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Summary
Background Increased circulating plasma urate concentration is associated with an increased risk of coronary heart 
disease, but the extent of any causative eff ect of urate on risk of coronary heart disease is still unclear. In this study, we 
aimed to clarify any causal role of urate on coronary heart disease risk using Mendelian randomisation analysis.

Methods We fi rst did a fi xed-eff ects meta-analysis of the observational association of plasma urate and risk of coronary 
heart disease. We then used a conventional Mendelian randomisation approach to investigate the causal relevance 
using a genetic instrument based on 31 urate-associated single nucleotide polymorphisms (SNPs). To account for 
potential pleiotropic associations of certain SNPs with risk factors other than urate, we additionally did both a 
multivariable Mendelian randomisation analysis, in which the genetic associations of SNPs with systolic and diastolic 
blood pressure, HDL cholesterol, and triglycerides were included as covariates, and an Egger Mendelian randomisation 
(MR-Egger) analysis to estimate a causal eff ect accounting for unmeasured pleiotropy.

Findings In the meta-analysis of 17 prospective observational studies (166 486 individuals; 9784 coronary heart disease 
events) a 1 SD higher urate concentration was associated with an odds ratio (OR) for coronary heart disease of 1·07 
(95% CI 1·04–1·10). The corresponding OR estimates from the conventional, multivariable adjusted, and Egger 
Mendelian randomisation analysis (58 studies; 198 598 individuals; 65 877 events) were 1·18 (95% CI 1·08–1·29), 1·10 
(1·00–1·22), and 1·05 (0·92–1·20), respectively, per 1 SD increment in plasma urate.

Interpretation Conventional and multivariate Mendelian randomisation analysis implicates a causal role for urate in 
the development of coronary heart disease, but these estimates might be infl ated by hidden pleiotropy. Egger 
Mendelian randomisation analysis, which accounts for pleiotropy but has less statistical power, suggests there might 
be no causal eff ect. These results might help investigators to determine the priority of trials of urate lowering for the 
prevention of coronary heart disease compared with other potential interventions. 
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Copyright © White et al. Open Access article distributed under the terms of CC BY.

Introduction
Plasma urate is a circulating product of human purine 
metabolism synthesised from hypoxanthine and xanthine 
by the action of the enzyme xanthine oxidoreductase. With 
extreme increases in urate concentration, monosodium 
urate crystals are deposited in the joints, soft tissue, and 
renal parenchyma, causing acute infl ammatory arthro-
pathy (gout), gouty tophi, and nephropathy, respectively.1 
Although the causal role of increased circulating urate 
concentrations in gout has been shown by Mendelian 
randomisation analysis2 (and urate lowering is the main 
treatment), the role of urate in coronary heart disease has 
been under debate since the 19th century.3

Patients with established coronary heart disease have 
increased concentrations of plasma urate compared with 

individuals free of the disease. Furthermore, increased 
plasma urate concentration is associated with increased 
risk of incident coronary heart disease.4

Benefi cial and deleterious actions of urate on the 
cardiovascular system have been reported, making the 
role of urate in atherosclerosis unclear. Urate ions have 
potentially atheroprotective, free-radical-scavenging 
properties, and infusion of urate might correct endothelial 
dysfunction.5 However, proatherogenic eff ects of urate 
have also been described, including induction of cellular 
oxidative stress leading to attenuated nitric oxide 
bioavailability (linked to platelet and endothelial cell 
activation, and vascular smooth muscle proliferation).6

In population studies, an increased urate concentration 
is associated with several risk factors for coronary heart 

http://crossmark.crossref.org/dialog/?doi=10.1016/S2213-8587(15)00386-1&domain=pdf


Articles

2 www.thelancet.com/diabetes-endocrinology   Published online January 15, 2016   http://dx.doi.org/10.1016/S2213-8587(15)00386-1

