individuals in the
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group have equally poor navigation abilities and there are
no leaders (the ‘many wrongs principle’; [5]). In this case,
the group navigation performance is improved through
‘the pooling of many inaccurate compasses, while group
cohesion acts to suppress navigation errors [5]. Findings in
various empirical studies on navigating animal groups such
as migrating birds [14,15], and humans [16], match the
predictions of the many wrongs principle and it has been
hypothesised as a mechanism used by larval reef fish navi-
gating and recruiting to suitable coral reef habitats [17,18].
It should be noted that it is of course possible that leaders
in the ‘leader-follower’ model could also benefit from pool-
ing and sharing of navigational information. However,
similar to [7], in this study we consider a homogenous
group where individuals have equal navigational ability and
there are no ‘leaders’.

Simulations can be a useful exploratory tool to study
the many wrongs hypothesis of animal group navigation
in various contexts [19,20]. For example, Hancock et al.
[21] considered a localised search problem and explored
how the many wrongs principle might evolve in a popu-
lation of foraging mammals. In the context of a global
navigation problem, Griinbaum developed an individual-
based model for taxis in a noisy environment based on
turning rates [19]. A key finding of Griinbaum’s study
was that, in certain situations, high alignment turning
rates (corresponding to stronger social interactions)
made groups less flexible by prolonging group move-
ment directions that had become erroneous [19]. The
fact that stronger social interactions may not always be
beneficial for group navigation is a concept that we will
revisit in our simulation results. Guttal & Couzin [22]
and Torney et al. [23] used simulations to conceptually
demonstrate how both the ‘leader-follower’ and the
‘many-wrongs’ model for group navigation can evolve in
animal populations where individual fitness is obtained
by balancing navigation success against costs of invest-
ment into navigation or social abilities. Codling et al. [7]
showed that the many wrongs principle can be a suc-
cessful strategy for homogeneous animal groups navigat-
ing towards a fixed target. Specifically, in [7] the authors
considered a model where individuals navigate by par-
tially copying the movement direction of their nearest
neighbours and equally weighting this information rela-
tive to their own individual navigational knowledge. The
choice of an equal weighting between these two sources
of directional information was arbitrary and a systematic
study of the effect of using different weightings on the
group navigation efficiency was not undertaken [7].
However, earlier work on individual navigation (taxis) by
Benhamou & Bovet [24] demonstrated that the optimal
weighting between a tactic component (navigation) and
persistence (the tendency to continue moving in the
same direction) is as low as 10% taxis, and this holds for
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all levels of individual navigation error. In addition, vari-
ous studies have shown that there may be an optimal
number of influential neighbours that contribute to in-
formation sharing [25-28].

In this paper we extend the simulation model used in
[7] and explore the information-sharing and copying dy-
namics of a leaderless social animal group navigating to-
wards a fixed circular target in a virtual environment. We
assume that communication and information-sharing is
indirect and arises through individuals partially copying
the movement direction of their neighbours and weighting
this information relative to their individual navigational
knowledge. To assess how well simulated groups are able
to navigate towards the target, we compute the naviga-
tional efficiency, which is inspired by and follows the
terminology of previously developed metrics for the navi-
gation performance of individual-level movement towards
a target [24]. The navigational efficiency ranges in value
from 1 (movement in a straight line directly towards the
target), through O (no net movement towards or away
from the target), to -1 (movement in a straight line dir-
ectly away from the target). We find that the strategy that
gives the best group navigation performance is when indi-
viduals directly copy the movement direction of their
nearest neighbours while only giving a small (c6%) weight-
ing to their individual navigational knowledge. Navigation
performance improves asymptotically with the number of
influential neighbours, and there is little relative naviga-
tional gain by copying more than 7 neighbours. This navi-
gation strategy is shown to perform well regardless of the
level of individual navigational error.

