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Abstract

The advent of Graphics Processing Units being used in addition to the more traditional Central
Processing Units has introduced a world of complexity into software development: not only is the
core programming model drastically different, but what may be efficient on a CPU may be ineffi-
cient on a GPU. Furthermore, any program that contains parallel elements must be substantially
re-written in order to run on a GPU architecture.

This research aims to produce a system that will allow programs to be run without specifying
which set of devices they can be run on. This will allow programs to be more easily moved between
different configurations of processors, but will also allow the system to automatically determine
which processor best suits a particular piece of code, producing an efficient implementation
without the developer’s assistance.

This system uses a custom programming language, PolyLISP, that can define individual ker-
nels with special looping constructs, and a runtime system, PolyCube, that is able to divide up
tasks and pass them off to the given processors. The target platform is CUDA graphics cards,
and the target programming language is NVidia's PTX, an intermediary assembly language. Pro-
grams written in PolyLISP are compiled into kernels of PTX assembly that are connected using
the dataflow architecture, which was originally designed for parallel processing.
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INTRODUCTION

In the beginning, there was hardware. When you bought a transistor
radio, you could open it up and see a circuit schematic printed on the
inside. These devices were not only specialised, but fixed: it was im-
possible, and difficult even with electrical engineering equipment, to

change the function of a device after it had been assembled.

It was only the 1960s that saw the use of the microprocessor. A micro-
processor is a general-purpose device, rather than a fixed-purpose piece
of electronics: it could be programmed to run a different program than
the one it came with. These programs were typically slower than their
hardware counterparts, but as it was much easier to write software
for a processor than design hardware—not to mention that a software
program could be updated, while hardware can not—meant that micro-
processors won. Since then, the speed disadvantage of software has
become negligible as processors have reached faster and faster speeds:
the average person has access to magnitudes more computational power
than they would have decades ago. Clock speeds are getting higher,
the chips themselves are getting smaller, and computer have become
ubiquitous as a result. Many people are surprised to hear the term

“pocket computer” describing their mobile phone.

Moore’s Law attempts to formalise this increase, stating that the
number of transistors on an individual chip will roughly double once
every eighteen months. This approximation has, more or less, held
true: as the transistors themselves have shrunk, more of them can be

packed onto a single die.

However, efforts to increase the processing power of a single chip
have been at odds with the physical limits of the chips being produced.
! Processors produce heat, and the harder a chip is working, the more
heat it will produce. Over the last decade, air-cooled circuits have star-
ted to reach their limits of their ability to manage heat. [Pacheco 1996]

1

' While we will eventually reach
this limit, this is not the first
time it has been used as a warn-
ing:

“For over a decade, prophets
have voiced the contention
that a single computer has
reached its limits and that truly
significant advantages can be
made only by interconnection
of a multiplicity of computers
in such a manner as to permit
cooperative solution.”

— Gene Amdabhl, 1968, join cre-
ator of the IBM System 30 ar-
chitecture and namesake of
Amdahl’s Law
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FIGURE 1.1: Moore’s Law states that the number of transistors on an individual chip will roughly double once every eighteen
months. This is supported reasonably well by the data: this chart shows the number of transistors on several popular
consumer-class processors, along with the line of best fit going by Moore’s Law predictions.

And there must be a physical limit: at the microscopic level, circuitry
works by moving electrons, and at a certain size, wires and circuit
traces would become too small for individual electrons to pass through!
One solution is water-cooling, but this comes at an increased cost, and

would only serve to push the limit back by several years.

So, the trend taken by consumer-level computers is to extend the
computational power of a device not by increasing the clock speed of a
particular processor, but by using two or more processors working in
parallel.

This new trend of parallel computing has brought with it new
paradigms of programming, entirely different hardware architectures,
and specialised algorithms that offer increased performance when run
on more than one processor. With dual-core or quad-core CPUs now
commonplace, many pieces of software in use today are reaping the

benefits of these new, parallel systems.

But while faster CPUs can run programs more quickly without hav-
ing to make any charge to the actual program, recent parallel systems
are typically only used by those who can understand them. A program
written to take advantage of multiple processors may have a different

design than the same program written to run on just one. This is not

Architecture
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Intel 386
Intel 486
Pentium IT
Pentium 4
Core 2 Duo
Sandy Bridge

Sizeof =~ Number of
Year Transistors Transistors

1972 10000 nm 3500
1985 1000nm 275000
1989 800nm 1180000
1997 350nm 7500000
2000 180nm 42000000
2006 65nm 291000000
2011 32nm 995000000
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only due to the fact that there are different algorithms for parallel pro-
cessing, but also that programming for multiple processors involves
getting many more things correct. * This research involves the de-
velopment of a programming language that can translate a high-level
program into one that can be run on various parallel systems.

1.1 Identifying Parallel Machines

There have been many papers written about programming for con-
current and parallel systems, both due to these systems’ long history
and the number of possible configurations of parallel hardware that

software can use.

The simplest parallel machine is a collection of serial processors
with a task scheduler that divides tasks equally between the available ma-
chines: if two computations are being performed at once, the scheduler
can assign one processor to each computation. In modern processors,
this is just a multi-core CPU, with the operating system’s scheduler

occupying one of the cores some of the time.

A variant of this is distributed computing, which is one or more ma-
chines spread out over a network, receiving commands sent by a re-
mote authority. The most famous examples of distributed computing
are SETI@Home and Folding@Home, which manage a pool of computers
over the Internet to perform long-running calculations that can be pro-

cessed in parts, handing out each part to multiple computers at a time.
3

On top of this, individual algorithms can be designed for parallel
processing, giving them many times the throughput of traditional,
serial algorithms when run on a multi-core processor [Leopold 2001]. The
advent of commodity dual-core processors meant that programs that
run in multiple threads often had a speed advantage over those that
did not. Today, a high-end program such as a graphics renderer that
ran on multiple cores would be considered typical.

These three computing architectures—the simple serial architec-
ture, the multiple core architecture, and the distributed computing

model—occupy three out of the four quadrants of Flynn’s taxonomy, a

? Programming languages with
special constructs for concur-
rency and parallelism are ex-
plored in Section 3.4.

3 The BOINC Project (Berkeley
Open Infrastructure for Net-
work Computing), a middleware
system initially intended to sup-
port SETI@Home before moving
on to other applications, clocked
its network of 451250 active
computers at 5.612 petaFLOPs
in June 2011. [BOINC Combined Credit

Overview 2011]
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2x2 grid of classifications of computer architectures proposed by com-
puter scientist Michael J Flynn in 1966. In the taxonomy, the architec-

tures are classified thus:

+ Single Instruction, Single Data (SISD): This is the simplest ar-
chitecture, wich parallelism in neither the instruction nor data com-
ponents. SISD corresponds to the von Neummann architecture, which
was very common in everyday computers up until multi-core pro-
cessors became affordable: a single-core processor and a shared
bank of RAM is enough.

Despite not using instruction-level parallelism, some processors
may exhibit parallelism by using instruction pipelining, which is ex-

plained in Section 2.2.

* Single Instruction, Multiple Data (SIMD): This is a parallel ar-
chitecture that is able to perform the same operations on different

pieces of data simultaneously.

Unlike a dual-core computer, the instructions executed on a SIMD
system are executed in lockstep: the same instructions must be ex-
ecuted by each processor this time. If the instructions must vary,
then the program must also control exactly which pieces of data
are affected by the instructions, or have the computer switch to the
MISD model detailed below.

An architecture does not have to be purely SIMD for this: the Simple
SIMD Extensions (SSE) extension to the x86 instruction set con-
tains extra instructions to perform SIMD arithmetical and com-
parison operators on multiple pieces of data, resulting in better
performance than a program without these instructions. It is up
to the compiler to both recognise situations where SSE instruc-
tions can be used, and to output the relevant instructions during

compilation.

* Multiple Instruction, Single Data (MISD): There are very few
instances of MISD architectures; for most common parallel tasks,
hardware based around the other classifications is enough.

When MISD is used, it is usually not for reasons of speed or effi-
ciency, but for fault tolerance: running the same set of instructions

on several processors and comparing the results after execution

‘ Instruction Pool ’

Memory Pool
i
i
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!

FIGURE 1.2: A diagram of the
SISD architecture.
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FIGURE 1.3: A diagram of the
SIMD architecture.
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to check that they match. For example, in SETI@Home and Fold-
ing@Home, the same dataset and instructions are run on different
computers and the results compared, with a result only being ac-

cepted as correct when enough computers have run the program.

* Multiple Instruction, Multiple Data (MIMD): Machines that
use a MIMD architecture have a number of different processors,

each of which can operate entirely independently.

The processors in a MIMD system may operate different instruc-
tions on different pieces of data at any one time—there is no de-
pendence between any two processors. Because of this flexibility,
MIMD systems are good choices for supercomputer setups.

A bridge between SIMD and MIMD is SPMD, or Single Program,
Multiple Data systems. This is of particular interest to parallel
programmers because it fits well in the parallel model: while the
processors are no longer constrained to execute the same instruc-
tions at the same time, they are free to execute the same series of
instructions without needing them to be run at the same time as
the others.

1.2 Types of Parallelism

When adapting a program to be run on a parallel processor, there are
two different approaches to specifying which units of computation are

run where:

+ Task parallelism: The scheduler partitions the various tasks car-
ried out in solving the problem amongst the cores, and each core
runs the task it’s been given.

* Data parallelism: The program partitions the data input to the
program amongst the available cores, and each core carries out
similar operations on the data.

These two categories are similar, but the difference is crucial. With
task parallelism, it is up to the programmer to design the program
in such a way that discrete tasks can be identified and passed to a

‘ Instruction Pool ’

\‘

FIGURE 1.4: A diagram of the
MISD architecture.
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FIGURE 1.5: A diagram of the
MIMD architecture.
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processor. In a data parallel system, however, the programmer must
design their data structures so that they can easily be handed off to
several threads.

When each core works independently, writing a parallel program
is much the same as writing a serial one: depending on the program-
ming language used, it may be as simple as using parallel functions on
data known to be independent. However, the situation becomes more
complicated when the processors involved need to co-ordinate their
work, and co-ordination is in fact inherent in many stages of programs.
Synchronisation must occur when any two threads interact, in order
to ensure that they are both working with the right data; for example,
after passing data to a number of threads, the scheduler must wait
for each thread to finish its computation before it is able to continue

working with the result.

Currently, the most powerful parallel programs are written using
explicit parallel constructs: threads synchronised with explicit syn-
chronisation requests, and only tasks that are known to parallelise well
are actually run in parallel. But with the advent of multiple types of
hardware, the systems are becoming more and more complex, and
programmers are looking towards runtime systems to manage this

complexity.

1.3 General-Purpose Computing on Graphics Pro-

cessing Units

More recently, computers have started to offload domain-specific pro-
grams to accelerators: specific pieces of hardware that can be bought,
installed, and upgraded separately from the main computer. These ac-
celerators will have certain operations implemented in hardware, which
is not only typically faster than an equivalent program running on a
CPU in software, and also frees up the CPU for other tasks.

The most popular of these is the graphics card, which contains its
own memory and Graphics Processing Unit (GPU), which is tailor-
made to perform graphical operations such as rendering scenes: turn-

ing shape information into a grid of pixels; and filters: adding effects
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to that grid. The GPU is especially capable for programs that routinely
perform the same instructions on multiple pieces of data due to its
specialised architecture for computational-intensive calculation. This
has increased the number of cores available to a developer from two or

four to several hundred.

Graphics cards were originally designed to be highly-parallel ren-
derers for specific details in computer games. Though entertaining,
playing computer games is a graphically-intensive situation, as games
require scenes to be rendered at 50 to 60 frames per second in order
to have the player keep up. This fast-paced graphical rendering has
spurred on advances in hardware to keep up with more and more graph-

ical detail in games. 4

Programmers realised that they were able to “cheat” the GPU into
doing non-graphical parallel work by treating their data is though it
were an image, then using the GPU’s parallel image manipulation func-
tions to modify it faster than they could with sequential CPU-based
code, and finally turning it back into data. This practice is known as
GPGPU development, standing for General-Purpose Computation
on Graphics Processing Units.

Today, programming for one or more graphics cards is facilitated
by official software development kits, such as Common Unit Device Archi-
tecture (CUDA) by NVidia, or the more vendor-agnostic Open Compute
Language (OpenCL). These allow the program to implement GPU-based
algorithms in a language similar to C or C++ by using vendor-specific

extensions.

1.4 Research Aims and Limitations

With the prevalence of graphics cards in home computers and the
growing interest in the developer community of GPGPU development,
more and more programs are reaping the benefits of these new parallel
systems. However, because the programming paradigms necessary to
utilise the GPU efficiently are vastly different from those to utilise the
CPU efficiently, few programmers are able to easily port their programs
to the GPU. Even fewer are able to utilise both of these processors by
letting the CPU and GPU work in tandem.

4 An even more recent develop-
ment is the Physics Processing
Unit (PPU), which can provide
quick collision detection and
simulation of dynamic objects
faster than a CPU could process
them. However, general-purpose
PPU development has not taken
off, because, according to some
GPUs do a good enough job.

[Harris 2007]
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This research ties together two different computer architectures,
both different from the von Neumann architecture in use today: one as a
more theoretical model that has had few hardware implementations,
and one designed specifically for parallel execution on modern-day
hardware in order to run programs more efficiently. These are:

* The Dataflow architecture: an abstract model of programs, that
was once thought to have efficiency benefits by not specifying the

exact order of expressions;

» The GPU architecture: an architecture based around hardware
which can handle many more threads than a standard CPU, with the
restriction that they must use the same instructions over multiple
pieces of data.

The goal of this research is to develop a system that allows pro-
grammers to write programs for both the CPU and the GPU, using a
custom programming language that emphasises computation instead
of manual management of variables or threads. This would have the
computer, instead of the programmer, decide which parts are to be run
on which processor, letting parallelisable components of the program

be run in parallel automatically.

Automatic parallelisation of arbitrary programs has been a long-
term goal throughout Computer Science. This research is more specific
in many ways: notably, the programs that it aims to parallelise are
written in a functional programming language, in contrast to the many
existing programs that are written in a very imperative style to match
the von Neumann architecture in use today. Compilation from one to
the other would be very difficult, and is outside the scope of this thesis.

Another part of this goal is the development of a custom scheduler
that can view a program as a series of specialised processors that are
designed to do one thing only, dependent on their input. In the dataflow
architecture, these programs are referred to as nodes. The scheduler
could dispatch discrete tasks to each individual processor, allowing
not only more than one part of the program to be run at once, but
for the GPU-bound tasks to be executed exactly at the moment the

scheduler deems most efficient. The scheduler itself will occupy the
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CPU for some operations, making the entire system use both processors

simultaneously.

Finally, this research concentrates on interactions between one

CPU and one GPU, instead of arbitrary configurations of hardware.

1.5 Outline

In Chapter 2, A Low-Level Look at Parallelism, I explore the hard-
ware level of parallel programming: differences in the chips used and
parallelisation techniques innate to both CPUs and GPUs, and look at
case studies of the GPU providing superior runtime performance.

In Chapter 3, A High-Level Look at Parallelism, I investigate
the intrinsic limitations of parallel programming, describe program-
ming languages with automatic parallelisation techniques, as well as
schedulers that are able to disperse programs between a CPU and a
GPU.

In Chapter 4, The Dataflow Architecture, I discuss the nominal
abstract model of parallel processing and list its benefits, drawbacks,
and implementation details, and show how it can be used for the op-

timisation of programs.

In Chapter 5, PolyCube: A Runtime System, I explain why such a
system had to be built for this research, and provide details on its inter-
pretation and compilation capabilities, as well as the implementation
details of such a system.

In Chapter 6, Case Study: Ray Tracing, I give results on how Poly-
Cube’s dataflow-based processing model compares against programs
written for the CPU and the GPU. I use a ray tracer as an example, and
list the difficulties of implementing such a program on the GPU and

the details of previous GPU-based ray tracers.

In Chapter 7, Conclusions and Future Work, I evaluate the res-
ults in context, and offer some future work that could be based upon

this research.



ALOW-LEVEL LOOK AT PARALLELISM

GPUs were not designed as general-purpose computing devices; they
were created to give a better experience in games, rather than to change
the direction of high-performance computing. The fact that a piece of
hardware that was made for rendering pixels can also be used in high-
performance computing can be explained by the programming models

used.

2.1 Modifying the von Neumann model

Rather than being completely separate branches of architectures, par-
allel hardware and software are based on serial hardware and software,
which has the rather simplified task of only having to run one task at a
time. When computers were in their infancy, this was literally only one
program at a time: the operating system was used to load the program
and then relinquish all control to it; the program then ran until it exited,

upon which it gave the control back to the OS.

Before dual-core processors were developed, multithreaded oper-
ating systems used a piece of software called a scheduler to alternate
between running several tasks on the CPU; including the OS and the
scheduler itself. ' It is important that the scheduler does not take up
too much of the CPU time itself; instead, it needs to strike a balance
between optimising for the most important programs and minimising

its own running time.

