software systems of Figure 2 lie below 100 tuples. These conclusions are in line with our
measurements of the IFS/2 when supporting the CLIPS Production Rule System (see
below).

(b) For the particular join tests of Figure 2, there is no advantage in having more than 27
search modules in the IFS/2 hardware for cardinalities under about 3000 tuples. Above
that size, the IFS/2 performance curve can be kept linear by adding more search modules.

This permits the use of the IFS/2's associative memory and its relational algebraic capability
Lo speed up the time-consuming match phase of production systems. To test this scheme, we
have re-programmed the run-time software of the CLIPS production system so as to interface
it with the IFS/2 [22]. CLIPS (C Language Integrated Production System) is an OPS5-like
system developed by the NASA Johnson Space Research Center. We have carried out
measuréments on two versions of two simple CLIPS synthetic test programs whose common
static characteristics are: three Condition Elements per rule; a maximum of two shared and
two unshared variables per rule; 100 rules. The right-hand (‘action’) side of each rule was
arranged to cause a change to the working memory which subsequently matched with a left-
hand-side CE containing either one or two shared variables. The two versions. V1, V2, of the
t(wo synthetic programs P1, P2, are distinguished thus:

no. of WM-change
program attributes/ matches aCE
rule with:
P1VI1 3 I shared var.
P1V2 3 2 shared vars.
P2 V1 6 1 shared var,
1
P2 V2 6 2 shared vars.
Table3

The tests were performed for given numbers of initial facts (Working Memory Elements) in
the range 10 to 100,000 facts. The results, described more fully in [22], are plotted in Figure 3
on a log/log scale to show the speed-up factor of IFS-CLIPS over standard CLIPS. For this
exercise, ‘standard’ CLIPS execution-times were measured on a Sun Sparc Workstation
running at 24Mhz and having 16Mbytes of RAM.

It 1s seen from Figure 3 that use of the [FS/2 may be expected to speed CLIPS execution times
by three orders of magnitude when there are several tens of thousand initial facts. Conversely,
the IFS/2 actually slows down performance for production systems having fewer than about
100 initial facts. This is in line with the observations on Figure 2 given previously.

18



9. Conclusions.

In addressing the problems of slow and complex software, we have introduced a systems
architectural framework that allows direct hardware support for a useful range of primitive
operations which occur frequently in non-numeric (e. g. symbolic) applications. The hardware
takes the form of an add-on active memory unit called the [ES/2, in which SIMD techniques
are employed to exploit parallelism in a manner that requires no effort on the part of the
applications programmer. The actual implementation of the active memory unit is, however,
not the primary concern of this paper. The important point is that the high-level (i.e. problem-
solving) requirements of applications programmers have been recognised in terms of well-
used bulk data types. A representational formalism has been devised, and whole-structure
operations embedded in a procedural interface to a low-level supporting unit that can be
implemented in a cost-effective manner. A software simulator of the IFS/2 active memory has
been distributed to several institutions. We are currently evaluating a three-node, 27 search
module, IFS/2 hardware prototype at Essex. Figures for relational join and for the match
phase of a production rule system have been obtained for the IFS/2, when attached as a
performance accelerator to a standard Sun Workstation. The results indicate that the IFS/2 has
the potential to increase the speed of whole-structure operations by a useful amount.

10. Acknowledgements.

It 1s a pleasure to acknowledge the contribution of other members of the IFS team at Essex.
Particularly, Jenny Emby and Andy Marsh contributed to the IFS/2 hardware design; Jiwei
Wang was responsible for an earlier version of the software simulator; Edward Tsang has
contributed to the definition of graph operations; Shutian Lin was responsible for
mcasurements on the CLIPS production system. The work described in this paper has been
supported by SERC grants GR/F/06319, GR/F/61028 and GR/G/30867.

11. References.

I D.A. Watt and P. Trinder, ‘Towards a Theory of Bulk Types’. ESPRIT FIDE (BRA
3070) Technical Report 91/26, University of Glasgow, 1991

2 W.D. Hillis, “The Connection Machine’. The MIT Press, 1987.

3 S.J. Stalfo and D.P. Miranker, ‘DADO: A Parallel Processor for Expert Systems’. Proc.
IEEE Conf. on Parallel Processing, 1984, pages 92-100.

4 G. Marino, G. Succi, ‘Data Structures for Parallel Execution of Functional Languages’.
Proc. of PARLE ‘89, Eindhoven, LNCS 366. pp- 346-356

5 R.B.K. Dewar, E. Schonberg, J.T. Schwartz. ‘High-Level Programming - An
Introduction to the Programming Language SETL’. Courant Institute of Math. Sciences,

New York, 1983.

6 P. Watson and P Townsend, ‘The EDS Parallel Relational Database System’. Published
in Parallel Database Systems, the proceedings of the 1990 PRISMA Workshop.
Springer-Verlag, 1991, LNCS 503. pages 149-166.