Results

As shown in Table 1, we consider a range of values for the
weighting given to individual navigation, w, the number of
influential neighbours, k, and the standard deviation of
the individual navigation error, &. We compared all combi-
nations of these parameters systematically and all other
parameters in the simulation remain fixed throughout.
For each parameter combination tested, we ran 100 repli-
cate simulations.

Effect of individual navigation weighting and number of
influential neighbours

In our simulation model, w=0 corresponds to undir-
ected group movement where there is no navigational
element to the movement of any individual (essentially
the group moves as an undirected random walk [29]). In
this case the mean navigational efficiency, E, is expected
to be below zero, since when moving entirely randomly
with no navigation in a two-dimensional environment, it
is more likely that the group will move further away
from the target than closer to it. This result is indeed
found in our simulation results (Figure 1) for all levels of
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Table 1 Simulation model parameter descriptions and values
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Model Description Fixed value Range of values
parameter
N Total group size (individuals) 40 2,5,10, 15, 20, 25, 30, 40, 50, 60, 80, 100
Rc Radius of collision avoidance 2 -
Ro Radius of orientation 15 -
3 Standard deviation of added environmental 0.1 -
noise/error
w Weighting towards individual navigation (tactic factor) - 0.01, 0.02, 0.04, 0.06, 0.08, 0.1, 0.12, 0.15, 0.2, 0.25, 0.3, 04, 0.5, 0.7, 1
k Number of influential nearest neighbours - 1,2,3,457,912,15
£ Standard deviation of individual navigation error - 0,02,05,1,15,2,3,5

Parameters have either no units or arbitrary distance units.

Fixed parameters are the same throughout all simulations. Parameters that have a range of values are explored in simulations using each combination of values

in turn.

the individual navigation error, €, and number of influen-
tial neighbours, k. Note that in the simulation results we
are measuring mean average efficiency and it is possible
for individual realisations of the simulation to finish with
a positive (or negative) efficiency where the group ends
the simulation having moved towards (or away) from the
target simply by random chance. When the individual
navigation weighting is very low (w =0.01) then, as may
be expected, the group navigational efficiency is gener-
ally low for all values of € and k (Figure 2a). When w=1,
individuals in the group do not copy the movements of
their neighbours, and hence no navigational information
is shared (k has no effect). In this case, the group

navigational efficiency is the same as the expected navi-
gational efficiency for a non-social individual random
walker moving with the same level of individual naviga-
tional error (Figure 2h).

At intermediate values of w there is a non-linear rela-
tionship between the navigational efficiency, E, and the
individual navigation weighting, w (Figure 1). The plots
in Figure la-f are qualitatively similar but show some
subtle differences in the navigational efficiency, E, for
particular combinations of w and the number of influen-
tial neighbours, k, relative to the individual navigational
error, €. In particular, there is a clear peak in navigational
efficiency for values of w between 0.04 and approximately
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Figure 1 Navigational efficiency, E, against weighting towards individual navigation, w. The number of influential neighbours is (a) k=1,
(b) k=3, (c) k=5,(d) k=7, (e) k=9, (f) k=15. € gives the standard deviation of the individual navigational error. Results shown are the average
of 100 simulation runs. The black triangles at w =1 indicate the theoretical expected navigational efficiency for an individual random walker
navigating asocially with the given value of €. Plots for other values of k are qualitatively very similar and are not shown here.
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0.25, depending on k and . Only in the case of € = 0 is this
peak in navigational efficiency at an intermediate value of
w not evident (in such cases the navigational efficiency as-
ymptotes at w = 1). As the individual navigational error in-
creases (¢ increases), the highest navigational efficiency
occurs at a smaller value of w.

For a given value of the individual navigation weight-
ing, w, there is a clear asymptotic relationship between E
and k (Figure 2). Hence, for most values of w and ¢ there
is very little relative navigational benefit in increasing k
much beyond 7. For example, the largest gain in naviga-
tional efficiency through increasing the number of influ-
ential neighbours above 7, across all values of w and ¢, is
a 26% increase in efficiency when increasing from k=7
to k=15 for w=0.3 and € =5 (plot omitted). In contrast
if k=7 and € =5, then changing from w = 0.3 to w=0.04
or w=0.06 leads to a 340% increase in navigational effi-
ciency (Figure 1d). In other words, a much larger relative
increase in navigational efficiency is gained by increasing
the weighting given to copying the movement directions
of a small subset of neighbours, rather than increasing
the number of neighbours that are copied.