Advocates of alternative architectures argue that having sequential
execution of instructions—that is, having the order in which instruc-
tions are executed explicitly defined, disallowing any rearrangement—
does not lend itself well to parallel processing, because it fails to provide

efficient fine-grained synchronisation support. [R. A. lannucci 1988] This

10

FIGURE 2.1: A simplified model
of the von Neumann archi-
tecture. It consists of a main
memory bank, modified by a
Central Processing Unit (usually
called a processor or a core) con-
sisting of an Arithmetic Logic
Unit and a control processor.
The architecture also features an
interconnect between the two,
and input and output buses for
any connected devices.

' This means that the overall

performance of all the tasks
running on the system is not
quite perfect.

In fact, the maximum possible

speedup is limited by Amdahl’s
Law, which is explained in Sec-
tion 3.1, Limitations of parallel

programming.
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is because the number of synchronisation events would grow too large
for the processor to handle.

In any concurrent or parallel procedure, there must exist a common
ground that all threads must recognise and wait for: a synchronisation
point. As the parallelism becomes more and more fine-grained, the
number of performable operations is limited by not only the number of
synchronisation events that the processor must wait for (and hold the
details of in memory), but also the cost of each context switch caused
by a synchronisation operation.

For this reason, most von Neumann machines employ large-grain
parallelism, using interrupts for synchronisation between threads. The
interrupts allow the processor to keep track of far fewer synchronisa-
tion events, as the cost of having larger individual workloads. [Arvind

and Robert A. Tannucci 1988]

2.2 Parallelism at the CPU level

The von Neumann architecture is not going away; rather, it is being
adapted to fit in a parallel world as more opportunities for parallel-
ism present themselves. For example, instruction-level parallelism is a
method of improving processor performance by simultaneously ex-
ecuting more than one instruction.

CPU execution is notionally sequential—one instruction’s execu-
tion must begin after the previous instruction’s execution ends. The
effects of one instruction, such as assigning a value to a register, may
be necessary to set up the correct state for the next instruction to run.
Hardware engineers have been able to speed up this process by pipelin-
ing the latencies of each instruction so that different stages can be
executed at the same time. A typical processor has the following five

execution stages: *

* Fetch: Get an instruction from the instruction cache.

* Decode: Read the type of operator, and the locations of any re-
gisters, from the instruction’s data.

» Execute: Actually execute the instruction.

* Note that it only may be neces-
sary to have one instruction
before the other: it is easy to
imagine programs with some
parts that can be executed in
any order, but must have some
arbitrary order. Mathematically,
these pairs of instructions have
a partial order instead of a total
order: compiling instructions
with a designated partial order
provides many opportunities for
parallelism.

Examples of this in program-
ming languages are outlined in
Section 3.4.
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* Memory: Read from the memory or data cache, if required.

* Write Back: Write the result, if any, back to a register.

If each stage were to take one processor cycle, then each instruction
would take five processor cycles of time. But by overlapping the times
of each stage’s execution as it is idle, more than one stage can be run
at the same time: while one instruction is being executed, the next

instruction could already be fetched.

As an example, consider the sequence of instructions representing
the computation f(c¢ x (a + b), d). Some of these instructions depend
on the results of others, but some do not. These instructions can only
execute when all the source operands have been loaded into registers;
if they have not, they cause a hazard, where execution must wait for the
data loader to catch up. [Hennessy and Patterson 2003] The result, shown in
Table 2.1, illustrates the effect of stalls bubbling down to later stages of
the pipeline: instructions are only able to be executed when all of their

registers are available.

A modern compiler is able to re-order the instructions to increase
the amount of instruction-level parallelism and eliminate hazards to
maximise the performance of the program. But even with optimisa-
tions like these, the performance of single-threaded programs has plat-
eaued. Standard algorithms that would run efficiently on a multi-core
CPU would run inefficiently on GPU hardware.

2.3 Parallelism at the GPU level

The GPU’s capabilities lie in its efficiency of executing the same pro-
gram over multiple pieces of data, instead of running several different
programs at the same time. Because of this, the CPU can be left to
handle the commonplace tasks, using the GPU when a program re-

quires fast processing of one single task.

There are a number of ways in which the GPU is designed to cope
with its task. These range from its different physical hardware, to
how it handles hazards (which, like for the CPU, are interruptions in

the execution from caused by a busy register or data that needed to
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Fetch Decode Execute Memory
1 1 ro, [a]
2 1 ri, [b] 1d ro, [a]
3 add r2, r0, r1 1d ri1, [b] 1d ro, [a]
4 1d r3, [c] add r2, r0, r1 1d ri1, [b] 1d ro, [a]
5 mul r4, r2, r3 1d r3, [c] STALL 1d ri, [b]
6 STALL STALL STALL STALL
7 1d r5, [d] mul r4, r2, r3 add r2, r0®, rl1 STALL
8 STALL STALL 1d r3, [c] add r2, ro, ri
9 STALL STALL STALL 1d r3, [c]
10 push r5 1d r5, [d] STALL STALL
11 push r4 push r5 mul r4, r2, r3 STALL
12 STALL STALL 1d r5, [d] mul r4, r2, r3
13 STALL STALL STALL 1d r5, [d]
14 op 4 push r4 STALL STALL
15 pop r4 op 4 push r5 STALL
16 STALL STALL push r4 push r5
17 pop r4 STALL push r4
18 STALL STALL
19 op 4 STALL
20 STALL op 4
21 STALL STALL
22 pop r4 STALL
23 pop r4
24

Write Back

1d ro,
d ri,
STALL
STALL
add r2,
1d r3,
STALL
STALL
mul r4, r2, r3
1d r5, [d]
STALL

STALL

push r5

push r4

STALL

STALL

op 4

STALL

STALL

pop r4

[a]
[b]

ro, rl
Lc]

TABLE 2.1: Here, the instructions that do not rely on the result of another will run parallel to it in the pipeline. This is an
example of instruction-level parallelism. In processor cycles 1and 2, the load instructions are independent, so are executed
without causing stalls. The add instruction that follows them requires that both of those values are available in registers,
causing two stalls to flow down the pipeline, and finally executes them when both are finally available (cycle 7). The following
load is not a hazard, as it has no data dependencies with the other two loads; however, the multiplication requires the two

preceding instructions to be completed, and another bubble of stalls occur.

be loaded), as well as the differences in the programs that are run on
it. These ways separate the GPU from the CPU, and they are outlined
below.

2.3.1 SIMD Execution
To add more processors onto the von Neumann model, one can give
each processor bank memory, or allow every processor to access a

shared pool of memory.

The GPU is able to handle such a large number of cores compared
to traditional CPUs by specialising its architecture for computational-
intensive calculation; it has many more transistors dedicated to data
processing rather than caching or flow control. The CPU, on the other

hand, uses those elements much more often, so much more of the
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actual hardware is dedicated to them. [NVidia 2010] Its restrictions on its
thread model also protect against the concerns listed in the previous

section.

In other words, the GPU throws away the common case of having
to shuffle pieces of data around in memory in order to focus on pure
computation instead —specifically, the same program being executed
on many pieces of data in parallel—because the CPU can handle the
other tasks forit. Flow control is less important when only one program

is running at a time.

This is the same model as the SIMD quadrant in Flynn's taxonomy—
Single Instruction, Multiple Data. The datais copied in as a texture, and
is formatted as a vector of four floating point numbers, corresponding
to the red, green, blue, and alpha channels of a pixel. [Wilson and Banzhaf

2008]

FIGURE 2.2: Asuffix tree (left) and a reference string (right) encoded as textures by CMatch [Schatz and Trapnell 2008], a GPU-
based substring matching program used in biological sciences. The developers were able to harness the GPU’s speed by
using texture memory instead of a standard data structure: the data is encoded into a matrix of colours instead of an array
of bytes. In the tree, a pattern is visible, as the nodes are arranged in 32x32 blocks. These blocks are optimised so that
those most often accessed by multiple threads lie near the initial position in the top-left corner, and the blocks accessed by
individual threads appear further away. The reference string, on the other hand, appears as noise.
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2.3.2 Latency Hiding

For most CPU-bound applications, there is no use in running more
computational threads than there are available CPU cores. In multi-
threaded programs, such as a server than can handle multiple requests,
or a program that can analyse data in parallel, a thread pool containing
anumber of threads can be maintained, with only a number of threads
less than or equal to the number of available CPU cores actually run-
ning. 3

Threads are useful when hiding large latencies, but are less use-
ful for smaller latencies. On the CPU, switching between threads is
a coarse-grained operation: it works best when the individual parallel
tasks are large in size, and do not have to be switched often. A com-
mon use of threading on CPUs is to hide the latency of an I0-bound
operation, such as reading from a file or a network socket: other in-
structions could be executed while the thread waits to finish, or a user
interface thread can still be active, responding to user input, while the
other thread sleeps. For the CPU, switching between threads involves
invoking the OS’s scheduler to select a new thread to run, change the
execution environment to accommodate this new thread, and restore
the values in the new thread’s registers from memory. This makes con-
text switching an expensive operation. This works well enough for
situations involving multi-core CPUs that assign long jobs to each core,

minimising the number of context switches.

Fine-grained parallelism, as a counterpart to coarse-grained parallel-
ism, is much more important in the world of GPUs—it enables them
to switch tasks much more often, in the common case of one thread

needing to wait for the result of a memory access.

The amount of latency caused by stalls that a GPU can tolerate
through multithreading depends on the ratio of hardware-managed
thread execution contexts to threads that can be executed simultan-
eously. This ratio is referred to as 7', and values for various processors
are listed in Table 2.2. A GPU’s support for more thread contexts allows
it to hide longer, or more frequent, stalls, while CPUs typically maintain
only one thread per core.

The core has to execute an instruction from the currently-running

thread while maintaining the state on all threads simultaneously. These

3 Arecent development is what
Intel calls hyper-threading, which
presents each core to the op-
erating system as two cores,
running both threads on the
core whenever it can. For ex-
ample, when one core uses the
integer registers, and the other
uses the floating-point registers,
both instructions can be run
simultaneously during this
time.
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threads called SIMD vector instructions, the exact details of which vary
between GPUs. The core also contains a pool of general-purpose re-

gisters partitioned among the thread contexts. 4

At runtime, the GPU copies the program onto each of its thread
contexts. The core starts executing the first thread, and keeps running
until it detects a stall for memory access—reading or writing to the
texture memory on the GPU. While it waits for the result of the memory
access, it can switch to another thread, and execute that until the result
becomes available, at which point it can continue the execution of the

original thread.

When executing the program, a minimum of four threads is needed
to keep the core arithmetic logic units busy. In practice, however,
memory access on GPUs involves latencies of up to hundreds of cycles,
so modern GPUs must support more and more threads to remain ef-
ficient, as having to run programs at their maximum possible speed
requires the core logic units to be constantly in use. [Fatahalian and Hous-

ton 2008]

The number of threads that can run on a multiprocessor depends
on the number of registers available: each kernel takes up its own set
of registers, and with a finite number of registers on the processor,
there is a limit to how many kernels can be run at a time. Furthermore,
each GPU has a maximum number of potential threads amongst all the

4 There is little to no standard-

isation between GPUs, other
than their general overall ar-
chitecture, so each one has

to be treated differently. For
consumer-class graphics cards,
the only standard is the use of a
PCI-e bus to transfer data. This
lack of backwards compatibility
is done on purpose to encourage
innovation in GPUs, so they

do not need to get held back by
supporting older architectures.

ALU ][ ALU % AU || Ao | AL
ache
Control = | - > < <
[ ALU ][ ALU Hg”m ALU ALU ALU
\ aChe - “ J O J
( ) H%"“”"' ALU || ALU || ALU
aChe - - J O J
Cache Control | [ [ ( )
H AU | A || ALu
|\ J aChe - - J J
DRAM DRAM

FIGURE 2.3: CPU (left) and GPU (right) architectures. Although not an exact schematic, it shows how much more the GPU
favours pure computation: the number of Arithmetic Logic Units (ALUs) eclipse the more generic caching and flow control

centres. [Pharr and Fernando 2005]
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Type Processor Cores per Chip ALUs per Core SIMD Width Max 7T
GPUs AMD Radeon HD 4870 10 80 64 25
NVidia GeForce GTX 280 30 8 32 128
CPUs Intel Core 2 Quad 4 8 4 1
STI Cell BE 8 4 4 1
Sun UltraSPARC T2 8 1 1 4

TABLE 2.2: The maximum numbers of simultaneously-executing threads for a select few processors, both CPUs and GPUs,
given their specifications.

kernels; a new kernel will fail to launch, with an error thrown instead,
if it tries to break this limit. These potential threads are organised into
blocks and warps. The exact numbers of blocks and warps vary between
GPUs, but they obey a common formula. If 7" is the number of threads
per block, and W;.. is the size of each warp, then the total number of
warps in a block, Wik, is as follows:

T
Whioek = {W : W

More detail on blocks and warps is given in Section 3.2.

2.3.3 Control Flow and Recursion

Because of its emphasis on pure computation, the GPU has limited sup-
port for control flow. When a function running on the GPU branches,
such as by taking a side on an 1 f statement or running for a variable
number of times in a whi Le loop, the GPU is forced to have every core
either execute the same instruction, or wait until its branch becomes
the currently-running branch. This is in contrast to a multi-core CPU,
which is able to run both sides of a branching statement on multiple
threads simultaneously, without having to wait for one to finish before
the next can begin.

One side-effect of the GPU'’s lack of transistors dedicated to control
flow is that they no longer support explicit recursion—a C compiler for
the GPU will reject a program that contains a function that tries to call
itself, or any combination of mutually-recursive functions, even if the
program is guaranteed to eventually terminate.
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The reason for this is twofold. Firstly, every function on the GPU is
inlined, where the function call is replaced by that function’s complete
definition with the argument values inserted. A recursive function’s
definition contains itself, so completely inlining a recursive function
would result in an infinitely-long stream of instructions. Secondly,
the GPU has no call stack: there is nothing telling the GPU which in-
struction to jump back to when a function returns a value. Ordinary
function calls are able to work around this restriction by using func-
tion inlining as described above, but this is not possible for recursive
function calls.

There are two options for dealing with this restriction. The first is
to avoid recursing at arbitrary levels, and instead limiting a program to
a loop with a maximum recursion depth. > This makes long-running
loops possible, but will result in decreased performance when there is
a large difference between the numbers of threads reaching the min-
imum and maximum recursion depths: the threads that execute only
once will be forced to wait for the threads that execute a maximum
number of times to complete before they will be allowed to finish ex-
ecuting.

The second option is to have a recursive function return not a final
value, but a half-processed value that can later be processed further,

leaving it up to the scheduler to decide when to finish processing.

This second method greatly reduces the performance problems
caused by having some threads venture much deeper into the recursion
stack than others: with the maximum recursion depth set to a much
lower value, the time spent waiting for completed threads to return
their values is lessened. The disadvantage is that without a system
managing the processing and complexity for the developer, the code
becomes much complex and prone to error, as the program would not
only have to separate out complete values from the semi-computed
ones, but also make the scheduler run all the kernels for each partial
execution, instead of just one.

2.4 GPU Case Studies

There have been a number of reports of significant improvements in

execution time for programs that can exploit the GPU'’s parallel nature;

5 One way of getting around this
that gets used in practice is to
use the C++ templating system
to define several numbered
functions, with each one calling
the next one, and the final one
terminating. This will trick
the compiler into inserting a
recursive definition because
the programmer must specify
a maximum recursion depth,
meaning it can be inlined into a
very repetitive, yet finite, list of
instructions.

However, this method can lead
to performance problems on
GPUs, as every iteration, up to
the maximum level of iteration,
will get executed every time.
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several of them are listed below.

2.4.1 String Matching

There are several examples of common algorithms that had reached
their performance limits on the current generation of hardware, only
to leap forward in performance after being adapted to running on a
GPU. One such example is string matching, which is an important
requirement in fields such as computational biology for matching sim-
ilar proteins and gene sequences against a large database of known

sequences.

Schatz and Trapnell, in Fast Exact String Matching on the GPU, present
a GPU-bound string-matching program called Cmatch that achieves
a speedup of as much as 35x over an equivalent CPU-bound version.
Cmatch encodes the string into a suffix tree, which is stored in texture

memory [Schatz and Trapnell 2008] (see Figure 2.2).

By being able to match at more than one position in the string at
once, and distributing these positions over the available processing
units, an improvement of many times over a CPU-bound algorithm

can be reached.

Y. pestis

B. anthracis

Human Chr. 2

Baseline

0 4 8 12 16 20 24 28 32 36 40

Speed (as a multiple of baseline)

FIGURE 2.4: Comparison between results of matching various gene sequence strings on a GPU, as well as the CPU result as
a baseline. These results do not include the time taken to transfer the initial large sequences to the GPU before matching
can take place.

Dataset Speedup

The average time spent matching the queries on the GPU was only Y. pestis 29x

3% of the total running time, compared to nearly 50% of the total time B. anthracis 28X
Human Chr. 2 34x

when running on the CPU. The bottlenecks then became reading the

queries from disk and constructing the suffix tree to process.
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One element that is not included in their workload is the time taken
to transfer the initial data set onto the GPU before any searching can
take place. This is because this data is expected to be searched through
multiple times with many different source strings, so the initial trans-
fer time is amortised over the multiple subsequent runs. Thus, the use
of a GPU is most effective when running searches over the same data,

rather than with different strings each time.

2.4.2 SQL Database Operations

In Accelerating SQL Database Operations on a GPU with CUDA, Bakkum and
Skadron used CUDA to increase the performance of several SQL queries.