London, UK (A Amuzu MA, 
C Dale PhD, 

Prof F Dudbridge PhD, 
Prof J P Casas PhD, 

Prof S Ebrahim DM); 
Department of Primary Care & 
Population Health, University 

College London, Royal Free 
Campus, London, UK 

(Prof R Morris PhD, 
B Jefferis PhD); Population 
Health Research Institute, 
St George’s, University of 

London, London, UK 
(Prof P Whincup FRCP); 

Department of Surgery and 
Center for Clinical 

Epidemiology and 
Biostatistics, Perelman School 

of Medicine, University of 
Pennsylvania, Philadelphia, PA, 

USA (M V Holmes); Genetics 
Division, Research and 

Development, 
GlaxoSmithKline, Harlow, UK 

(Prof J C Whittaker PhD); 
Institute for Social and 

Economic Research, University 
of Essex, Colchester, UK 

(Prof M Kumari PhD); Institute 
of Cardiovascular Science and 

Farr Institute, University 
College London, London, UK 

(Prof J P Casas, T Shah PhD, 
F A Kruger PhD, 

D I Swerdlow PhD, 
C Langenberg PhD, 

Prof A D Hingorani PhD, 
J Engmann MSc); Metabolic 

Unit, Western General Hospital, 
Edinburgh, UK 

(Prof M W J Strachan MD); 
Division of Health Sciences, 

Warwick Medical School, 
University of Warwick, 

Coventry, UK (T Palmer PhD); 
Population, Policy and Practice, 

UCL Institute of Child Health, 
University College London, 

London, UnK (A Cavadino MSc, 
Prof C Power PhD, 

Prof E Hypponen PhD);MRC 
Epidemiology Unit, Institute of 

Metabolic Science, University 
of Cambridge, Cambridge, UK 

(C Langenberg, K Ong PhD, 
Prof N Wareham PhD); MRC 

Integrative Epidemiology Unit, 
School of Social and 

Community Medicine, 
University of Bristol, Bristol, 

UK (F Drenos, 
Prof D A Lawlor PhD, 

Prof G Davey Smith DSc, 
G Hemani PhD, T R Gaunt PhD); 

MRC Unit for Lifelong Health 
and Ageing at UCL, London, UK 

(A Wong PhD, Prof D Kuh PhD, 
K Ong, Prof M Richards PhD, 

Prof R Hardy PhD); NIHR Barts  
Cardiovascular Biomedical 

disease, including high blood pressure, increased BMI, 
type 2 diabetes, reduced concentration of HDL 
cholesterol, and increased concentrations of triglycerides 
and LDL cholesterol.4 However, whether these variables 
confound or mediate the association of urate with 
coronary heart disease is uncertain (fi gure 1). Statistical 
adjustment for these variables in prospective 
observational studies attenuates the association of urate 
with coronary heart disease.4 Whether residual 
confounding results in over-estimation or whether the 
eff ect is underestimated because some of the variables 
are mediators remains unknown.

Results of randomised trials have provided some 
evidence that allopurinol (a urate-lowering drug) has 
benefi cial eff ects on intermediate cardiovascular 
endpoints, including endothelial function, angina 
symptoms, blood pressure, left ventricular mass, and 
exercise capacity.7 Allopurinol acts through inhibition of 
xanthine oxidoreductase, which also reduces the 
generation of reactive oxygen species, which are formed 
as a byproduct of the metabolism of xanthine and 
hypoxanthine to urate.8,9 Therefore, it remains unclear 
whether any benefi ts of allopurinol on these endpoints 
are due to urate lowering, inhibition of free-radical 
generation, or both. Moreover, no trial, with any urate-
lowering drugs has yet reported an eff ect on clinically 
relevant cardiovascular endpoints,10 although a trial of 
this type is ongoing.