A general strategy for navigation in different environments
The results in Figures 1 and 2 suggest that if the individual
navigation error, ¢, is low then there is little disadvantage

in having a low value of the individual navigation weight-
ing, w (assuming w > 0.02, and depending on the number
of influential neighbours, k), although a higher value of w
may give a very slightly higher navigation efficiency. How-
ever, for high ¢ there is a clear disadvantage of having a
larger value of w (Figure 1). This suggests that there may
be a small range of values for w that are relatively efficient
for all €. This is particularly relevant for navigating animal
groups that may be searching for targets where the level
of individual navigation error differs for each target (e.g.
because targets are at different distances, have different
strengths of orientation cues or signals, etc.).

Our simulation results show that (in general), 0.02 <
w <0.08 give high levels of navigational efficiency across
the widest range of values of ¢, with smaller values of w
being more accurate at the largest individual navigation
errors when the number of influential neighbours is
lower. In particular, w=0.06 appears to give the best
relative performance across the widest range of values of
k and ¢ (Figure 3). When £<0.5, there are a few values
of w that give slightly better performances than w = 0.06
(Figure 3), but the relative difference in efficiency is only
ever marginal, and when the individual navigation error
increases this relative difference is much greater going in
the other direction. For example, w =1 is 14% more effi-
cient than w=0.06, when k=1 and ¢=0 (Figure 3a).
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The variation in navigational performance is inde-
pendent of k (except for low values of k and w < 0.04,
Figure 4a, b) and is also independent of the individual
navigation error, . This shows that for a given level of
individual navigation error, ¢, and a given w, the naviga-
tional performance was on average stable across simu-
lation runs. There is a clear trend in decreasing CV as
w increases. This is also clearly seen in Figure 2, where
the data appears noisier for w < 0.04 (Figure 2a, b), but
much less noisy for high w (Figure 2e-h). However, it
should be stressed that the CV values observed are
quite low, and hence simulation results can be consid-
ered stable for w > 0.04 (Figure 4c-h). It is perhaps un-
surprising that w<0.04 produces higher variation in
navigational performance, since we know that w=0
will lead to entirely random movement by the group as
a whole. One final point worth noting is that the value of
w leading to the best navigational efficiency, as discussed
in a previous section, produces a slightly higher variation
in navigational performance than higher values of w
(Figure 4c). Hence although the absolute CV values are
still low in this case, this value of w can perhaps be consid-
ered as a slightly more risky strategy (in that navigational
performance is not as consistent) when compared to
higher values of w.

Effect of overall group size

The simulation results discussed above were all com-
pleted for an overall group size of N =40 individuals
(Table 1). To explore the effect of different group sizes,
we completed additional simulations with a range of dif-
ferent group sizes, N (Table 1; Figure 5), for the largest

Page 6 of 11

level of individual navigation error, e=5 (i.e. the ‘worst
case’ for individual navigation that we consider). In all the
cases illustrated in Figure 5 (k=1, k=7, k=15, k= N), it is
clear that while group navigation performance increases
rapidly with group size for very small groups (N < 10), the
performance then either asymptotes or decreases slightly
at very large group sizes. This result matches the predic-
tion made by Simons [5] that navigation performance
using the “many wrongs principle” would reach a thresh-
old level for large groups. Similarly, Codling et al. [7] dem-
onstrated that a decrease in navigation performance at
large group sizes can be explained through the effect of in-
creased collision avoidance at high group densities. In
general, Figure 5 illustrates that although there are some
small quantitative differences in the results for very low
overall group sizes (E is generally slightly lower), the quali-
tative trends, in terms of which parameter sets (k and w)
produce the most accurate navigation, are the same as the
results for N =40 (i.e. the best group navigation perform-
ance occurs when k=7 and w=0.06). Figure 5a shows
that when k=1 and €=5, group navigation performance
is highest when w = 0.02 (so that each neighbour will have
greater influence on other individuals), but the overall
group performance is much worse than when k> 7 for the
same level of individual navigation error (Figures 2b and
5b,c,d). In Figure 5d, we assume that k=N, so that each
individual will copy the direction of movement of every
other individual in the group. Although for large N, this
may be beyond the cognitive abilities of most animals
(also see Discussion), it serves to act as the extreme case
of how individuals may copy others. Nevertheless, com-
paring Figure 5b and d, it is clear that there is no