[Bakkum and Skadron 2010]

A mean speedup of 50x is achieved, although this is reduced to
36 x when including the time taken to transfer the results from the
GPU to the CPU.

Accumulation Queries

(with transfer)

Float Queries

(with transfer)

Integer Queries

(with transfer)
0 5 10 15 20 25 30 35 40 45 50 55 60

Speed (as a multiple of baseline)

FIGURE 2.5: Comparison between results of running different types of SQL operations on a GPU, as a multiple of the time
taken on the CPU as a baseline. The first of every pair show the speed increase against the CPU, while the second shows the
increase reduced by including the time taken to transfer the results from the GPU to the CPU. None of the results includes
the time taken transferring results to the GPU from the CPU.

Speedup

. . . Dataset Speedup + Transfer

There is a notable difference between the time taken to process Tnteger 21ix | 28.80x
the accumulation queries and the numeric (integer and floating point) Float 50.16x  43.68x
queries: the accumulation queries return a single number, such as the Accumulation  36.22x  36.19x

sum or product of the rows of data, whereas the numeric queries have
to return much more data representing the multiple rows of data that
are the result of the query.
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It also shows that even for a transfer of a single number, there is
latency in the communication that is always present despite the small
size of the data. ©

Finally, they put forth the idea of breaking up the data set and run-
ning a query concurrently on multiple GPUs. They state that although
there would be overhead from co-ordination, it is likely that SQL quer-
ies could be further accelerated.

2.4.3 Hash Reversal

Ahash, or message digest, is a property of a string that changes drastic-
ally even when the source string changes minimally. A hash should
be simple to compute but impossible to reverse-engineer without re-
sorting to brute-force methods such as checking every possible input
string.

More recently, however, reverse-engineering a hash has become
® Even the time taken to transfer

a minuscule amount of data

ber of cores available has multiplied, the time taken can shrink by isitself not minuscule: the

. . . . . latency of moving any data from
several orders of magnitude. Results in this area are of particularin- 1 . ~pr to the GPU will take

possible due to the significant speedup offered by GPUs. As the num-

terest to network security researchers, as password hashes were long  time. For more information, see
‘e . . . . Section 3.1.3, Latency.
thought difficult, if not impossible, to reliably reverse before the advent

of massively-parallel hardware such as GPUs.

GPU (GTX 295 x2)

CPU (i7 975 EE)
CPU (i7 920)

Baseline

0 2 4 6 8 10

Speed (as a multiple of baseline)

FIGURE 2.6: Comparison between results of reversing hashes of strings on a GPU, as a multiple of the time taken on several
CPUs as baselines.

Implementation = Speedup
In GPU-based Password Cracking, Bakker and van der Jagt put forth

i7 920 2%
the use of GPUs for breaking passwords transformed by the MD5 hash- i7 975 EE 3%
ing algorithm. They record the GPU-based systems testing 14x as GTX 295x2 10x

many passwords per second than the CPU-based systems, stating that
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with this increase in performance, more complex passwords are be-

coming feasible to crack.

2.4.4 Conclusions

In order to get the best possible speed increase from the GPU architec-
ture, it is necessary to design your program in such a way that data
transferred between the host and the accelerator is minimised. The
time taken to transfer data can comprise a significant share of the

execution time if data needs to constantly move back and forth.

One way to achieve this is to port the less computationally-expensive
functions to the GPU as well, and use them to bridge two routines that
already exist on the GPU, keeping them on the same device and saving

the transfer time.

Both transfer to and from the GPU must be considered: running
a reduction operation—one that reduces many values to one single
value, such as a sum or minimum operation—will be more efficient
than a transformation operation that has to transfer more values. Sim-
ilarly, being able to generate data from scratch on the GPU rather than

transferring it from the CPU will also be beneficial.



A HIGH-LEVEL LOOK AT PARALLELISM

Both concurrent and parallel programming are difficult to get right. At
the low-level, a task such as running a loop in parallel on a multi-core
CPU involves spawning enough threads to perform the computation,
distributing the units of work amongst the spawned threads, and wait-
ing until every thread is complete before continuing with the program.
Programming for this architecture is difficult because there are many
pieces to get right, and programming for multiple devices is harder
still. However, when looking at concurrency and parallelism from a
higher level, it is possible to let the computer abstract away some of
the details and look at the program in a simplified light.

This section discusses the limitations of parallel programming both
those intrinsic to the model and those of the current state of the art,
and lists ways in which these low-level details can be automatically

managed for the programmer.

3.1 Limitations of parallel programming

In a perfect world, it would be possible to run the program on n differ-
ent processors and get an n-times speedup; sadly, this is not the case.
There are a number of laws that govern the maximum potential speed
increase that a program is capable of obtaining, due to serial parts of
the program or latency between different processors or machines.

3.1.1 Amdahl’s Law

Amdahls Law states that each program contains an inherent serial com-
ponent: a part of the program that cannot be parallelised. This part
will run at the same speed irrespective of the number available cores,

23
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which, with a high number of cores, will contribute the slowness of

the program. [Amdahl 1967]

This has many practical considerations. Even when running on an
infinite number of cores, a program would still be limited by having to
initially load the data into RAM, a bottleneck that would be difficult to

overcome.

Mathematically, with p as the amount of time spent on the parts of
the program that can be run in parallel, (1 — p) on the parts that must
remain serial, and IV as the number of processors, then Amdahl’s law

gives the speedup S as as: !

S — (31)

p

1— E

1-p)+

A large part of parallel programming involves reducing the parts
that must remain serial—in this case, (1 — p) in Equation 3.1—to as

small as possible.

3.1.2 Gustafson’s Law

Another fact that is often overlooked is that a parallel program must
often solve larger problems than a purely-sequential one, by virtue
of there being potentially-unnecessary work distributed to some pro-
cessors, making the total running time longer still. This is known as
the Gustafson-Barsis law, or often just Gustafson’s law. A program execut-
ing on more than one thread will still have performed the computation
on the others if one thread returns a sought-after result, effectively
making the computations superfluous. In the same way, a program
that cannot divide evenly between threads will have to “round up” the
time taken, in order to account for the threads that did not execute in

the final iteration. [Gustafson 1988; Lewis and El-Rewini 1992]

3.1.3 Latency

The latency of transferring the data between the individual systems is
something that can be managed, but not completely avoided. * Latency

' Speedup is defined as the time
taken for a program to execute
with one processor—in serial—
divided by the time taken to
execute in parallel.

* “Each component of a computer
system contributes delay to the
system. If you make a single
component of the system infin-
itely fast... system throughput
will still exhibit the combined
delays of the other components”
— Gene Amdahl, joint creator of
the IBM System 30 Architecture
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can be defined as the time taken to send an empty message; or, for
systems with parallel pipelines, the time taken to load the pipelines
before the first result is delivered. Thus, it can become a problem when
the messages themselves are small enough that the message-sending

time becomes a significant part of the overall execution time.

Running time can be modelled by an equation, with 7" as the overall
time, « as the latency time, 3 as the bandwidth of the system, and N
as the length of the message: [Mattson, B. Sanders and Massingill 2004]

T:a+g (3.2)

The latency and bandwidth can vary between systems depending

on the type of hardware, as well as the quality of the software used to
implement the protocols—the time taken for data to reach a graphics
card over a PCI bus s tiny compared to transferring data over a network.
Both of these can be measured with simple benchmarks. [J. Dongarra and

Dunigan 1997]

The most common technique for compensating for high latency
or a slow network is to send few large packets instead of many small
ones. For parallel programming, this means that it is more effective
for each node in a cluster to be given large matches of work to do over
small batches.

3.2 CUDA

In November 2006, NVidia unveiled the 8800 GTX, a graphics card built
with the CUDA Architecture. It included several components designed
for GPU computing, which aimed to alleviate the difficulty of GPGPU
development: instead of using programmable vertex and pixel shaders,
the CUDA architecture included a unified shader pipeline, allowing
every ALU on the chip to be used for computation rather than purely
for graphics, and added a block of shared memory, allowing programs
that require inter-thread communication to run on the GPU as well.

[J. Sanders and Kandrot 2010]

CUDA programs are written in CUDA C: a version of C extended

with syntax to allow functions to be called on the device. The compiler,
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nvcc, compiles the host’s functions using whichever C compiler is
present on the system, and the device’s functions itself. It is similar
to DirectX or OpenGL in that the programmer does not have to know
the model of hardware that the program would be run on: each GPU
uses different instructions, and CUDA is able to abstract away these

implementation details. [NVidia 2010]

CUDA works with fine-grained data-parallel threads as its units of
execution. Launching a CUDA kernel function creates a grid of threads
thatall execute the function. A grid is organised into a 2D array of blocks,
which is organised into a 3D array of threads, giving the programmer
five dimensions to work with. The individual threads identify the relev-
ant portions of the data to process using the blockIdx and thread-
Idx variables. These appear as pre-initialised, read-only variables to
the developer, and are assigned to automatically by CUDAs runtime sys-
tem. [Kirk and Hwu 2010] The programmer can then write their function

roughly as they would ordinary C code.?

CUDA allows threads in the same block to co-ordinate by allowing
the programmer to specify when they synchronise. This ensures that
all threads in a block have completed one phase of execution before
moving on to another, by waiting until every thread has reached the

same location in the program. #

3.2.1 Portability of CUDA

NVidia developed CUDA to allow developers to use their GPUs for
more general applications than graphics, but did not provide any way
to efficiently run CUDA code elsewhere: the architecture is tied to
NVidia’s own hardware, and does not even attempt to work anywhere

else. [Stratton, Stone and Hwu 2008]

The easiest possible translation is to emulate the GPU’s instruction
set and model by spawning a CPU thread for every GPU thread that
would run, and mapping those threads to the available cores on the
GPU. However, this is ineffective, as GPU-based programs often rely
on latency hiding, which the CPU is more inefficient at. ® The result
is a program that runs, but much slower than had it been written for
the CPU to begin with. NVidia’s own CUDA emulation toolkit uses this

model, and it suffers from this same inefficiency.

3 Arunning thread’s co-ordinates
can be specified by thread-
Idx.x,blockIdx.y,andso
on.

4 This is written
__syncthreads().

° For more information on latency
hiding, see Section 2.3.2, Latency
Hiding.
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Nevertheless, there have been attempts to translate CUDA pro-
grams back onto the CPU. MCUDA, as described in An Efficient Imple-
mentation of CUDA Kernels on Multicores [Stratton, Stone and Hwu 2008], maps
the CUDA programming model onto a multi-core CPU architecture
by transforming the source code from CUDA C into standard C, us-
ing a library that gets linked at compile time to provide the parallel
programming features that get lost in translation.

It appears as though running CUDA programs on the CPU is simple,
if not efficient, owing to the fine-grained model of parallelisation used:
if all threads within a block occupy the same CPU core, then there is no
need to synchronise during the blocks’ execution. The threads would
have similar control flow paths to each other, and would likely have
hazards occur very close together. However, scheduling these threads
to run together is more difficult. If a thread is allowed to run on any
CPU core, then the benefits of running the same program over multiple
pieces of data is lost under the large amount of scheduling overhead.

For this reason, the researchers behind MCUDA chose to trans-
late into a programming model that maintains the locality between
threads while still using the operating system’s scheduler. Their com-
piler searches for any loops that are run in the kernel, and uses a trans-
formation they call deep fission to add synchronisation statements by
creating new thread-local loops within the scope containing those state-
ments, treating the scope itself as one more statement that needs to be
synchronised.

CUDA also has an official extension for dynamic parallelism that
enables kernels on the GPU to call themselves. This extension is only
able to be used on devices that support a recent version of CUDA.

However, there is a low hardware limit for the maximum recursion
depth: 24. This is low enough that certain applications may wish to

implement their own strategies for handling recursion. [NVidia 2014]

3.2.2 PTX

The CUDA compiler, nvcc, does not compile CUDA C source code into
the GPU'’s native machine code, simply because there is no such native
machine code: in order not to be hindered by necessitating backwards
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.reg.u32 rl, r2, r3;
start: mov.u32 rl, %tid.x;

add.u32 r2, ril, 1;

mul.u32 r3, r2, 4,

// define three registers
// load the thread ID

// add one to this value

// then multiply it by four

FIGURE 3.1: An example of PTX assembly code, that takes an element of an array that starts from 1, and multiplies it by four.
The kernel begins with a definition of all used registers, along with their type. In this case, the three registers used are of

the . u32 (32-bit unsigned integer) type.

Inside the kernel, which is designated here by the label start, the thread ID is loaded into a register. This number gets
converted to the number we wish to operate on by transforming it—in this case, adding one with the add instruction.

Finally, the value gets multiplied by four with the mul instruction.

compatibility between architectures, each graphics card has a similar
but not identical instruction set, so compilation would be a moving
target. Instead, the compiler produces PTX assembly code, with PTX
standing for Parallel Thread Execution.

PTX is a register-based, typed assembly language that is used as
an intermediary language by the CUDA system. The runtime is able to
translate compiled PTX assembly instructions into the native instruc-
tion set of the GPU much faster than translating the equivalent CUDA
code, as much of the work, including parsing, compile-time error check-
ing, and optimisation will have already been performed.

Like CUDA, PTX uses an explicitly-parallel model, with a PTX pro-
gram specifying how a single particular thread should execute, with

the system extrapolating this to multiple threads.

A co-operative thread array (CTA) is an array of threads that can
execute a kernel concurrently or in parallel, and threads within a CTA
can communicate with each other. ® These threads run in groups called
warps, all executing the same instructions at the same time. [NVidia 2012]
7 A CUDA grid is just a grid of CTAs, enabling them to be run in parallel.

3.3 Social Aspects of Parallel Programming

In addition to the technical considerations, parallel programming has
several “social” aspects that come into play.

As a result of this hardware revolution, the multi-core and multi-
device era has put pressure on programmers to re-write their software

8 A thread’s position in the run-
ning CTA can be specified by
thentid.x,ntid.y,and
ntid.z PTX variables.

—

Typically, a warp has 32 threads.
This is set as a good default
value, rather than a constant de-
pending on the hardware, as it is
plausible to maximise perform-
ance by changing the number.
However, this possibility was
not explored, as different warp
sizes may have different results
on different devices, and there is
currently no way to predict the
outcome of different warp sizes
other than trying many values
and seeing which one comes
out the fastest, which would
likely be enough to offset any
potential speed gain.
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for this new hardware. By proposing simpler processing units, archi-
tects assume that programmers will now manually take care of mech-
anisms that used to be performed by the hardware, such as cache check-
ing. Therefore, there is a gap between the traditional model of program-
ming and the style of programming useful for multi-core, accelerator-

enabled architectures.

* Error checking: When programming with multiple threads on a
CPU, any point where the threads interact must be preceded with
a call to synchronise the threads, making sure that the correct data
has been loaded into each. Synchronising a group of threads poten-
tially halts the entire thread pool until every thread has caught up
to that point, using up processing time that could be better spent.
However, without this call, the program may be running with in-
correct data loaded: a situation that could be difficult to debug.

* Mathematical optimisations: Certain optimisations can have a
mathematical component, which may not be immediately obvious.
For example, the parallel version of reduction over an array, such as
finding the sum or product of all elements, can be run efficiently
by continually performing the operation on each successive pair of
elements, halving the size of the array each iteration until only one
element remains. However, for this to be mathematically sound,
the reduction operator must be associative, and it is considered
outside the scope of a compiler to determine the associativity of
a function. This is an example of an optimisation that can only
be applied when the compiler has further information about the

program.

3.4 Parallelism in Programming Languages

There is a proverb in software development stating that the number
of bugs per line of code in any given program is constant: a function
written in a verbose language is likely to contain more errors than one
written in a terse language. This seems nonsensical at first glance, but
there is reason behind it: humans are not perfect programmers and
the more lines of code a developer has to write, the greater the chances

for an error to creep in.
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As the need to process data in parallel becomes a routine operation,
programming languages themselves are starting to offer developers
ways to parallelise their code without having to write the code to spawn
a thread manually. There are several different ways that a language
can do this, from working with the language’s own features to ensure
that only safe code is made parallel, to using extensions built on top
of a language to let the programmer decide which functions to run

concurrently.

3.4.1 Parallel Functions

One simple way to make parts of a program parallel is to use func-
tions that dispatch threads themselves and do not complete until every
thread has finished. These can be offered either by the language itself
or as part of a library.

The computational algebra system Mathematica offers functional
programming abilities, and has recently added data-parallel variants
of these, making parallelism as simple as just using the right functions

in places where parallelism is desired.

For example, a trivially-parallelisable problem such as summing

together two vectors requires a very small change:

Map[Plus, vector_a, vector_b] (* Serial version x*)
ParallelMap[Plus, vector_a, vector_b] (* Parallel version x)

This sort of implementation is best suited for a mathematical sys-
tem, as concurrency is rarely a problem, and few functions have side-
effects. The main disadvantage of this approach is that any compiler
or interpreter needs to be aware of these functions—when running the
code on an older version of the language, it would complain about the
ParallelMap function not existing. This limits its use, but remains

a very simple solution.