19



10

11

12

13

14

15

16

17

18

19

B. Goldberg, ‘Multiprocessor Execution of Functional Programs’, International Journal
of Parallel Computing, Vol. 17, No. 5, pages 425-473, 1988.

Arvind, R.S. Nikhil, K.K. Pingali, ‘I-Structures: Data Structures for Parallel
Computing’. MIT LCS (CSG Memo 269), Cambridge, Mass. Feb 1987.

Persistent Programming Research Group ‘PS_algol Reference Manual’, Fourth Edition,
Persistent Programming Research Report No. 12. Department of Computing Science,
University of Glasgow and Department of Computational Science, University of St.
Andrews 1987.

S. H. Lavington, M. Standring, Y. J. Jiang, C. J. Wang and M. E. Waite, "Hardware
Memory Management for Large Knowledge Bases". Proceedings of PARLE, the
Conference on Parallel Architectures and Languages Europe, Eindhoven, June 1987,
pages 226 - 241. (Published by Springer-Verlag as Lecture Notes in Computer Science,
Nos. 258 & 259).

J. Page, ‘High Performance Database for Client/server Systems’. UNICOM Seminar on
Commercial Parallel Processing, London, June 1990, pages 21-42.

I. Robinson, ‘A Prolog Processor Based on a Pattern Matching Memory Device'.
Proceedings Third Int. Conf. on Logic Programming, London, 1986. pages 172-179.
(Springer-Verlag, LNCS 225).

C.J. Wang and S. H. Lavington, 'SIMD Parallelism for Symbol Mapping’. Proceedings
of the International Workshop on VLSI for Artificial Intelligence and Neural Networks,
Oxford, September 1990, pages C38-C51.

J. Robinson and S. H Lavington, "A Transitive Closure and Magic Functions Machine".
Proceedings of the Second International Symposium on Databases in Parallel and
Distributed Systems Dublin, July 1990, pages 44-54 (IEEE Computer Society Press).

S. H. Lavington, "Technical Overview of the Intelli gent File Store". Knowledge-Based
Systems, Vol.1, No.3, June 1988. pages 166 - 172.

S. H. Lavington, J. M. Emby, A. J. Marsh, E. E. James and M. J. Lear, “A Modularly
Extensible Scheme for Exploiting Data Parallelism”. Presented at the Third
International Conference on Transputer Applications, Glasgow, 1991. Published in
Applications of Transputers 3, IOS Press, 1991, pages 620-625.

H. Walther ‘Performance Measurement of the Associative Memory IFS at the Artifical
Intelligence Applications Institute at Edinburgh, 13th November 1989 - 24th November
1989°. UBILAB Report 2/89, February 1989, Union Bank of Switzerland. Zurich.

M. Atkinson, C. Lecluse, P. Philbrow and P. Richard. “Maps as Bulk Types for Database
Programming Languages”. Proceedings of the Annual ESPRIT Conference, Brussels,
November 1991. CEC Publication EUR 13853 EN, pages 731-758.

S. Reddaway, “High performance text retrieval with highly parallel hardware”. Proc.
UNICOM Seminar on Commercial Parallel Processing, London, February 1992, pages
61-66.

20



20

21

22

A. J. Marsh and S. H. Lavington, “A synthetic join benchmark for evaluating DBMS/
KBS hardware and software”. Department of Computer Science, University of Essex,
Internal Report CSM-173, July 1992.

B. L. Rosser, J. M. Bedford and C. R. Dobbs, “The Ferranti Prolog Database Engine”.
Ferranti International Report No. ASP/AI/REP/68. September 1992,

S. H. Lavington, C. J. Wang, N. Kasabov and S. Lin, “Hardware support for data
parallelism in production systems”. Presented at the Third International Workshop on
VLSI for Neural Networks and Artificial Intelligence, Oxford, September 1992, pages

Al-Al2.

21



N
= DAP 510
2 IFS/2
&z 27
&
3 S. m.
=
& IFS/2
£ 200 one
b S. m.
S
|-
!
oy
7
100
: | ]
1 100 10k
Log (Cardinality,
No. of Tuples)

FIGURE 1: Worst-case member search: IFS/2 compared with a Distributed Array Processor.



@
=
% 1000
Q Q. Prolog
- (av.) C
=
> INGRES
-
=
B 100 ¥
=W
5 .
= MEGALOG
g 27 search
o 10 modules

| s HMany search

A modules
! 7 ST Hardware
0.1 =,
' |
1000 10k 100K

LOG(CARDINALITY, No. OF TUPLES)

FIGURE 2: Elapsed ti 0i :
sixaspjftw;rTeg;g:g::-E , showing the performance of the IFS/2 hardware when compared with



Speed-up (log scale)

1000

100

10

e P2V1
P1V1
P2V?2
e P1V2
..-—-‘"”j”-‘l‘g -
O, SR = 1 I
10 100 1k 10k

No. of 1nitial facts
(log scale)

FIGURE 3: Speed-up of IFS-CLIPS versus standard CLIPS