size). Results shown are the average of 100 simulation runs.
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significant relative benefit in having a large value of k at
large group sizes (when compared to k =7 or similar).

Discussion

We have used individual-based simulations to explore
the information-sharing and copying dynamics of a lea-
derless social animal group navigating towards a fixed
target. We assume that communication and information-
sharing is indirect and arises through individuals partially
copying the movement direction of their neighbours and
weighting this information relative to their individual na-
vigational knowledge of the target direction. We find that
a highly efficient strategy in this simulation scenario, re-
gardless of the level of individual navigational error, is for
individuals to directly copy the most recent direction of
movement of a small subset of their closest neighbours (e.g.
k=7) while only giving a small (e.g. w=0.06) weighting to
their own individual navigational knowledge.

It is clear that the mechanisms behind the many
wrongs principle are more complex than assumed in [7],
who only considered an arbitrary assumption of equal
weighting (w = 0.5) between individual navigational know-
ledge and the movement directions of influential neigh-
bours. Our results lead to the hypothesis that ‘copying
your neighbours’ is a better general strategy than relying
on your own navigational knowledge when navigating
in groups (as long as individuals don’t completely rely
on others and contribute in a small way to the group
decision-making). It is perhaps unsurprising that copying
some navigational information from group neighbours is a
sensible strategy. However, it is certainly surprising that
the most efficient weighting given to individual navigation
is so low (w=0.06 or similar), particularly given that a
very low weighting on individual navigation leads to poor
navigation or even undirected movement (w <0.01). The
basis behind giving a low weighting to individual naviga-
tion can be explained as follows. If your navigational abil-
ity is poor (and other group members are equally poor)
then it is always better to copy your neighbours, as this
allows the group to indirectly share information exactly
as Simons [5] described (‘the pooling of many inaccur-
ate compasses’). Conversely, if your navigational ability
is good (and other group members are equally good)
then there is no disadvantage in copying your neigh-
bours (although in such situations, individual navigation
would be equally as efficient). If there is no disadvantage
to copying your neighbours then this could provide a pos-
sible evolutionary basis for the many wrongs principle as
an efficient navigation strategy [5,21-23]. Of course, this
explanation is only valid if we assume the group is homo-
geneous and all individuals are equally poor (or good) at
navigation. The model is likely to break down if some
individuals in the group have different objectives e.g.
[13], or if some individuals don’t contribute any
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navigational knowledge or attempt to mislead others
(although [3] demonstrated that uninformed individuals
can improve consensus decision-making). An obvious
extension of our current model would be to consider
animal groups where the level of individual navigational
error, and also the weighting given by other individuals
to specific neighbours, could differ across the group.
These additional factors could perhaps be explored in fur-
ther simulation studies using evolutionary approaches e.g.
[30]. Previous theoretical work has demonstrated that
both the ‘leader-follower’ and the ‘many-wrongs’ model
for group navigation can evolve in animal populations
where individual fitness is obtained by balancing naviga-
tion success against costs of investment into navigation or
social abilities [22,23]. In both studies the relative cost be-
tween investment in navigation and social abilities pre-
dominantly determines which model for group navigation
is selected. We do not study possible evolutionary dynam-
ics here and instead concentrate on conceptual mecha-
nisms for information sharing within a group where there
are no leaders present and all individuals have similar
levels of navigational ability. Our model further differs
from [22] and [23] since we explicitly consider the extent
of social interactions (i.e. the number of influential neigh-
bours, k).