3.4.2 Parallel Directives

In a more imperative language, such as C or C++, different versions of
the standard control structures may be used to parallelise code.
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With OpenMP, an API for writing portable concurrent code, a stand-
ard for loop is able to be “tagged” with parallelism. Continuing with
the vector addition example:

int a[N], b[N], c[N];

#pragma omp parallel for
for (int i = 0; i > Nj; i++)
{

c[i] = a[i] + b[i];

OpenMP is able to sidestep the problem of backwards compatibility
by using the C preprocessor’s pragma statement, which, according to
the specification, is not guaranteed to perform any action. This means
that a compiler that supports OpenMP is able to see the parallel for
statement and vectorise the loop, while a compiler that does not support
the feature is free to ignore the statement as it would a comment, and
proceed to compile it as if it were serial code.

Fortran is another language that has gained a modern version with
parallel support. Here is a similar vector addition example that uses
Fortran’s OpenMP features:

INTEGER, DIMENSION(10) :: A, B, C

I$OMP DO do i = 1, 1000
c(i) = a(i) + b(d)
1 SOMP END DO

In these instances, it remains up to the programmer to decide
whether a function should be run in parallel, and to time the results to
make sure there is actually a performance benefit.

For programming in CUDA, NVidia provide an extension of the C
language, CUDA C, that has its own set of keywords used to specify the
architecture that a function should be run on. This lets the programmer
specify whether a function should target the CPU, GPU, or both:
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* Host functions are run on the CPU, and can optionally be spe-
cified with __host__.

* Device functions are run on the GPU and can only call other GPU
functions. These are specified with __device__.

* Global functions run on the GPU but can be called by the CPU,
and can only call device functions. These are specified with
__global__.

3.4.3 Parallel Data Structures

Another way to add parallelism to a program is to designate certain
data structures as being able to have parallel algorithms run on them,
and letting the compiler use these algorithms on these data structures
only.

The Haskell language is able to use its type system to automatically
parallelise operations performed on certain lists with the Data Parallel
Haskell extension. The vector addition example in Haskell looks like
this:

addSerial :: [Double] -> [Double] -> [Double]
addSerial xs ys = [ x +y | x <- xs | y <- ys ]

addParallel :: [:Double:] -> [:Double:] -> [:Double:]
addParallel xs ys = [: x +y | x <= xs | y <= ys :]

Any operation performed on the list, such as map or reduce, is
executed in parallel. This allows the programmer to use the same oper-

ations on both ordinary and parallelisable lists. [Jones et al. 2008]

The language Perl 6 has several data structures called junctions,
which represent a range of values that can be tested in any order, in-
cluding in parallel. To illustrate, here is a simple program that tests a
number against a range of values:

if $value == any(2, 3, 5, 7, 11, 13, 17, 23, 27) {
say "S$value matches!";
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The any function creates a junction value representing the first
few prime numbers. When it comes to testing the value, the interpreter
can test the values in any order. It can also do this in parallel, using a

different thread for each value.

3.4.4 Separation of Data

The main drawback with the above approaches is that it is up to the

programmer to determine whether the parallelism is sound.

When dealing with concurrent programs that manage several dis-
joint tasks that may be running simultaneously, it is common practice
to ensure that any access to non-thread-local variables is placed behind
a lock, in order to prevent data races—situations where a variable is
accessed by multiple threads at the same time, causing undefined be-
haviour. If a parallel mapping function was passed a transformation
function that had a side-effect, such as modifying a global variable, the
result of the computation would thus be undefined, as the threads are
not guaranteed to be run in any order, and race conditions may mean

that certain mutations are ignored or overwritten!

One solution is to simply forbid individual functions to access
global variables—either for reading or for writing—limiting them to
their local variables and the values of their passed-in parameters. The
CUDA dynamic parallelism extension has this restriction: pointers to
local memory are not allowed to be used in recursive calls to the same
kernel, and only constant global memory can be accessed by a child
grid.

A more lenient solution is to restrict the values that a function can
access to only those that have been proven safe. The programming
language Rust uses mutability annotations on variables to ensure that
each variable can only be accessed mutably by one thread at a time.
Here is a naive example of concurrent access to a shared value, where

three threads attempt to mutate it at once:

let mut shared_value = 0;

for i in 0..3 {
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thread: :spawn (|| {
shared_value += 1;

1)

The above code is not accepted by the Rust compiler, as it has a data
race: the modifications to shared_value may conflict with each

other as each thread tries to write to the variable at the same time.

Instead, Rust forces the developer to wrap the value in a mutex
(mutual-exclusion lock), ensuring that only one thread at a time has
mutable access to its contents. The Mutex type provides a Lock ()
method that produces a mutable value for the first thread that accesses
it, and will pause for any further threads until the first is done with the
value. This means every thread can access the variable safely. A correct

version of the program is:

let shared_value = Arc::new(Mutex::new(0));

for i in @ .. 3 {
let shared_value = shared_value.clone();
thread: :spawn(]|]| {
let mut value = shared_value.lock().unwrap();
value += 1i;

1)

The downside of this approach is that it requires a much more soph-
isticated compiler: one that can track mutability annotations and detect
automatically when a lock on a mutable value ends. Rust uses another
of its features, lifetime tracking, to detect when a mutual-exclusion
lock falls out of scope, and so adding automatic thread safety is not as
difficult as adding it onto a language without any related features.

3.4.5 Separation of Tasks

The methods listed above are examples of opt-in parallelism, where a

program is run serially by default, with parallel threads only spawned
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when the programmer opts in to using them. Another approach is to
offer implicit parallelism, where the programmer merely has to describe
the connections between each function or kernel, and the parallelisa-

tion opportunities are sought out automatically.

The Occam programming language, originally developed for the
Transputer computer architecture, has several features making it suit-
able for implicit parallelism. It is based on concurrent units of compu-
tation it calls processes.®

An Occam process can be sequential or parallel, and each process is
connected to others with channels. Some examples of Occam functions
are given in Figure 3.2.

Occam is able to avoid the problems commonly caused by unsound

8 « » s :
. ) . An Occam “process” is differ-
concurrently-run functions—such as a transformation function that  en from an operating system
reads from or writes to a shared state—by disallowing shared variables ~ “Process”. More than one Occam
) .. . . process need not necessarily be
and memory pointers in its values. This reflects the message-passing  concurrent.

Transputer architecture, which has no global memory bank.

3.4.6 Analysis

In these cases, the programming language is able to offer parallelism by
deliberately not requiring computations to be executed in any order—
in contrast to traditional imperative programming languages, which
assume that the operations must be executed in the order in which
they are written. When the programmer is able to specify that each
iteration of a loop has no effect on the other iterations, or that a series
of predicates can be checked in any order, the programming language

is then able to run each iteration in parallel.

seq par alt
input ? x y 1= x + 7 inputl ? X
y = X % 2 z 1= X * 4 output ! x
output ! vy input2 ? X
output ! x

FIGURE 3.2: The three types of process available to the programmer in Occam: sequential (seq, left), parallel (par, middle),
and alternate (alt, right). Sequential processes execute their instructions in the given order, which here is used to read
a value from an input channel, multiply it by two, and send it down an output channel—all of which need to be in the
correct order. A parallel process is able to execute its instructions in parallel. Finally, an alternate process tests all of its given
conditions—which here is checking two channels to see if either has input—and executes only the case where the condition
holds.
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This opens up opportunities for further optimisation: for example,
when checking a series of predicates, the language could check those
with cached values first, then move onto the slower checking of the
others afterwards. Without the programmer explicitly declaring each
check as independent, the language would have to assume that they
are in fact dependent, as doing otherwise could be a source of bugs in

the program, leaving it with a slower overall running time.

3.5 The Role of the Scheduler

In order to run more than one task on a serial machine at a time, a
scheduler is needed. This is a small program that governs the launching,
pausing, and termination of threads, as well as which threads should
get priority in situations where there are more threads than available
processors. [Pacheco 1996] Most commonly, this is a function of the host
computer’s operating system, though there are times when the situ-
ation can be more general; for example, with a network of computers
controlled by a load balancing machine, the balancer would act as the
scheduler.

A scheduler is typically both small and fast to run, in order to min-
imise the overhead of context switching. However, it does not neces-
sarily have to be straightforward: most operating system schedulers
support a feature called niceness, which allows the user to specify which
processors are more important, and which are less so. The scheduler
can then use this information to give less processor time to the nicer

processes.

Another job of the scheduler is to manage idle processes. Many
operations involve latency, especially those involved in communication
with memory or another device. The modern scheduler is able to detect
when a process is waiting for a response, and puts it into the idle state,
running another process in the foreground instead. This way, it can

make the most of the computer’s available resources.
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3.6 CPU+GPU Schedulers

There have been several efforts to introduce scheduling between the
CPU and the GPU. Although CUDA is often cited, it divides the pro-
gram into explicit CPU and GPU sections, rather than partitioning it

by analysing the program itself.

The runtime systems specified here, instead of leaving it to the
programmer, attempt to discover an individual kernel’s most suitable

Processor.

3.6.1 Qilin

Qilin is a programming system developed for heterogenous multipro-
cessors. It provides an API similar to OpenMP ° for writing parallelis-
able operations, but additionally can target the GPU, using CUDA as a
back-end. [Luk, Hong and Kim 2009

Kernels in Qilin operate on arrays that are automatically dispatched
between the different available processing units. This is achieved by
training a model for each kernel to determine the amount of time ne-
cessary to process the kernel on each type of processor, depending on
the input size. This model can be used to dispatch data evenly, ensuring
that all processing units can finish at the same time, after the model

has been trained with trial runs.

Qilin uses an adaptive mapping technique to find a near-optimal
surface of computations mapped to processors. The first time that a
program is run, it is used as the training run. It divides the input into
two subsets, mapping one part to the CPU and the other to the GPU.
It then uses curve fitting to construct two linear equations based on
the running times of divided-up segments of each of the inputs. It can
then calculate the efficacy of the GPU on a program. Although this is
not part of this research’s proposed techniques, Qilin provides a nice
example of a method which determines the processor to use, which is

one of its goals.

Unlike this research, it presents itself as an API for C or C++, rather
than a language unto itself. It also makes use of just the running time

of a program, rather than a combination of factors such as the amount

° OpenMP is demonstrated in
Section 3.4.
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of data to transfer or the utilisation of other parts of the system, to

gauge the target processor.

3.6.2 Charm++

Charm++ is a parallel C++ library that provides load balancing and
communication optimisation mechanisms. It is able to target both
GPUs [Wesolowski 2008] and Cell processors [David Kunzman et al. 2006].
Charm++ provides a low-level API to offload computation with a task
paradigm, rather than automatically parallelising computations with a
data paradigm. In the case where the different processing units do not
share the same endianness, Charm++ can automatically convert data
during the transfer so that they can be used throughout the system.

[Kale, DavidM Kunzman and Wesolowski 2010]

Programs written in Charm++ are decomposed into a number of
co-operating message-driven objects called chares, in contrast to the
more traditional thread. However, the authors claim that the large grain
size requirement for proper utilisation makes it difficult to map kernels
onto GPUs directly.

3.6.3 KAAPI

Harmony is the runtime system used in the Ocelot dynamic execu-
tion infrastructure. [Diamos and Yalamanchili 2008] Ocelot uses NVidia’s
PTX as its intermediary language, making it able to compile to CUDA-
supported GPUs, x86 CPUs using a PTX emulation layer, and on various
OpenCL devices using a bytecode translator based on the LLVM com-
piler. PTX code is obtained by compiling CUDA C with NVidia's own
compiler, allowing native CUDA programs to be executed on hybrid

platforms, not necessarily with a CUDA-enabled device.

3.6.4 StarSs

The StarSs project is a set of language extensions and a collection of
runtime systems targeting different types of platforms. It extends C or
Fortran with #pragma annotations to offload certain pieces of com-

putation onto architectures targeted by the runtime system, including
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GPUSs for GPUs, [Ayguadé et al. 2009] and SMPSs for multi-core CPUs.

[Barcelona Supercomputing Center 2007]

It is a follow-up of the GridSs project which provides support for
computational grids. [Badia et al. 2003] It implements advanced data man-
agement techniques, such as the ability to directly transfer cached data

between processors.

However, it remains the duty of the programmer to decide which
tasks should be offloaded, instead of having the runtime system pick

the most appropriate target automatically.

3.6.5 StarPU

StarPU is a runtime system targeting the CPU and accelerators, includ-
ing CUDA for NVidia GPUs. Unlike other such systems, StarPU takes
into account the size of the data and the transfer speed when deciding
which processor to run a kernel on. Additionally, it picks between sev-
eral different scheduling strategies, and allows the user to add their

own strategies if the default set should prove insufficient.

It presents itself not as a new programming language, but as a
library that can be included and linked from C code. Additionally, al-
though it does not specifically mention dataflow, it does give each
tasks an abstract queue with task submission (push) and request (pop)

operations.

3.6.6 Anthill

Anthillis a runtime system designed for clusters of machines equipped
with a single GPU but multiple CPUs. [Teodoro et al. 2009] The authors im-
plemented two greedy scheduling policies, one with and one without
support for priorities. However, Anthill is similar to Qilin in that it only
considers the relative speedup of a kernel to select the most appropriate
processors, instead of a number of factors including the amount of data
and the transfer time.
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3.6.7 TERAFLUX

TERAFLUX presents itself as a “manageable architecture design”, us-
ing dataflow threads (which it calls DF-threads), modifiably by a min-
imalistic extension of the x86-64 instruction set. These instructions
enable asynchronous execution of threads that execute not under the
main control flow of the program but under its dataflow, which is

scheduled by the system’s own distributed thread scheduler.

TERAFLUX does not entirely follow the dataflow paradigm: it dis-
tinguishes between system threads and dataflow threads. This will
allow, it says, a more progressive migration of programs to the data-
flow paradigm: parts of a program that have been specifically adapted
for dataflow can run its threads on the dataflow-friendly cores and
devices, while other parts remain restricted to the CPU. [Yu, Righi and
Giorgi 2011] It is also able to repeat a thread’s execution on a different core
using the dataflow principle in cases where a core has been detected
to be failing.

Unlike this research, TERAFLUX is an instruction set architecture
that can be utilised by other languages’ compilers, rather than being a

language in its own right.

3.6.8 Rootbeer

Rootbeer allows a developer to program GPUs in Java. It is similar
to CUDA, in that a program can be divided into CPU or GPU parts: a
kernel merely implements the Kernel interface, which are run by a
Rootbeer object. [Pratt-Szeliga, Fawcett and Welch 2012]

CUDA provides bindings for many languages, including JCuda [Yan,
Grossman and Sarkar 2009]. However, kernels must still be written in CUDA
C (or any other language that can compile to PTX and loaded by the
CUDA binding library). This is not optimal, as it requires the program-
mer to learn how to use another programming language and program-

ming paradigm.
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3.7 Performance-Tuning Frameworks

Although it may be possible to run portable code on any machine that
a system supports, it is a different question as to whether code would
run efficiently on every system. This property is called performance
portability.

Manually tuning is an option, but there are flaws: not only may
targeting every possible target architecture be too thorough a task for a
programmer, but some architectures may not even exist: for example,
there exist C compilers for a variety of platforms that did not exist

when the first C compilers were first developed.

To deal with these situations, automatic tuning techniques that
can automatically optimise algorithms for task selection are necessary,
so that kernels may take full advantage of such complicated platforms.
Auto-tuning covers many aspects of programs, such as selecting the
most suitable optimisations depending on the target architecture, or
even selecting the best kernel out of many similar kernels, each com-

piled for a different architecture.

Williams et al [Williams et al. 2008] generated optimised kernels to
compute the Lattice Boltzmann Method for fluid dynamics simulations
on very different types of architectures including Itanium, Cell, and
Sun Niagara processors. The authors were able to obtain significant
performance improvements compared to the original code by using
a script that automatically generated variants of the same code with
varying optimisations applied: loop unrolling, data prefetching, and
varying problem sizes. This approach automatically selected the best

optimisation set.

Libraries can often optimise for minimum running time by hosting
a choice of algorithms and automatically selecting the best choice at
runtime. Such techniques are typically based on pre-calibration runs:
contributions to test whether the algorithm was a good match for the
data set. For example, the kernels implemented by the ATLAS linear al-
gebralibrary perform initial tests before any data has been read. [Whaley,
Petitet and . J. Dongarra 2000] These optimisations include the number of
dimensions to unroll loops over, and how to best permute the data to

minimise the number of cache misses. [Li, ]. Dongarra and Tomov 2009] *°

'° The authors reported that the
auto-tuned kernels outper-
formed their standard coun-
terparts consistently, with a
maximum improvement of 27 %.
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Another approach is runtime tuning, which provides more flex-
ibility, but requires that the overhead needed to make a decision re-
mains low, as to not impact the overall performance. The FFTW library
provides a high-performance implementation of the fast-fourier trans-
form, written in C. The computation of the transform is performed
by a number of optimised, composable blocks that the authors call
codelets. The combination of codelets actually applied is specified by
a plan, which is determined at runtime via a dynamic programming
algorithm. The planner tries to minimise the actual execution time
over the number of operations, since the authors claim that there is
little correlation between these two performance measures. Thus, the
planner tests many implementations and selects the fastest, saving the

result to disk to save further tests on future runs.