It is worth considering how our model facilitates
‘copying, an indirect form of information transfer within
the group, and how this is best achieved. This can be
considered as a cost/benefit trade-off between individual
navigation and information gained from neighbouring
group members. If no individual in the group contrib-
utes any navigational knowledge (i.e. if w=0) then the
group will move as a non-oriented random walk and will
typically never find the target (except by random
chance). Conversely, if all individuals navigate independ-
ently (ie. if w=1) then no advantage is gained by being
in a group (the ‘many wrongs’ does not apply). In our
model, k controls the level of influence of the rest of the
group on each individual. This is why if w is relatively
large (w > 0.25), the group navigational efficiency is im-
proved if k is increased (Figure 2), as the group is able to
have more influence on individual movement decisions.
It is interesting to note that our simulation results showed
that, although a higher value of k gave typically higher
navigational efficiency in an absolute sense, there was gen-
erally very little navigational improvement in a relative
sense by increasing k further than 7 influential individuals
(i.e. the principle of diminishing returns). This is simi-
lar to the optimal number of influential neighbours
suggested in other recent studies of collective animal
behaviour [26-28]. In our simulations we did not in-
clude a ‘cost’ for increasing the number of influential
neighbours that an individual can respond to and copy.
However, it could be argued that larger values of k are
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not biologically realistic since individuals are likely to
have a cognitive limit to the information they can
process, and the number of other group members they
can respond to, in a short time [26]. More generally, it
could be questioned whether animals interact with a
fixed number of other group members. For example,
empirical evidence on fish suggests alternative inter-
action ranges and mechanisms based on the visual system
[31]. We therefore caution against a literal interpretation
of the k-nearest neighbour interaction rule implemented
in our model. The basic idea we want to capture with this
interaction rule is that individuals can react to a larger or
smaller fraction of the group. The specific interaction
mechanisms in animals may well differ but our results
suggest that while it is beneficial for animals to react to a
small number of other group members, the added advan-
tage of continuously reacting to large fractions of the
group is negligible (Figure 5d).

In a study of animal taxis (individual navigation to-
wards a target), Benhamou & Bovet [24] considered the
interplay between the ‘tactic factor’, ¢ (the weighting
given to taxis / navigation) and persistence (the tendency
for the animal to continue moving in the same direction
as it did in the previous time step). In this model, the
animal can be thought of as ‘copying’ information from
its past movement to help in making decisions about
where to move now (which parallels our model, where
individuals copy or indirectly share information from
other group members). In [24] the most efficient tactic
factor across a range of individual navigational errors
was ¢t = 0.1, and this compares very closely to the finding
in our model that choosing w =0.06 is an efficient gen-
eral strategy. Similarly, the shape of the non-linear
curves in Figure 1 of [24] is almost exactly equivalent in
a qualitative sense to our Figure 1. The fact that our re-
sults can be linked directly to this earlier study on purely
individual navigation (taxis) hint at some interesting uni-
versal navigation principles about how to balance indi-
vidual knowledge of the target with other available
information. In particular, it would be interesting to
combine our model with that of Benhamou & Bovet [24]
and explore the most efficient weighting between indi-
vidual navigation, individual directional persistence, and
copying movement directions of neighbours.

There are many assumptions in our simulation model
that could be changed, and results should be considered
in this context. As with [7], we haven’t directly modelled
blind regions e.g. [6,32] and this could affect results, par-
ticularly when k is large. We have assumed that individ-
uals have navigation errors (that are independent of the
distance from the target), but are able to accurately de-
termine the movement directions of their neighbours or
movement towards the centre of the group. We include
an additional error, £ =0.1, that corresponds to possible
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information processing errors or environmental turbu-
lence, but a full exploration of the effect of increasing
this error is beyond the scope of this study.