Finally one of the goals of the StarPU runtime system is to be able
to select the best processing unit for each computation. StarPU claims
to be complementary to auto-tuning efforts to ensure that dynamically-

scheduled kernels are fully optimised. [Augonnet, Thibault and Namyst 2010]



THE DATAFLOW ARCHITECTURE

Despite advances in multitasking operating systems, the von Neumann
architecture was originally thought by some to be inherently unsuit-
able for the exploitation of parallelism: its program counter and main
memory were both global, which would become bottlenecks when
more than one thread attempted to access them at once. [Arvind, Nikhil
and Pingali 1989; P. C. Treleaven, Brownbridge and Hopkins 1982; P. Treleaven and
Lima 1984] And although the von Neumann architecture was ultimately
successful, it was not actually expected to be; a number of alternative

architectures were proposed in order to avoid the bottlenecks.

Dataflow programming languages appeared in the 1970s. The main
idea behind dataflow programming is that each instruction had precisely-
defined data dependencies, an instead of the previous instructions set-
ting up the execution state in a specific way, the state was automatically
set up in whichever way the computer thought would be the most ef-
ficient. However, mainstream use of the dataflow architecture was
curtained by the development of faster, single-threaded CPUs, making
the parallelism faculties of dataflow computers superfluous [Goodman
and Lujan 2013; Veen 1986]. The goal of this research is to use a dataflow
model to optimise programs for GPUs, an inherently-parallel architec-

ture, where the model may be put to better use.

4.1 Overview of the Architecture

Unlike imperative programs that consist of a list of instructions that
must be followed in order, the name “dataflow” comes from the concep-
tual view of a program as a directed graph, where the nodes represent
instructions, and the arcs between the nodes represent the flow of data.
[Arvind and David E. Culler 1986; A. Davis and Keller 1982; J. B. Dennis 1974; Jack B.

Dennis and Misunas 1975]
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input a, b
y := (a +b) / x
X :=ax (a+b) +b

:X
FIGURE 4.1: “An elementary
dataflom program”, as given
as an example in A Preliminary

Architecture for a Basic Data-Flow
Processor.
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Upon execution of the program, data “flows” as tokens between the
arcs [J. B. Dennis 1974): a node produces output, which travels down the
arcs towards other nodes. Anode with no input arcs can start producing
output immediately; a node with no output arcs can store the result of
a computation; and the program finishes when each node can produce

no more output. [Schauser1991]

The opportunities for parallelism reveal themselves more readily
with dataflow programs than with imperative ones. In the von Neu-
mann model, an instruction can only be executed when the program
counter reaches it, and no earlier. This is because it is impossible to state
for certain whether one instruction requires the state to have been set
up by the earlier instructions or not. In the dataflow model, whenever
every input arc of a node has data in it, the node is considered executable;
but apart from that, the execution order is undefined. Formally, von
Neumann programs have a total ordering of instructions, while dataflow
programs have merely a partial ordering. '

This can lead to the following scenarios:

* Anode’s input arcs receive data, and it is executed as soon as it
can be—the equivalent of a function’s arguments being evaluated
before the function’s body in imperative code. The node’s output
is then immediately used.

» Two nodes, with no data dependencies, can be executed at the
same time, with both results being stored for later. This principle
provides the possibility for parallel execution; because it is much
simpler to determine whether two parts of the program would
not affect each other due to a data dependency; it is trivial to run

them both simultaneously.

* A node with more than one piece of data in every input arc can
be run twice—a secondary computation can start before the first
one has finished.

A special case of the third scenario is called pipelined dataflow, where
secondary computations can be started before the first computations
have completed. One of the more obvious places for parallelisation is

in loops: if each iteration is independent, then they can all be executed

' Early papers use the term fireable
instead of executable, as a throw-
back to when computations
must be manually started.
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at once; without the need to wait for any particular thread to finish, the
program can instead wait until every computation has finished before
proceeding.

4.2 History of Dataflow Processors

There have been a variety of general-purpose stream processors de-
signed, each with its own programming language. An early example
of a stream processor is MIT RAW [Waingold et al. 1997; Taylor et al. 2002]
which has several simple processors on a single chip, using StreaMIT
as its programming language. [Gordon et al. 2002]

Imagine is a streaming processor with several ALUs, fast local re-
gisters, and on-chip memory. * This was written in a language called
KernelC, a subset of C; it began the technique of allowing programmers
to use a language they already know to program for another device,
while still forcing them to program in a stream-friendly manner. How-
ever, it exposed the details of the architecture to the programmer, so
knowledge of how to program the device could not be carried on to a

newer, updated version.

It is important that Imagine uses a subset of C, rather than a super-
set: KernelC is more restrictive than C, disallowing global variables,
pointers, function calls, and control flow constructs other than loops.
Programmers who wish to use these features must simply re-write
their code to comply with the subset of C that KernelC mandates. The
reason behind its limited control flow is to maximise instruction-level
parallelism.

Finally, Merrimac [Dally et al. 2003], written in Brook [Buck and E. A. Lee
1992}, is similar to KernelC, though it does not expose the architecture—
the key benefit of this is that it allows programs to be compiled for other
machines without having to be first re-written for a new architecture.
This also meant that the architecture—the actual hardware—could be
updated, and any new programs would automatically be able to run on
it. Brook targeted Intel CPUs, but also NVidia GPUs. [Buck and E. A. Lee
1992]

The Brook language defines kernel functions that are applied to

each element in a stream. It makes an explicit distinction between ker-

? The official term given to this
memory is the “stream register
file”.
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nels and reductions, such as sum or product operations, that get applied
to multiple elements in a stream instead of just one. The processor
then treats these functions specially, picking the processor to evaluate

them based on aspects of the function such as their associativity.

4.3 Tying Dataflow to GPUs

Although the architecture of a GPU is a many-core distributed-memory
system, there are similarities between the style of programs written
for the GPU and the dataflow architecture:

* Both architectures shun side-effects and the writing to a bank of
global memory: all functional routines can be considered inde-
pendent of one another.

* Both architectures allow execution of the same code multiple
times at once, through the pipelined dataflow gained by not spe-
cifying the order of certain operations.

» Both architectures have their individual kernels scheduled based
on the data dependencies of each kernel, and could have their

running times improved with a custom, more complex sched-

uler.
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FIGURE 4.2: Two common examples of the dataflow pattern in use. In the spreadsheet (left), when a cell is updated, it
sends its new value to the cells that depend on it, finally reaching a result—in this case, the total sum. In the circuit (right),
values—bits, or the voltages on the wires—flow from the inputs A and B, through two logic gates, reaching results—in this
case, the sum and carry bits. Both examples exhibit behaviour of data flowing from an input source to an output source.
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* Both architectures require a scheduler to determine which ker-
nels to run, which can introduce latency by moving data from

one device to another.

* Both architectures can ignore computations not best suited for
parallel processing by having a different processor, such as the

CPU, execute them instead. [Bic 1990]

Finally, Goodman and Lujan, in Scientific GPU Programming with
Data-Flow Languages, [Goodman and Lujan 2011] notice similarities between
the uses of the four types of memory used by both dataflow and GPU

architectures:

* Read-only memory is read by multiple kernels (in the case of
dataflow) or threads (in the case of the GPU) in order to obtain

their input.

* Owner-writable memory—memory that can only be written to
by a specific thread—will not be read by other threads during the

current thread’s execution.

+ Atomic memory—memory that is protected by atomic sections
that allow multiple threads to write to it at a performance cost—is

present in both architectures.

* Block-local or thread-local memory is used to store temporary
values within a block or thread in both architectures.

Because the dataflow architecture offers the ability for a node to
begin execution before its previous iteration has finished (pipelined
dataflow), and the GPU’s most efficient mode of operation is to execute
the same node multiple times, it is plausible that a dataflow program
could be run on the GPU more efficiently than on the CPU.

Additionally, the dataflow architecture mandates that each node
cannot have side-effects, and cannot affect any other node. This is
beneficial for multi-device programming, as it is never necessary for
changes made on one device to be copied over onto another: each node
can be assumed to start with a blank slate. As there are two devices
at work here—the CPU and the GPU—each data transfer would take
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additional time; so as the program state does not have to be copied over,

the overall running time is shorter.

A particular viewpoint regarding dataflow machines as opposed to
von Neumann machines is that they are not, in fact, orthogonal archi-
tectures, but instead sit at opposite ends of an architecture spectrum
that ranges from having an entirely total ordering to having an entirely
partial ordering between instructions. These architectures would trade
execution order strictness for better low-level synchronisation as they
are placed closer to the dataflow end.

4.4 Efficient Dataflow Compilation

Dataflow, being an architecture, is able to provide speed improvements
in one of two ways: firstly, by being efficient in hardware, as has been
discussed; but secondly, by being a more general platform to target,
dataflow can be optimised well by compilers, with the same program
able to be compiled to several different dataflow graphs, all equally

valid, but with varying levels of efficiency.

There are several ways in which the dataflow architecture can be
used in practice. One such concept is “macro dataflow”, which begins
with the observation that because the costs of dataflow instruction
sequencing can be excessive, dataflow should be used only at the inter-
procedural level. [D. Kuck and Sameh 1986] This would avoid the inefficien-
cies of dataflow but still retain certain advantages. [David E Culler 1989
However, this would mean giving up fine-grained parallelism and the
ability to context-switch efficiently enough to cover memory latency—
meaning this approach is more suitable for multi-processor CPUs than
hundred-core GPUs.

In general, a processor capable of supporting multiple simultan-
eous threads of computation will suffer from more latency when ex-
ecuting a totally-ordered list of instructions than the equivalent partially-
ordered list. [R. A. Tannucci 1988] With any multiprocessor architecture,
certain instructions can take an unbounded length of time to complete,
such as memory or device access, or any other form of communica-
tion. A multi-phase operation will minimise latency over a single-phase
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operation because the processor idle time can be covered by another

operation. 3

In his paper Toward a Dataflow/von Neumann Hybrid Architecture, [R. A.
Tannucci 1988] lannucci describes such a hybrid architecture with its in-
struction set and programming model. This hybrid architecture uses
partitioning to aggregate nodes together into units called scheduling
quanta. These units can be specifically picked out to maximise a num-

ber of benefits:

* Maximised run length: With more than one node in a unit, it is
more likely that the entire unit will be fireable, since there is more
than one node that could receive input at any given moment.

* Minimised synchronisation: When an arc crosses the boundary
of a node, synchronisation will have to occur. By combining the
nodes into units, the scheduler can be left running in the back-
ground for longer, removing some of the overhead caused by syn-
chronisation. In this case, there is a further benefit, as two nodes
running on the same pieces of data on the same device do not re-
quire the data to be transferred onto the CPU for storage for a later

time; instead, it can just be run immediately.

* Maximised machine utilisation: Here, Iannucci raises the idea
of trying to “keep the pipelines full” by examining a set of costs
related to instruction execution, synchronisation, and operand ac-
cess. This can be used to compare two units, based on how well

they keep the machine occupied.

3 A multi-phase operation is an
operation that can be divided
into parts that separately initi-
ate other operations, and later
synchronise the threads be-
fore obtaining a result. They
are sometimes called split trans-
actions, as the operation has
been split into separate phases.
In modern programming lan-
guages, this is typically done by
initialising and starting a pool
of threads, with the operating
system providing the scheduler.



POLYCUBE: A RUNTIME SYSTEM

In order to run programs in parallel on multiple processors, it is neces-
sary to provide a scheduler that can both understand the data struc-
tures used in order to partition the workload in a data-parallel manner,
and also detect the best processor for use for each individual workload

automatically.

5.1 Design

My initial approach was to take a pre-existing imperative program and
transform it into a dataflow graph, which could then be run on multiple

machines. However, there are many problems with this approach:

* The dataflow processor requires that all its nodes be entirely
functional—that is, that they have no global state, and are guaran-
teed to produce the same result when given the same arguments.
Few programs are written this way, and instead, many programs
would have to be substantially re-written in order to work within
the dataflow paradigm. This would likely not be worth the time

saved compared to limiting the program to CPU cores.

* Itis difficult to determine the flow of data in conventional pro-
grams, even when removing a global state. It would be necessary
to determine the calling points of every function, and analyse

the data flow of every declared variable.

* Ashortcut solution such as allowing the programmer to declare
“hints” as to the nature of individual functions would still have
to cater for the instances where these hints were not given. For

example, the parallelising compiler extension OpenMP requires

50
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the programmer to place #pragma statements before every loop
they wish to parallelise. This is only effective as the compiler
can handle non-parallelisable loops as well—it does not fail to

compile when it encounters something it cannot handle.

Because there are so many downsides to attempting to parallelise
an existing program, it is clear that a new language should be developed
specifically for the system. Programs written in this language could
much more easily be run on both the CPU and the GPU. The language

created for the purposes of this research is called PolyLisp.

Making PolyLisp full-featured is outside the scope of this research:
there are many implementations of functional programming languages
already. All that is necessary is for non-trivial programs to be able to be

written in it, even if the language itself is not particularly elegant.

The example that is used in this thesis is a ray tracer, which is
heavily mathematical and easily parallelisable, as it has large pieces of
code that do not depend on each other. A ray tracer would require the
following features:

* Floating-point data types: coordinates and colours are specified

as floating point values.

* Mathematical operators: the arithmetic and trigonometric func-
tions, including sin, cos, and tan. These must be provided, as
unlike vector functions, they cannot be provided by a library. The
CUDA runtime provides implementations of these.

* Conditional statements: Control flow structures such as i f.
* Basic vector functions: map, filter,or reduce.

+ Complex aggregation functions: reduction functions where the
operator is known to be associative, including sum, product, any,
all, or none.

The key element of PolyLisp’s design is that each function is given
neither a global nor a local scope. The functions that have been chosen
to be implemented work within this restriction: whenever they are

called with the same arguments, they will give the same result.
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The most common side-effect of referential transparency on a pro-
gram is that it is not able to write output data or read input from the
user. In this case, it is only the individual operations that are kept pure:
any combination that requires interaction, such as reading a line of
input from the user, can be represented as an output-only node in the

dataflow graph.

5.2 Parsing

A Lisp-like syntax was chosen for PolyLisp because of its simple struc-
ture and ease of parsing. Parsing programming languages is, for all
intents and purposes, a solved problem, and no ground was broken
with PolyLisp’s parser.

Lisp’s syntax, S-expressions, is based around two forms:

* Lists: aspace-separated list of sub-expressions surrounded by par-

entheses;

* Atoms: strings of alphanumeric characters that do not contain
parentheses. These can be all digits, representing numbers, or a
mixture of letters and numbers beginning with a letter, represent-

ing variables, functions, or control structures.

S-expressions are named in contrast to M-expressions, which are
common in most other programming languages. While an S-expression
encloses all its sub-expressions in brackets, such as (add 2 3),an
M-expression puts the operator first, such as add (2, 3).' Control
structures, mathematical operators, and user-defined functions are all

called the same way.

The advantage of S-expressions is homoiconicity: the code looks like
data, because it is data. A well-formed Lisp expression can be converted
into a tree structure of lists and atoms. This makes it clear how it can
be parsed and eventually compiled. Even more complex structures like
loops or reductions over lists are closer to their parsed representation

in Lisp than in another language.

' Although the original Lisp ma-
chine was intended eventually
to run on M-expressions, its
users preferred the S-expression
representation, and that syntax
stuck.
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The main disadvantage is that mathematical formulas are no longer
written in infix order: instead, they are written with the operator put
before the operands. This appears unnatural and confusing to some
users, but means that it is impossible for the operator precedence to be

confusing, as the surrounding brackets are mandatory.

Parsing these expressions is assisted with an underlying token-
ising stream. This takes an input stream of characters, such as from a
source file, and outputs the stream reformatted into tokens of open and
close parentheses, spaces and newlines, and groups of alphanumeric
characters. This allows atoms to be treated as a single token along with

the open and close parentheses.

Once tokenised, the parser checks to see whether the first token is
an open parenthesis. If it is, it reads as many further expressions as it
can, separated by spaces. This call is recursive, so it is able to balance
nested open and close parentheses without problems: a list containing
other lists is perfectly acceptable, as the parser reads whole lists from
the stream, leaving only the final close parenthesis at the end of the

expression after all the leaves have been parsed.

One other possibility is that the first token is a close parenthesis,
which indicates a syntax error: a list has been opened without being
closed. Again, because whole lists are read for each expression, it is not
possible for there to be stray parentheses in the program for reasons

other than this. Otherwise, the token is converted to a leaf in the tree.

5.3 CPU Evaluation

After a source string has been parsed into a tree expression, PolyCube
allows it to be evaluated by the CPU. This is helpful even when running
on a system with a GPU: not only is it useful during testing, to see if the
result differs on the CPU than on the GPU, but as not all expressions
are able to be run on the GPU efficiently, it may be preferable to use
the CPU instead.

Evaluating an expression requires a lookup table of variables and
functions. * This, like the variables in the programs, remains the same

for each expression being parsed; if a variable has to be declared, then

? PolyCube takes the functional
definition of variable, which is
an atom that may have a differ-
ent value every time its name is
referenced. For example, when
looping over a list, assigning
every element to e makes e
avariable. This is in contrast
with the imperative program
definition, which is an area of
memory that can be modified.
In PolyCube, mutation is not
supported in favour of func-
tional idioms, so this definition
would be meaningless here.
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anew lookup table is constructed for the scope in which the variable
exists. This means that variable and function definitions are always

local, never global.

Lists and atoms are evaluated differently. An atom that is entirely
digits represents a number, which is evaluated by reading it as an in-
teger or decimal. An atom that is alphanumeric represents a variable,
which is looked up by consulting the table of variables in the current

scope. If the variable is not present, an error is thrown.

Evaluating a list is done by assuming the first element of the list as
the name of a function to run, and the rest of the elements, if present, as
the arguments. These elements are then evaluated, in turn, in order to
obtain the values to use as the arguments: evaluation is recursive. Under
the hood, each list, once parsed, is converted to a function object of its
own class. This means that the evaluation methods for each function

can be kept separate.

However, this recursive nature means that it is only feasible for
CPU execution. In order to avoid any form of recursive function call,

any code that could be run on the GPU must be compiled instead.

5.4 PTX Compilation

Each function in PolyLisp is able to be compiled into a PTX entry that
can subsequently be interpreted by JCUDA to produce a fully-working
PTX kernel. Despite being an assembly language, PTX is conceptually

simple, and there were few difficulties in compiling PolyLisp into PTX.

Compilation is remarkably similar to evaluation: atoms are evalu-
ated to themselves, and lists evaluate their arguments in turn, before
having their own code evaluated. The only difference is that instead
of calculations being performed during evaluation, a series of instruc-
tions is written to a list.

Once the PTX kernel has been generated, it is exported to a file
as text. From here, it can be compiled using NVidia’s nvcc compiler,
which can accept a text file of instructions with a name ending in . ptx
as PTX assembly. [NVidia 2013] The assembly is compiled into a cubin
(CUDA binary), which can finally be loaded by a program that supports
the CUDA format. 3

3 The counterpart to a cubin is a
fatbin or fat binary, which con-
tains the compiled PTX code
for multiple devices, instead of
just the device present on the
system. This is used to avoid the
delay or complexity of compil-
ing the PTX code before execu-
tion on other machines, in cases
where compiled kernels must be
distributed.
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5.4.1 Branching

One special case that has to be dealt with is branching: skipping to

another point based on the result of a conditional expression.

Conditional expressions are of great concern to PolyCube because
of the way the GPU operates. On the CPU, two threads can execute
two different instructions without problems, but on the GPU, every
thread must either execute the same instruction, or pause while the
other threads do. This means that conditional expressions can often
make code take twice as long, as each thread would have to wait for
both branches, so they are not to be taken lightly.

However, they must still be included in the produced PTX assembly,
because it will not always be more efficient to fall back to dataflow.
With short expressions, the time lost by having one of the two threads
wait during a conditional may not be worth the cost of having to trans-
fer more data to the GPU and back. This is why the PTX generation
code needs to support both labels and branching.

When a conditional expression is reached, the generator creates
unique labels before the else point and after the entire block of in-
structions. It then places the code for each of the sub-expressions after
the corresponding label. This means that, if the expression evaluates to
false, the instruction pointer jumps to the label, skipping some of the
code; if it holds true, the program continues as before, only jumping to

the second label to skip the other sub-expression.

5.4.2 Memory

PTX provides the developer with a large number* of registers for each
data type. These registers are later optimised by the compiler, but
CUDA’ own compiler is able to optimise the number of registers used
itself into the number actually in place on the GPU: this number varies
depending on the graphics card, so allowing a variable number and
compressing it later is the only safe option.

Including registers, there are eight different memory spaces access-
ible from PTX code. These are listed in Table 5.1.

* The limit for each kernel is
32767, which is highly unlikely
to be reached by an individual
kernel. The compiler will display
an error if this limit is reached.
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Name Description
.reg Individual registers themselves.

.sreg Special, read-only platform-specific registers. Typical kernel code is

not concerned about this space.
.const Shared, read-only memory.
.global Global memory, which is shared by all threads.
.local Local memory, which is private to each thread.
.param Any parameters passed to an individual kernel.
.shared Memory that can be shared between threads in a block.

.tex Global texture memory, which has been officially deprecated in recent

versions of CUDA by NVidia.

TaBLE 5.1: The eight different memory spaces accessible from PTX code.

Out of these eight memory spaces, PolyCube is only concerned

with four.

The operands and results of any PTX instruction are loaded into
and read from the . reg space, which is fast compared to the others.
[NVidia 2012] Unlike named variables in traditional imperative program-
ming languages, local variables do not need to be stored in their own
memory space, as the . Llocal space is used for thread-local memory
rather than function-local memory. Instead, it is possible to store inter-

mediate calculations entirely in registers. °

Any constants are loaded into the . const space. Although these
can be global, such as a constant declared at the top level of the program,
accessible by all functions, they are kept out of the . globa'l space as
they do not have to be modified.

Lastly, the values that are passed as input arguments to functions
use the . paramspace. Although function calls are inlined on the GPU,
the . param space must be used for the parameters and return values
of functions that use multiple-value structs, which are not supported

by the . reg memory space.

5.4.3 Bottom-Up Compilation

As is said above, compilation is a very similar step to evaluation. A func-

tion call is compiled into a list of PTX instructions by first compiling

° Storing function-local variables
inside registers is also a com-
mon practice for register-based
virtual machines. Optimisations
(including the ones presented
in Section 5.5) will ensure that
the number of registers does not
exceed the number available on
the device.
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the expressions that make up its arguments, moving the result into a
new register, and adding the resulting instructions into the list. Then,
the instructions that make up the actual function are inserted, with
their arguments set to the registers that hold the arguments’ return

values.

For mathematical operators, the function call is a simple one, com-
piling down into a single PTX instruction: for example, in the case of
the + operator, the add instruction is used. However, for user-defined
functions, the entire function call must be inlined, meaning that the

function’s entire definition gets inserted into the list of instructions.

If the expression being compiled is a constant value, the value is
loaded into the shared read-only memory space and that memory loc-
ation is used. If the expression is a variable or a parameter, a similar
load happens with the register (. reg) or parameter (. param) memory
spaces. This allows compilation to be implemented recursively, using
the constant values as the base case, and function calls as the recursive

case.

5.5 Optimisation

Each compiled kernel runs through several optimisers to produce code
that is on a similar level to that of NVidia’s official compiler, which is
useful when comparing runtime metrics. While this research is not
about investigating compiler optimisations, a few have come in useful.
By default, the compiler outputs very inefficient PTX code for the sake
of simplicity, leaving it up to the optimisers to generate faster-running

instructions.

5.5.1 Register Minimisation

Instead of re-using existing registers when possible, the PolyLisp com-
piler always opts to use new registers for every argument, and another
for the return register. This not only makes the code generation much
simpler, but also makes it easy to perform optimisations at a later stage,
as it can assume that a register will not have been re-used.
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Register minimisation involves detecting cases when a register’s
only use is to have data loaded into it from another register exactly
once. If this is the case, then the register can be replaced with the
register that its data came from. This eliminates register chains and

unnecessary load operations.

5.5.2 Combining Instructions

There exist several instructions in PTX that perform the work of other,
simpler instructions, without the overhead of having to execute mul-
tiple ones. For example, the mad instruction multiplies two values and
then adds a third, which would usually take two separate mul and add

nstructions.

There are also instructions that perform an operation with one of
the operands already loaded, such as neg, which negates a number by
multiplying it by -1. The optimiser detects when two or three instruc-
tions are used in this manner, and replaces them with a call to a single
instruction, decrementing the numbers of the following registers by

the appropriate amount.

5.5.3 Dataflow Graph Construction

The second stage of compilation is to collect the individual PTX kernels
that have now been compiled and link them together to form a dataflow
graph of computation. This graph will be examined by PolyCube at
runtime, and executed in what the system computes to be the most

efficient way possible.

Expressions that operate on scalars—single values, rather than lists
containing many values—can simply be executed on the CPU recurs-
ively, with a function’s arguments being evaluated in turn, then fed to
the function itself. For the common case of a function simply operating
on a scalar, the function will become one self-contained dataflow node.

Then, there are two special situations that the compiler is aware of:

* Recursive function calls: A function cannot call itself in CUDA

C, as the functions will be inlined, and it is not possible to inline a
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Function Results Destination
map n Anywhere
filter, reduce Variable CPU

sum, all, and others 1 Anywhere

TaBLE 5.2: Table of functions and the number of results they produce, given a list of n elements as input. The most
common reduction functions produce a single element as output, while filter and reduce produce a variable amount.
The scheduler must then move these results onto the CPU to efficiently concatenate them, leaving the GPU for other
computations.

recursive function call. Furthermore, any work-arounds will still
be problematic due to the parallel nature of the GPU. PolyCube
detects instances where a function is calling itself and, instead of
returning another expression, returns a node in the dataflow graph

that points to itself.

The arc between the node and itself contains a special value that,
internally, contains the values of the arguments that the next re-
cursive call shall be run with. There are limitations with this ap-
proach: namely the fact that there can only be one point where the
function is called recursively, as the point where the function was
called is not recorded. Without this information, the system does

not know the point where execution must continue from.

* Vector function calls: When a function is called across multiple
pieces of data, such as with amap or filter call, it also creates a
dataflow node rather than another expression. This node is then
called specially based on what class of function it is, based on
Table 5.2.

If the function performs vector operations for part of it, rather than
being entirely a vector operation, it is desirable to perform as much
of it on the GPU as possible. ¢ In this situation, the producer of the
values will become a node that flows data to another node—the vector
operation. Similarly, the consumer of the values, if present, will become

another node that takes input from this operation.

With nodes created for these situations, it becomes possible for the  °Itis possible to have one func-
tion be compiled into both CPU
and GPU versions when it is
ively, and can run them both on the GPU while keeping the data on  used from other functions that,
between them, are run on both
devices.

runtime to determine when two vector operations are run consecut-

that device, eliminating the latency from transferring the data twice.
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5.5.4 Collecting Data

Having alimited set of functions allows the complier to gain knowledge
about the program that would otherwise not be present. For example,
it can know for sure that the operator used in the sum or any reduction
functions is associative, and so it can perform the parallel algorithm
that requires this to be the case, instead of the slower, serial algorithm.

[Pharr and Fernando 2005]

More importantly, it can be aware of the results that each function
provides. Table 5.2 lists the classes of functions in the language, and

the number of results produced given a list of n elements as input.

Knowing the number of results in advance proves important to the
scheduler, as latency between the GPU and the CPU comes into effect.
Moving a large number of results between the two devices can slow
the execution of the kernel down, and it may be preferable to transfer

a single element than many.

The filter and reduce functions produce a variable number
of results. Although these functions are run on the GPU, their results
must be processed further on the CPU in order for the data that is no
longer relevant to be removed. This is the data that did not match
the predicate (in the case of filter), or intermediate results (in the
case of reduce). Without this operation, the GPU would operate on
a dataset much larger than necessary, as the threads for the removed
elements would still be executed, causing a slowdown. Therefore, it is
in the scheduler’s interest to remove these elements from execution as

soon as possible.

On the other hand, the sum and product functions are guaran-
teed to only return a single result, making them a much better can-
didate for running on the GPU. PolyCube will prioritise running these
functions on the GPU if it gets the chance.



CASE STUDY: RAY TRACING

Ray tracing is a graphical technique to generate highly-realistic images
from 3D scenes that can accurately simulate many real-world optical
effects, such as reflection, transparency, diffraction, and shadows.

Although speed is usually considered a virtue for computer pro-
grams, rendering engines for computer games are limited by needing
to perform fast: a computer game engine would use faster, inaccurate
calculations over slower, more accurate ones in order to consistently
produce 60 or more frames per second. These inaccurate calculations’
results would often be indistinguishable, or barely distinguishable,
from the accurate ones when playing a game, so they were preferred.
The engines would render a scene one polygon at a time, with visual
effects added in afterward. Ray tracing, on the other hand, renders
scenes one pixel at a time, for the maximum possible accuracy, with
some images taking hours or even days to render. !

Ray tracing works by creating a ray of light for each pixel in the
image, and then tracing its path to see whether it collides with any
objects. If it does, the visual effect is simulated with mathematical
formulae, and the colour of the pixel is calculated depending on the
object hit and the point of collision. The function to calculate the colour
often fires additional beams, allowing real-world effects to be rendered

accurately:

* Reflection: Aray can bounce off an object, creating a secondary
ray travelling in a different direction. The resulting colouris a blend
of the colour of the object and whatever the secondary ray hits.

» Transparency: Instead of bouncing off a transparent object, a ray
can partially pass through it, creating a secondary ray travelling in
the same direction. The resulting colour is a blend of the object’s

61

' For 3D animators, rendering
time is a big issue: the feature
film Shrek 2 needed 10 million
hours of CPU time to render.
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colour and the colour of the object that the original ray would have
hit.

» Shadows: Upon hitting an object, additional rays are traced from
the point where the ray hit to the light sources, and if there are
objects in the way, the resulting colour can be darkened.

The slow performance of ray tracing is usually managed by paral-
lelising the process: in fact, one of the most common uses for a cluster
of computers is as a render farm for producing animated video. Ray tra-
cing is considered a trivially-parallelisable problem, where opportunities
for simple parallelisation are easy to spot and implement. [Chalmers,
T. Davis and Reinhard 2002] In this case, with each individual compon-
ent independent, a separate thread can be used for each line or even
pixel; additionally, with animated video, the task can be split up further,
with each frame being rendered on a different processor. Addition-
ally, many raytracing functions consist of doing similar calculations
a large number of times, and with a shared-memory system such as
a CPU, balancing the computational load between every processor is
straightforward. [Fernando 2004

6.1 Ray Tracing Challenges

The GPU seems like a good fit for ray tracing, given the highly-parallel
nature of the problem. However, the technique does not translate over
perfectly. Ray tracing is a recursive procedure, where a single ray could
bounce around a scene several times before finally resulting in a col-
our. This is troublesome, as CUDA, as well as GPUs in general, do not
support recursive function calls. In CUDA' case, every function run on
the device is inlined, and a straightforward recursive function cannot
be fully inlined.

This can be avoided in one of two ways, both of which have draw-

backs:

* Pre-allocate space for an arbitrary maximum number of rays,
and perform that many iterations of the ray-tracing loop each
time. This will use more time and memory, as the GPU’s nature
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dictates that the maximum amount of space must be allocated

for each individual thread, even if much of it goes unused.

* Use a stack on the host computer’s memory, and co-ordinate the
ray tracing from there. The threads may be executed in groups
so that only the first iterations of the function are executed the
first time, followed by only the threads that need a second the
second time, and so on. This technique is more complicated,
and requires much more communication between the host and
device processors.

A GPU ray tracer that processes each possible secondary ray will
waste a lot of time. The threads that complete after one iteration will
be forced to wait for the threads that take many iterations to complete,
because of the GPU’s large overheads when doing state-based compu-
tation like this. [Timothy J. Purcell et al. 2002] A ray tracer that offloads parts
to the GPU may find the CPU-GPU bridge a bottleneck, negating any
possible speed improvements that the GPU offers. [Carr, Hoberock et al.

2006]

Currently, the majority of opportunities for optimisation of GPU-
based ray tracing are through the use of more advanced data structures
to partition the scene, in order to make sure that every object does not
need to be tested for every ray. A simple grid structure can be imple-
mented on the GPU, [Timothy J. Purcell et al. 2002] but this data structure
only works well for scenes with uniformly-distributed objects. A more
complex structure can be managed in parallel on the CPU [Carr, Hoberock
etal. 2006], but again this is limited by the CPU-GPU bottleneck. Despite
these limitations, there have been a number of attempts in solving the

secondary-ray problem, and they are outlined below.

6.1.1 Parallel Ray Tracing

In Photo-Realistic Ray Tracing Kernels, Ernst and Woop classify a variety
of different parallelising approaches to improve ray-tracing rendering
speed into three categories, based on the object that is parallelised when

the ray-object intersection calculation is performed.
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The first of these states that when multiple rays intersect a single
object, the rays can be parallelised. This technique is called packet tra-
cing. Ithas been implemented on the CPU by employing Simple Stream-
ing Extensions (SSE) instructions [Wald 2004], but on the GPU, it runs

into the secondary ray problem.

In Fast Ray Sorting and Breadth-First Packet Traversal for GPU Ray Tra-
cing, the authors are able to avoid the problem by maintaining a stack
of ray iterations in private thread memory, * but note that this suffers
from a performance decrease by having to constantly access this pool
of memory. [Garanzha and Loop 2010] The authors also utilise a ray-sorting
procedure to reduce the number of execution branches that the pro-
gram must take, assuming that rays coming from a similar part of the
scene will likely all hit the same object. Although they do cite an in-
crease in rendering speed, their technique is specific to their mode of
ray-tracing, and is not possible to apply generically to programs that

need GPU recursion.

The second category parallelises the objects being intersected with,
instead of the rays that intersect with them. This is efficient when
the objects are being stored in a suitably-efficient data structure, such
as a tree that stores nearby objects together, similar to the ray-sorting
technique mentioned above. [Benthin et al. 2012]

The third category parallelises both the rays and the objects they

intersect.

6.1.2 Previous Work

Purcell, in Ray Tracing ona Stream Processor, abstracts the GPU to a stream
processor in order to produce ray-traced images, and claims that ray
tracing is most naturally and efficiently expressed in the stream pro-
gramming model [Timothy J. Purcell et al. 2002)].