Conclusions

Our findings suggest that predominantly copying the move-
ment direction of neighbours represents a successful group
navigation strategy, irrespective of the level of individual
navigation error. Interestingly, this balance between individ-
ual navigational information and social information (i.e. the
movement of others) suggested by our model closely resem-
bles the balance of taxis and persistence in individual navi-
gation suggested by previous work [24]. Without explicitly
considering cognitive limitations of individuals, our model
suggests that it is not beneficial (in a relative sense) to indi-
viduals to copy more than approximately 7 neighbours.

Our simulation study is a conceptual exploration of the
‘many wrongs’ navigation problem. Such conceptual stud-
ies are important as they can provide useful theoretical in-
sights into the dynamics and mechanisms that may
underpin real animal movement. Our model has allowed
us to create testable hypotheses about the most efficient
way to navigate within a leaderless animal group, and
these hypotheses could be tested using methods developed
to analyse the movements of real animal groups [33,34].

Methods

Simulation structure & virtual environment

Our model is based on the discrete time group move-
ment model in [7], which is a modified version of a well
studied discrete time collective behaviour model e.g.
[6,32,35]. Time steps and distances in the simulations
are given in arbitrary units, have no physical meaning,
and are used for comparative purposes only. In general,
we assume a group size of N =40 individuals. Additional
simulations completed show that the overall size of the
group has little effect once a minimum viable group size
is reached (Figure 5); it is the effect of influential neigh-
bours that individuals copy that we are most interested
in. Individuals are initially randomly distributed in a
square of side length 100 units centred at (x, y) = (0, 0).
All individuals in the group are initially aligned in the
same direction, which is randomly chosen from a uni-
form circular distribution. The virtual two-dimensional
environment is assumed to be homogenous except for a
target site at (xp y7) = (0,1000). At each time step every
individual in the group simultaneously updates its pos-
ition according to hierarchical rules based on the loca-
tion of the nearest neighbour(s) in the group in the
previous time step. Individuals move with an average
speed of 1 distance unit per time step and the simula-
tions run for 500 time steps, and hence the theoretical
maximum distance that the group should reach on aver-
age is 500 distance units away from the centre of the



Codling and Bode Movement Ecology 2014, 2:11
http://www.movementecologyjournal.com/content/2/1/11

target (this is on average since fluctuations in speed can
be introduced through a movement error term, see
below). Consequently, we do not model movement
within the local vicinity of the target and concentrate on
the large scale navigation stage.

Given the structure of the virtual environment and the
average movement speed of each individual, we define
the navigational efficiency of the group as

E = (1000-d) /500, (1)

where dr is the distance from the centre of mass of the
group to the centre of the target after 500 time steps of
the simulation. Simulations were completed using the R
language [36].

Hierarchical rules of movement

Models of the individual-level interactions in animal
groups are usually based on a hierarchy of simple behav-
ioural rules [6,7,20,25,32,35] and we use a similar ap-
proach here. We assume each individual in the group
has a radius of collision avoidance, R, and a radius of
orientation interaction, Rp. At any given time step the
movement behaviour of individual i at position (x; y;) is
dependent on the distance, d, between itself and its
nearest neighbour j at position (x; y)).

If d < Rc, then collision avoidance takes priority and
individual i will attempt to move directly away from in-
dividual j. The preferred movement direction is given by
the unit vector

(xi_xivyi_y;)
‘ xi—xjv)’i‘)’j”

If Rc < d < Rp, then navigation takes priority and indi-
vidual i will attempt to navigate towards the target based
on the movement directions of its k nearest neighbours
and its own navigational knowledge. The preferred move-
ment direction is given by the unit vector

r =

(2)

_ Wl + (1-w)rg,
||Wri"d + (1_W)rgrp||

(3)

where w is the weighting given to individual navigation.