Purcell’s work cites similar ideas about dataflow, which may have
originated from the implementation of the stream processor used.
There are kernels, which are specialised, stateless function calls, and
streams, that hold intermediate results between different stages of the

program. A kernel is invoked on many different records that all require

> In CUDA, this would be the
. local memory space, as
described in Table 5.1.
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the same processing. This is one of the core tenets of the dataflow ar-
chitecture, that the same processing should be run on as many pieces
of data as possible; however, Purcell does not explore the abstraction

capabilities of kernels and streams.

Purcell has implemented his raytracing model as a diagram that
holds many similarities to the dataflow architecture explored in this
report. The kernels are all general functions that can easily be applied
to many individual pieces of data at once, and the arcs are used to
specify the data dependencies between kernels. Each kernel can be run

independently.

Purcell describes an implementation for a stream processor, which
is required to allow data-dependent branching: allowing different in-
structions to be executed for different threads. [Timothy John Purcell 2004]

Carr’s method in The Ray Engine [Carr, Hall and Hart 2002] offloads the
repeatable, ray-triangle intersection code to the GPU, while using the
CPU as a scheduler. Although this seems like the perfect use of both sys-
tems, this method was found to require constant supervision from the
CPU, with large amounts of data transferred over a narrow-bandwidth
bus, which lessened the effect of the GPU.

In Fast GPU Ray Tracing of Dynamic Meshes using Geometry Images [Carr,
Hoberock et al. 2006], Carr recommends a method such as Purcell’'s method
of offloading further computations to the GPU to limit the latency
between the host and the device.

One suggestion made by Karlsson, in Ray Tracing Fully Implemented
on Programmable Graphics Hardware, [Karlsson and Ljungstedt 2004] is that
the CPU could be running a program while the GPU is in use, which is
one of the core tenets of this research. In this implementation, the CPU
is used to run a display loop for the output of the ray-tracing algorithm,
but the possibility that multiple pieces of hardware could be used at
once is one that has arisen before. Karlsson’s implementation leaves

out shadows and reflection entirely.

Allgyer, in a Masters thesis [Allgyer 2007], transfers a stack-like struc-
ture to the GPU and iterates over it. Allgyer cites problems with this
approach, namely that CUDA cannot dynamically allocate memory
from within a kernel, so the size of this data structure must be fixed.
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Therefore, a middle ground must be found between overestimating the
size of the stack (and causing memory to be wasted) and underestim-
ated (causing the program to crash).

NVidia themselves have an implementation of real-time raytracing
on the GPU, OptiX. It returns to having two programmable shaders
instead of a fully-programmable pipeline such as the one CUDA offers.
These shaders are specific to ray-tracing: there is no possibility of ad-
apting OptiX to general-purpose computation. [S. Parker et al. 1999] OptiX
works by taking user-supplied CUDA kernels that describe how a ray
should act in certain circumstances. [S. G. Parker et al. 2013] 3

The OptiX scheduler explicitly selects a single state for an entire
block to execute using a heuristic, thus allowing the threads that co-
operate the most to run with the same instructions, decreasing the total
running time of the block. Threads within the block do not require the
state to be idle during that iteration. This is similar to having a CPU-
hosted scheduler pick the threads that work well together, and schedule
them to all be run at once.

One final recent development is Samsung Reconfigurable GPU
based on Ray Tracing (SGRT), a mobile GPU architecture for real-time
ray-tracing. Ray tracing in the mobile environment is difficult because
of the lessened computational power that mobile devices possess. [W.-].
Lee et al. 2013] Like OptiX, SGRT divides its processing amongst several
different processors, each suited to a particular task. This is reminis-
cent of dataflow, where a program can be thought of as several pro-

cessors, each one running only when necessary.

6.1.3 Observations

There are a number of observations that can be read from this body of

work:

* Itis possible to parallelise a program in multiple ways, with res-

ults varying depending on the parallelisation technique used.

* The problem of not being able to implement recursion efficiently
is difficult; the most efficient results are from programs specific-
ally written to solve the problem, rather than from a generic
solution.

3 Real-time raytracing has been a
commonly-cited long-term goal
for graphics technology, due to
traditional rendering methods
being fast but imprecise. Before
NVidia’s technology, real-time
raytracing has been demon-
strated using less-powerful
hardware with smaller scenes
[Wald 2004; S. Parker et al. 1999] and
with more complex scenes using
a computer cluster. [Wald 2004] It
has also been demonstrated on
FPGA-based systems.
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* Although the individual threads in a parallel block can be ex-
ecuted simultaneously or in any order, it is possible to run the
fastest by running the threads with similar data together, as these
threads will often reach a similar number of recursive calls deep,

maximising the available time that the GPU's cores are in use.

6.2 Performance

An example scene of multicoloured spheres and a plane (shown in
Figure 6.2) was rendered on both the CPU and the GPU using a program
written in PolyLisp (described in Chapter B). This section discusses the

performance results of these two processors.

The scene was designed not only to have multiple reflective sur-
faces, which are necessary here to demonstrate the secondary ray prob-
lem, but also to have rays reflected varying numbers of times in differ-
ent parts of the image. The number of rays necessary to render each
portion of the image is plotted in Figure 6.1. This chart shows that the
vast majority—79.3 %—of pixels in the image take exactly two rays to

render, compared to just 2.1% of pixels taking exactly one. Therestof ., . . o surpris-
the graph trends towards zero, with 0.17 % taking exactly ten rays,and  ing pattern from 5 to about 50
rays, where the rate of change
from an odd to an even number
of rays is greater from that of
even to odd. It is unknown why

dering the image, there will always be a fraction of the rays that require ~ this happens, but could arise
from the image being roughly

0.000 09 % taking fifty. 4

This means that, at every level of recursion depth reached while ren-

additional processing after this step—which triggers the secondary ray

symmetrical.
problem while running on the GPU.
The complete image
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FIGURE 6.1: A graph, on a logarithmic scale, of the region of the image that can be rendered in exactly a given number of rays
(1), and the region that can be rendered in at least this number of rays ({1).
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FIGURE 6.2: The scene rendered by PolyCube. The resulting image was identical on the CPU and the GPU. This particular
scene was designed not only to have multiple reflective surfaces, but also many regions of the image where rays are reflected
varying numbers of times before finally hitting a non-reflective surface (see Figure 6.1). Although more complex shapes
and surfaces are possible, simple planes and spheres were chosen to simplify the PolyLisp program and the mathematics
involved.

6.2.1 CPU Performance

The ray tracer was initially compiled for the CPU only, and was run
multiple times with varying numbers of CPU cores and maximum ray
recursion depth. The results are shown in Figure 6.3, plotting the exe-
cution time against the maximum depth from 1 to 32 for five numbers

of cores.

The results support the fact that the CPU is able to execute different
instructions on each core at the same time. For the first five rays, the
time taken to render an image climbs quickly, with the additional rays
having a large effect on the execution time. After five, however, the exe-
cution time increases much more slowly, showing how the remaining
cores are not idle for the remainder of a particular level of recursion
depth. After approximately fifteen rays, the execution time does not
noticeably increase for any number of cores, as such a small part of the

image requires this may rays to be rendered completely.
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FIGURE 6.3: A graph, on a linear scale, of the running times of the ray tracer run on a CPU against the pre-set maximum
recursion depth using just 1 core (<O-), 2 cores (<O-), 4 cores (<r), 8 cores (<0r), and 16 cores (<O-) of a 16-core machine. As is
expected, the more cores used to render the image, the less time it takes. Also, the steep increase in execution time for the
first few rays reflects the growing amount of image that is affected by another level of recursion depth being added (see
Figure 6.1). The CPU rendered a 20 480 x 11520 image four times, in order to average out any discrepancies in individual runs.

The number of cores is also demonstrated to have an effect. Fig-
ure 6.4 shows that plotting the running time against the number of
cores used for execution results fits a negative hyperbolic curve. Going
from 1 core to 2 almost halves the execution time, but going from 15
to 16 has an extremely small effect. This is because ray tracing can be
very easily parallelised, with a separate thread for each row, or even

pixel of the image.

6.2.2 GPU Performance

Next, the ray tracer was run on the GPU in two configurations:

* A naive function-calling implementation: Both processors are
used for execution, but any recursion should have a limit hard-
coded during compilation. This uses the technique described in
Subsection 2.3.3 to deal with the GPU's restrictions on recursion.

* The PolyCube dataflow implementation: Both processors are
used for execution, with PolyCube’s runtime scheduler examining

the program to optimise the recursive function calls.

Both implementations are tested and compared to each other and
the CPU version. This is in order to isolate the changes in running time

60s
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30s

Amortised Execution Time

0s H—A+——+——t—+—————+
012 4 8 12 16

Number of CPU Cores

FIGURE 6.4: A graph of the
running times of the ray
tracer against the number
of pre-allocated CPU cores.
This is an alternate plotting
of the first column of data in
Figure 6.3, along another axis.
The curve is negative hyperbolic.
(y ~ 7227 0813),
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FIGURE 6.5: A graph, on a linear scale, of the running times of the ray tracer run on a GPU against the pre-set maximum

recursion depth using an unoptimised (<0-) version and an optimised (*O-) version of PolyCube. As with the CPU, the GPU
rendered a 20 480 % 11520 image four times, in order to average out any discrepancies in individual runs.

to only the differences caused by PolyCube, and not any differences
that would be inherit in any program running on multiple but separate

Processors.

The results are plotted in Figure 6.5. As is expected, the naive ap-
proach, in general, takes more time than the optimised approach using

PolyCube’s runtime scheduler.

As the two programs were executed on the same device, it is pos-
sible to compare their running times. The naive approach actually has
less running time than the optimised version when the maximum ray

depth is g or less. This is because

Surprisingly, when the lines of best fit are calculated, both curves

actually conform to a linear fit. The fits are shown in Figure 6.6.

In the case of the naive approach, this was expected, as each added
level of recursion depth would slow down all of the available threads
as they wait for the final few to finish calculating. This means that
each level would add a constant amount of execution time, resulting
in a linear graph. These results fit the line y = 4.582x + 2.543 with
R? = 0.9989.

In theory, the results for the optimised would resemble the CPU
graph, with each level of recursion depth adding smaller and smaller
amounts of execution time as the number of pixels that require more
depth than that to complete get fewer and fewer.
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FIGURE 6.6: The best fit curves of the GPU running times in Figure 6.5, again using an unoptimised (<0, left) version and

an optimised (O, right) version of PolyCube. Both fit linear curves, but the optimised version deviates from the curve when
there are few rays cast.

This curve does fit the graph—but only with a depth of 5 rays and
below! This can be explained due to the latency involved. Not only
does each rendering step involve the transfer of data to the GPU and
back, but it also needs to post-process the data on the CPU before any
further work can be done with the results. This time begins to take a
length of time approaching the actual rendering execution time, and

so the resulting graph is in fact linear.

These results fit y = 1.289z + 32.136 with B2 = 0.909. The lower
R? value is due to the numbers of rays at the beginning of the graph—
with depth 4 and below—throw off the line. It most definitely does not

take 32.136 seconds for PolyCube to initialise.



CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

It is not enough to say that the use of parallel processors is growing—
they will soon saturate the market, and it will be commonplace to have
a CPU+GPU hybrid processor in your computer instead of just a CPU.
As GPUs become more general purpose, they will enable users to use
the graphics card for general-purpose computation, instead of just for

playing computer games.

Problems once thought intractable on the current generation of
hardware, such as factorising hundred-digit semiprimes, or trying
every possible combination to crack a password, are falling to the sheer
processing power that these new parallel systems offer. However, the
majority of parallel software is specialist, and many programs do not

even try to use the computational power available to them.

In the world of dataflow, there are many papers from the 1980s
when von Neumann machines were, relatively, not as fast, and there
was further interest in dataflow machines as a competitor to the von
Neumann architecture. Although dataflow is still a topic of research,
it is most useful here not as a stand-alone hardware architecture, but

instead as an intermediary architecture, for its ease of analysis.

An original goal of this research was to be able to parallelise any
given program by analysing the data dependencies of every loop in
order to find a dataflow diagram for the program. This proved to be a
bad idea, as the compilation time necessary to compute the dataflow
graph quickly exceeded the execution time! Instead, the approach was
chosen tolet the programmer decide which parts of the program should
be parallelised, in order to make the dependency graph smaller, giving
the dispatcher less work to do. This is the approach taken by CUDA:

programs are run on the CPU, unless explicitly stated otherwise.
72
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7.2 Results

Upon comparing the results of the ray tracer’s execution on both the
CPU and the GPU, there is evidence that with certain computations,
the GPU’s processors sit idle for a non-trivial part of the running time,
and by re-arranging the order in which certain functions are executed,
the the amount of idle time on the GPU can be minimised without
this having to be explicitly done by the program itself. Here, it was
the scheduler that was able to partition the program into workloads
best run on the CPU and GPU by analysing the program, owing to the
functional, descriptive style provided by PolyLisp.

Running only on the CPU, a PolyLisp program will have a slower
running time than one written in straight C. However, only the bare
minimum amount of work was undertaken to improve the CPU run-
ning time, instead focusing on compilation to the GPU: the CPU-bound
code is evaluated at runtime, instead of being compiled first. Were the
target for the CPU a more efficient architecture, there would be much
less detriment to writing a program in PolyLisp even for the base case

of running on one CPU.

7.3 Future Work

There remain several possibilities for future work that could be built

on top of this research. These are outlined below.

7.3.1 Further Programming Language Features

The primary feature of the scheduler is its ability to discern which parts
of a program should be run on the CPU or the GPU. To do this, it has
had to give up certain language features that don’t ease parallelism,
such as data structures, a type system, or mutable variables. It should
be possible for a sufficiently-smart compiler to still be able to analyse
a program that uses these programming language features, keeping
the more advanced parts on the CPU while still being able to run the

parallelisable components on the GPU.
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One drawback of even offering these features is that it becomes
very easy to prevent parallelism entirely by, for example, using mutable
variables in an inconvenient place. The balance between language
features and runtime speed has often been a difficult one to find, and

this would be in no exception.

7.3.2 Additional Configurations of Hardware

This research restricted itself to the combination of a single CPU paired
with a GPU; this is the most common hybrid architecture based upon
consumer-grade hardware, and as such, is the largest target platform
for software. But certain problems may require more specific config-
urations of hardware, such as a render farm employing tens of GPUs
to all run the same program, or a computation cluster with multiple
high-power CPUs.

It may be possible to adapt the scheduler to target arbitrary config-
urations of hardware based on factors it determines when execution
begins, such as picking algorithms depending on the available hard-
ware, or how best to permute data to avoid cache misses. A simple, yet
important, example would be having the scheduler prioritise keeping
data on the same GPU when two are present, rather than to constantly

move values between two.

Some examples of performance-choosing schedulers are listed in

Section 3.7, Performance-Tuning Frameworks.

7.3.3 Runtime Graph Partitioning

An even further goal is to have the scheduler react to changes in the
set of available processors by re-partitioning the graph at runtime to
accommodate for additions and removals of processors. This would
be accomplished by trialling various mappings of individual kernels to

processors and seeing which combination proves the most effective.

Runtime tuning is also listed in Section 3.7.



POLYLISP DEFINITION

This appendix describes the PolyLisp language, a dialect of Lisp used to
compile and run the ray tracer used in this thesis. It lists the features
and limitation of each language function or construct, and details how

each is compiled down to PTX assembler instructions.

A1 Operators

A1l +,-,% /,%

These arithmetic operators work in the same way as their C counter-
parts, performing addition, subtraction, multiplication, division, and

modulus respectively. They are defined for floating-point types.

The - and / operators have special behaviour when run with just
one argument: they negate or reciprocate it. This allows special neg

or rcp instructions to be used instead in the resulting PTX assembly.

This behaviour has no runtime penalty since it is not possible to
call functions with a varying number of arguments at runtime—it is

merely a compile-time check.

Al2 ==5,1=,>,>=5,<,<=
These boolean operators also work in the same way as their C counter-

parts, comparing two values of the same numeric type and returning
true or false values of type . pred.

75
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A.1.3 and,or,not

These logical operators also work in the same way as the C operators

&&, | |, and unary !. They are defined for values of type . pred.

A.2 Functions

A21 sqrt

This function returns the square root of its argument, which must be
a floating-point number.

A.2.2 floor

This function returns the floor of its argument (rounded down to the

nearest integer), which must be a floating-point number.

Despite returning an integer, it will also be a floating-point number.
This is to mimic the behaviour of the CUDA implementation of this

function.

A.3 Control Flow Constructs

A31 1if

if takes three arguments, but unlike a function, does not evaluate
them all. If its first argument evaluates to true (as a . pred-type
value), it will evaluate and return its second argument. Otherwise, it

will evaluate and return its third.
This allows conditional expressions to be written.
(if (= 0 (floor n) 2)

*blackx
*whitex)
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A.3.2 when

when, like i f, tests a condition and a success case, but if the condition
evaluates to a false value such as 0, ni U is returned instead of a failure
case. This construct is essentially a short-cut for when ni 1 should be
returned from a conditional.

(when (= 2 2) *upx)

A.4 Variables and Definitions

A4a let

The let construct allows the programmer to set the result of one (or
several) function calls to variables.

These definitions cannot refer to one another, as that would intro-
duce a possibility for two mutually-recursive definitions to exist, which
could not run on the GPU unless specified as separate functions. If
one definition must refer to another, the Let* construct must be used
instead.