Here r;,, represents the perceived movement direction
from the individual’s current position directly towards
the target and is given by

(xT_xivyT_yi)

+ (erry, err (4)
e =i, yr =il ( " y)

Tipd =
where (x5 y7) is the centre of the target and err, ~ N(0, ¢)
and err, ~ N(0, ) are normally distributed error terms,
where the standard deviation, ¢, is the parameter that de-
termines the level of individual navigation error.
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The group navigation component, rg,,, is given by the
unit vector average of the previous movement directions
of the k closest neighbours:

k
> Y

l'grp — MT—r (5)

135

where v; is the direction of movement of the jth closest
neighbour in the previous time step. In Eq. 5, the k clos-
est neighbours of the focal individual are included,
whether they are within Ry of the focal individual or
not. Larger values of k therefore imply that individuals
respond to a larger proportion of the group, while larger
values of w imply that the response of individuals to the
movement of their influential neighbours is weaker.

If d > Rp, then group cohesion takes priority and indi-
vidual i will attempt to rejoin the group by moving dir-
ectly towards the centre of mass of the group (the mean
position of all individuals in the group). The preferred
movement direction is given by the unit vector

— (xC—xhyc_J’z’) (6)
ll6c—2i, yc =il
N

where (xc,yc) = ﬁZ(xj, y].) is the centre of mass of
=1

the group at the end of the previous time step (calcu-
lated including the position of individual i).

Note that the model described here is a slight variation
on the model of Codling et al. [7] who had an additional
radius of cohesion outside which individuals were as-
sumed to have left the group and would navigate and
move independently. In addition we have not assumed
any ‘blind regions’ as in some other collective movement
models [6]. We assume that all individuals stay within
sight of the rest of the group at all times. We choose
values of R-=2 and Ry =15 (Table 1) that are similar to
[7] although this choice is arbitrary. Our aim is to use

Table 2 Expected navigational efficiency, E, for an
individual asocial random walker navigating using the
given standard deviation of individual navigation error, €

Standard deviation of individual
navigation error, €

Expected navigational efficiency,
E (3 decimal places)

0 1.00
0.2 0.979
0.5 0.843

1 0.556
1.5 0.397

2 0.303

3 0.205

5 0.124
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values for the interaction radii that ensure globally
polarised and cohesive group movement in the absence
of navigation. The nature of these interaction rules, to-
gether with the fact that all individuals share a common
target site, means that the group always maintains a high
cohesion level (i.e. it is very unlikely that the group splits
into sub-groups in this scenario).

Theoretical navigational efficiency at the individual level
The navigational error term introduced in Eq. (4) can be
linked to the standard definition of individual navigation
efficiency, which is defined in terms of the average cor-
relation of the direction of each realised move with the
goal direction towards the target [24]. We randomly
simulated the error on 100,000 independent random
movement steps towards an arbitrary goal direction and
calculated the average correlation towards this goal dir-
ection across each step, for each of the values of ¢ given
in Table 1. These numerically estimated values are given
in Table 2 and can be used to predict the expected navi-
gational efficiency for an individual asocial random
walker (w =1 in our simulations).

Implementing moves

We assume that individuals are subject to an additional
noise/error term (corresponding to short-scale informa-
tion processing or movement errors, or environmental
turbulence) when they attempt to move in their chosen
preferred direction. If the preferred movement direction
is r (corresponding to either Egs. (2), (3) or (6) depend-
ing on the nearest neighbour distance) then we calculate
the actual movement direction as follows

Vi = 1 + (movy, mov,) (7)

where mov, ~ N(0,{) and mov, ~ N(0,) are normally dis-
tributed error terms, where the standard deviation, £ =0.1,
is fixed and represents movement errors due to short-
time-scale information processing errors or environmental
turbulence. Finally, the new spatial position of individual i
is updated to be (x;, V) = (x;, y;) + v; (and hence the speed
of movement is variable due to the introduced movement
error/noise). Note that the ‘navigation error’ is typically
much higher than the ‘movement error’. Table 1 lists the
main parameter values used in the simulations.
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