(let ((one 1)
(two 2))
(+ one two))

A.4.2 letx

This alternate form of let evaluates its arguments sequentially in
order, with later arguments able to access the results from earlier defin-

itions.

This form should only be used when one result depends on another—
if they can all be evaluated separately, Let should be used instead. It

is equivalent to a series of nested calls, with one let per definition.
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(letx ((one int 1)

(two 1int 2)
(result (+ one two)))
result)
A.4.3 defun

Defines a function in a global scope.

This construct takes four arguments: firstly, the name of the func-
tion; secondly, a list of the names of the arguments, paired with their
types; then the function’s return type; and finally the expression to
evaluate with these arguments.

(defun square ((num int)) 1int
(* num num))

A.4.4 defconst

Defines a constant in a global scope.

Although constants can have any name that does not conflict with

another, it’sidiomatic to surround constant names within xasterisksx*.

(defconst *pix float 3.14159265)

A.4.5 defstruct

Defines a data structure with the given name and fields.

(defstruct vec
(x float)
(y float)
(z float))

Knowledge of data structures is important to PolyCube, as it must
be able to determine the size of every function argument and return
type so it fits in the . param CUDA memory space.
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A.4.6 defunion

Defines a tagged union type encompassing several structs. This allows
any value of one of the types to be passed in as an argument to a func-
tion, with the function able to figure out which type it is.

It takes the name of the type as its first argument, and a list of

structure names as the rest as union variants:
(defunion shape sphere plane)
At compile time, this defines the following:

1. Atype (such as shape above) that allows a value of any of the
types listed to be passed in as an argument.

This type must be known at compile time, in order to give it a size:
it will be the largest variant’s size, plus one byte. This “tag” byte,
which occurs after the struct’s data, can be queried at runtime to
determine which type a value actually has.

2. Apredicate function that allows a function to test a value of this
type to see which of the variants it is.

It’s idiomatic to end predicate names in Lisp with —-p, so in the
example above, the functions sphere-p and plane-p would
be defined.

Compared to traditional data systems or class hierarchies, this is
limited, but it provides the base level of support necessary to write
simple programs. For instance, it is not possible for one type to be a
member of two tagged unions at once, as the type predicate names
would then clash.

A.457 Tlambda

Constructs an anonymous “lambda” function.

This function takes a number of input argument names as its first
parameter, and when executed, evaluates the expression in its second
parameter with those arguments.
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These are limited in their use, in that they cannot be returned from
functions nor passed around; they can only be passed in as an argu-
ment to a list-transforming function such as filter or min. Itis not

currently possible for lambda functions to be used on scalar values.

(lambda (x) (* x 2))

A.4.8 array

Creates an array that contains the given elements. The size of the array
is fixed at compile-time, and arrays are not mutable after construc-
tion. The elements of the array must all be of the same type, which is
determined by the type of its first argument.

(map (lambda (x) (+ x 2))
(array 1 2 3 4 5))

A.4.9 loop

Runs a loop, in parallel on the GPU if possible, over the given half-open

range of numbers. The two limits must be given in order.

(loop x (0 10)
(print x))



SOURCE CODE

This is the source code, in PolyLisp, of the ray tracer presented and

demonstrated in Chapter 6.

B.1 3D vectors

(defstruct vec
(x float)
(y float)
(z float))

(defun dot ((this vec) (that vec)) float

(+ (* (vec:x this) (vec:x that))
(x (vec:y this) (vec:y that))
(*x (vec:z this) (vec:z that))))

(defun
(vec

(defun
(vec

(defun
(vec

cross-product ((this vec) (that vec)) vec

(= (* (vec:y this) (vec:z
(* (vec:z this) (vec:y that)))
(= (*x (vec:z this) (vec:x that))
(*x (vec:x this) (vec:z that)))
X y
y X

that))

(- (x (vec:x this) (vec:y that))
(x (vec:y this) (vec:

vec:+ ((this vec) (that vec)) vec
(+ (vec:x this) (vec:x that))

(+ (vec:y this) (vec:y that))

(+ (vec:z this) (vec:z that))))

vec:- ((this vec) (that vec)) vec
(- (vec:x this) (vec:x that))

(- (vec:y this) (vec:y that))

(- (vec:z this) (vec:z that))))
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that)))))

A vector is a point or direction in 3D
space. It is represented by three float-
ing point values.

The dot product of two vectors is a
mathematical formula that gets used
to calculate their magnitude.

The cross product of two vectors is an-
other formula. This one is used to cal-
culate a vector perpendicular to both.
It gets used in the camera-calibration

functions.

Vector addition simply adds the X, Y,
and Z positions to those specified by
another vector.

Subtraction is also defined, as a short-
cut for doing vector arithmetic.



APPENDIX B. SOURCE CODE

(defun
(vec

(defun
(vec

(defun vec:squared-magnitude ((this vec)) float
(dot-

(defun

vec:*x ((this vec) (that vec)) vec
(*x (vec:x this) amount)

(x (vec:y this) amount)

(x (vec:z this) amount)))

vec:/ ((this vec) (that vec)) vec
(/ (vec:x this) amount)

(/ (vec:y this) amount)
(/ (vec:z this) amount)))

product this this))

vec:magnitude ((this vec)) float

(sqrt (vec:squared-magnitude this)))

(defun vec:normalise ((this vec) (that vec)) vec
(vec:

B.2

/ this (vec:magnitude this)))

Rays

(defstruct ray
(start vec)
(direction vec))

(defun ray:extend ((ray ray) (amount float)) vec

(vec:+ (ray:start ray)

(vec:* (ray:direction ray) amount)))
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Similarly, multiplication on a vector
is defined by multiplying (or dividing,
again as a short-cut) each of its ele-
ments by a fixed amount.

This is different from matrix or tensor
multiplication, as the resulting vector
will have exactly as many values as be-
fore, and each field is multiplied by the
same amount.

Get the length (magnitude) of the vec-
tor, and that value’s square. This can be
done by computing the dot product of
the vector against itself.

The squared magnitude is used
as well as the magnitude, and
it is more efficient to provide a
vec:squared-magnitude func-
tion than to have to square a value that
has already been sqrted.

Finally, normalising the vector contracts
or expands it so that its magnitude is
exactly 1.

This is necessary because certain inter-
section and ray-casting routines expect
to be dealing with a vector with mag-
nitude 1.

A ray is a combination of two vectors:
one representing its starting position,
the other its direction.

Extending a ray means finding the pos-
ition the ray will be at, after it has trav-
elled the given distance.
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(defun ray:reflect ((ray ray) (pos vec) (normal vec)) ray

(let* ((old-direction vec (ray:direction ray))
(new-direction vec
(vec:- old-direction
(* normal 2

(dot-product normal old-direction) 2)))

(temporary-ray ray (ray pos new-direction)))
(ray (ray:extend temporary-ray 0.01)
(vec:normalise new-direction))))

B.3 Shapes

(defstruct plane
(normal vec)
(offset float)
(texture texture))

(defun plane:intersect ((plane plane) (ray ray)) float
(letx ((normal vec (plane:normal plane))
(distance float
(dot-product normal (ray:direction ray))))
(when (> 0 denom)
(vec:/ (+ (dot-product normal (ray:start ray))
(plane:offset plane))
(- distance)))))

(defstruct sphere
(radius float)
(centre vec)
(texture texture))

(defun square ((num float)) float
(* num num))
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Reflecting a ray involves calculating
the direction of another ray, based on
the position at which it hits another ob-
ject, and the normal direction of the
surface at that particular point.

The ray is extended by 0.01 before
it is returned. This is to move the
ray slightly away from the object that
it hits before any more intersections
are calculated—it avoids the situation
where a ray repeatedly intersects with
the same object in the same position.

Aplane is defined by its normal direc-
tion, and how far it has gone in that
direction.

Intersect a plane with a ray, return-
ing the distance the ray would have to
travel before intersecting, or ni 1 upon
failure.

A sphere is defined by the position of
its centre, and its radius.

Helper function to square a floating-
point value.



APPENDIX B. SOURCE CODE

(defun sphere:intersect ((sphere sphere) (ray ray)) float

(let* ((adjusted-centre vec

(vec:- (sphere:centre centre) (ray:start ray)))

(scalar float

(dot-product adjusted-centre (ray:direction ray)))

(distance float
(+ (square (sphere:radius))
(square scalar)
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Intersect a sphere with a ray, return-
ing the distance in the same way as the
plane.

(- (vec:squared-magnitude adjusted-centre)))))

(when (> 0 distance)
(- scalar (sqgrt point)))))

(defun sphere:normal ((sphere sphere) (point vec)) vec
(vec:normalise (vec:- point (sphere:centre sphere))))

(defunion shape plane sphere)

(defun shape:normal ((shape shape) (point vec)) vec
(if (plane-p shape)
(plane:normal shape)
(sphere:normal shape point)))

(defun shape:texture ((shape shape)) colour
(if (plane-p shape)
(plane:texture shape)
(sphere:texture shape)))

(defstruct intersection
(distance float)
(shape shape)

(ray ray))

Calculate the normal direction of a
sphere at the given point.

As there are two kinds of shape that
must be tested, they must be placed
within a tagged union. This allows in-
dividual planes and spheres to be used
as parameters to functions that accept
generic shapes.

The first of these functions calculates
the normal direction for any shape at
the given point.

The second returns the colour of the
shape’s texture, again at the given
point.

The point must be specified here be-
cause of the checkerboard texture,
which returns one of two different col-
ours depending on where it is being
drawn.

An intersection holds all the values ne-
cessary to calculate the colour at this
particular point: the ray that hit the
shape, the shape that was hit, and the
distance the ray that had to travel.
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(defun shape:intersect ((sh shape) (r ray)) 1intersection
(let ((dist float (if (plane-p sh)
(plane:intersect sh r)
(sphere:intersect sh r))))
(intersection dist sh r)))

(defun dintersection:position ((isect intersection)) vec
(ray:extend (intersection:ray isect)
(intersection:distance 1isect)))

(defun intersection:colour ((isect intersection)) colour

(texture:colour (shape:texture (intersection:shape 1isect))

(intersection:position isect)))

(defun intersection:reflection-ray ((is intersection)) ray

(let ((pos vec (intersection:position is)))
(ray:reflect (intersection:ray 1is)
pos
(shape:normal shape pos))))

B.4 The Camera

(defstruct camera
(position vec)
(forward vec)
(up vec)
(right vec))

(defconst *camera-fovx float 1.5)
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Intersect a ray with one shape, pro-
ducing an intersection object, or
ni 1 if the ray missed.

Calculate the position of the intersec-
tion by extending the ray by its dis-
tance.

Get the colour of the object at the inter-
section point based on the intersection
position.

Finally get the reflection ray off the ob-
ject at the intersection point.

The camera is defined by how far it can
see forward, up, and right, in three di-
mensions.

It has a defined field of view. A larger
field of view will reveal more of the
scene.
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(defun camera:looking-at ((camera-position vec)
(observed-position vec)) camera
(let*x ((forward vec
(vec:normalise (vec:- observed-position
camera-position)))
(down vec (vec 0 1 0))

(right vec
(vec:* xcamera-fovx (vec:normalise
(cross-product forward
down))))
(up vec
(vec:* *xcamera-fov* (vec:normalise
(cross—-product forward
right)))))
(camera camera-position forward up right)))

B.5 Textures

(defstruct colour
(r dint)
(g int)
(b int))

(defun colour:blend ((this colour) (that colour)) colour
(colour (+ (/ (colour:r this) 2) (/ (colour:r that) 2))
(+ (/ (colour:g this) 2) (/ (colour:g that) 2))

(+ (/ (colour:b this) 2) (/ (colour:b that) 2))))

(defconst xredx colour (colour 255 65 54))
(defconst *green* colour (colour 46 204 64))
(defconst *blue* colour (colour 0 116 201))

(defconst *black* colour (colour 17 17 17))
(defconst *greyx colour (colour 51 51 51))
(defconst *whitex colour (colour 255 255 255))

(defstruct checkerboard
(odds colour)
(evens colour))
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The more useful way to construct a
camera is to supply it with not only its
position, but the position of the object
that it should be looking at.

A colour is simply the set of three val-
ues corresponding to red, green, and
blue.

Blend one colour into another colour
by averaging the values in each of their
channels.

This is used when blending the colour
of a shape at an intersection point with
the colour produced by its reflecting
ray.

Some sample colours that are used to
construct the scene.

A checkerboard pattern can be gener-
ated by alternating tiles of two colours.
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(defun even-p ((n float)) pred
(= 0 (% (floor n) 2)))

(defunion texture colour checkerboard)

(defun texture:colour ((texture tex) (point vec)) colour
(if (colour-p tex)
tex
(if (== (even-p (vec:x point))
(even-p (vec:z point)))
(checkerboard:odds tex)
(checkerboard:evens tex))))

B.6 The Scene

(defstruct scene
(camera camera)
(shapes (array shape)))
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Helper function that returns true
or false depending on whether the
number is in an even-numbered row
or column, which is used when calcu-
lating the checkerboard tile’s colour.

As with shapes, colours and checker-
boards need to be placed in a union to
be passed to functions.

Get the colour of a texture at the given
point.

For flat colours, the texture will be the
same all over, so no further processing
is required. However, for the checker-
board pattern, the parity of the floor of
the row and column numbers of the
checkerboard need to be compared—
equal and inequal results will form a
diagonal pattern of tiles.

A scene has only one camera, but an
array of shapes.
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(defconst *max-depth*x 96)

(defconst *upx (vec 0 -1 0))

(defconst *scenex (scene

(camera:looking-at (vec 20 4 1)

(array

(vec 0.5 0.7 0))

(plane xup* 0 (checkerboard *black* *whitex)

(sphere 4 (vec

(sphere
(sphere
(sphere

(sphere
(sphere

(sphere
(sphere

(sphere

(vec ©
(vec 0
(vec ©

.3 (vec
.3 (vec

-10 4.2 3) *bluex)

2 -5) *whitex)
2 0) *whitex)
2 5) xwhitex)

3 1.3 -3) *redx)
3 1.3 3) *xredx)

.75 (vec 5 0.75 -1) *greenx)
.75 (vec 5 0.75 1) *greenx)

.33 (vec 6 0.33 0) *bluex))))

(defun trace-ray ((scene scene) (ray ray)) 1intersection
(minimum (lambda ((a intersection) (b intersection))
(< (intersection:distance a)

(intersection:distance b)))

(map (lambda ((shape shape))
(shape:intersect ray))
(shapes:scene scene))))
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The sample scene setup, used to render
Figure 6.2.

Trace a ray through a scene, calculat-
ing the nearest intersection point to
the ray'’s start position if the ray hits
any shape.

This uses the minimum vector func-
tion to loop through many intersec-
tions and return the one that has the
lowest distance value out of any, if
present. The distance field holds how
far the ray has had to travel when it in-
tersects with an object.

If there are no intersections, ni 1 is re-
turned.
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(defun ray-colour ((scene scene)
(ray ray) (level 1int)) colour
(let ((isect 1intersection (trace-ray scene ray)))
(if disect
(if (< level *xmax-depthx)
(colour:blend (ray-colour scene ray)

(intersection:reflection-ray isect)

(+ colour 1))
(ray-colour scene ray))
*blackx)))

(defun centre-x ((x int)) float
(/ (= x (/ *widthx 2))
(*x 2 xwidthx)))

(defun centre-y ((y int)) float
(/ (= (/ *heightx 2) vy)
(x 2 xheightx)))

(defun ray-for-pixel ((scene scene) (x int) (y int)) ray
(let ((cam (scene:camera scene)))
(ray (camera:position cam)
(vec:normalise
(vec:+ (camera:forward cam)
(vec:+ (vec:* (camera:right cam) x)
(vec:x (camera:up cam) y)))))))
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Get the eventual colour of a ray, de-
pending on which object it hit.

This function is recursive, in that if it
hits an object, it fires another ray and
blends the result of that ray with the
original object’s colour. It uses the Poly-
Cube runtime system to run recurs-
ively on the GPU. Any recursively-fired
rays have a depth number one higher
than the one this function was called
with, in order to prevent rays from

bouncing around forever.

Unlike trace-ray above, this func-
tion cannot return nil, as a ray has to
have an endpoint: if it collides with
no objects, then the colour of the back-
ground of the scene—which, in this
case, is black—is returned instead.

Centers a given X position or Y pos-
ition into a floating-point number in
the range —1, for the very left (or top)
of the image, to 1, the very right (or bot-
tom) of the image.

Takes the position of a pixel in the im-
age that should be rendered, as X and
Y co-ordinates, and calculates the ray
that should be fired to get that pixel’s
colour.

These rays all begin at the same point—
the position of the camera. Their direc-
tions are the values that depend on the
pixel.
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(defun render-scene ((scene scene)) 1image
(let ((image-buffer (image *width* *xheightx)))
(loop i (0 *widthx)
(loop j (0 *heightx)
(let* ((ray ray (ray-for-pixel scene i j))
(colour (ray-colour ray 0 *max-depthx)))

(write-pixel image i j (colour:r colour)
(colour:g colour)

(colour:b colour))))))))
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Renders a scene into an image, a built-
in primitive, usingwrite-pixelto
write out the colour values to the buf-
fer.

This is the part that can be easily par-
allelised, using two nested Loop con-
structs to iterate over each pixel’s posi-
tion.
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