In this study, we estimated the extent of any causal 
relation between plasma urate concentration and risk of 
coronary heart disease using Mendelian randomisation.11 

This type of analysis exploits the random allocation of 
genetic variants from parents to off spring at 

gametogenesis, protecting genotype-to-phenotype 
associations from the usual sources of confounding 
seen in observational studies and from reverse 
causation. Providing certain assumptions are met, if a 
genetic variant (or variants) associates with both a 
biomarker (eg, urate) and with risk of an outcome 
(coronary heart disease) in an instrumental variable 
regression, this would support a causal role for the 
biomarker in the outcome.11

Although Mendelian randomisation protects against 
many of the confounding factors that aff ect observational 
studies, it is potentially confounded by pleiotropy (the 
situation in which variation in a gene associates with 
multiple phenotypes). Pleiotropy can be vertical (wherein 
the gene aff ects more than one point in the same causal 
pathway) or horizontal (in which the gene aff ects more 
than one independent causal pathway). Whereas vertical 
pleiotropy does not necessarily breach the assumptions 
of Mendelian randomisation, unmeasured horizontal 
pleiotropy can lead to entirely spurious conclusions 
about causality.

Two methods have been proposed to address horizontal 
pleiotropy. The fi rst simply includes the eff ect of the 
instrument on the pleiotropic factor as a covariate in the 
Mendelian randomisation analysis (termed multivariable 
Mendelian randomisation).12 The second uses Egger 
regression to account for the more general case in which 
there is a net pleiotropic eff ect on the instrument from 
multiple unmeasured sources (termed Egger Mendelian 
randomisation).13

We selected a set of single nucleotide polymorphisms 
(SNPs) identifi ed from genome-wide association studies 
(GWAS) that were associated with urate concentration. 

Research in context

Evidence before this study
The observational association between plasma urate and 
coronary heart disease is well established. However it remains 
in doubt whether this association is causal. Mendelian 
randomisation uses naturally occurring genetic variants that are 
allocated at random and associated with the risk factor of 
interest as an instrument to infer the causal role of a risk factor 
in a disease or outcome of interest. Previous Mendelian 
randomisation studies of plasma urate and risk of coronary 
heart disease have used single variants that aff ect plasma urate 
and reported discrepant fi ndings.

Added value of this study
Using 31 independent single nucleotide polymorphisms (SNPs) 
identifi ed as associated with plasma urate concentration from 
genome-wide association studies, we did a Mendelian 
randomisation analysis using three complementary 
approaches. Results from our conventional Mendelian 
randomisation analysis suggested that plasma urate might 
have a causal role in coronary heart disease; however, 
pleiotropic associations of the genetic instrument with several 

traits including blood pressure, triglycerides, and HDL 
cholesterol meant that the instrumental variable estimate from 
conventional Mendelian randomisation could be biased. 
Results from multivariate and Egger Mendelian randomisation 
analyses, which account for pleiotropy, both provided weaker 
evidence for a causal assoication of urate with coronary heart 
disease, with 95% CIs for both estimates including the null.

Implications of all the available evidence
Our fi ndings suggest that the causal association, if any, 
between plasma urate and risk of coronary heart disease is likely 
to be modest. These data suggest that the observed association 
between plasma urate and coronary heart disease is probably 
aff ected by confounding by risk factors such as blood pressure 
and LDL cholesterol, HDL cholesterol, and triglycerides. Results 
of ongoing phase 3 randomised controlled trials will help to 
clarify this causal association, but any such trials could be 
underpowered if the predicted effi  cacy of the therapeutic 
modifi cation of plasma urate has been based on eff ect 
estimates derived from existing observational data. 
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Using these SNPs, we constructed a genetic instrument,14 
and did conventional Mendelian randomisation 
(unadjusted for pleiotropy). Then, to account for 
pleiotropy, we used both multivariable Mendelian 
randomisation and Egger Mendelian randomisation.

Finally, we considered the genes and gene products 
tagged by these SNPs as potential therapeutic targets.

Methods
Study overview
We reviewed and updated the observational estimate for 
the association of plasma urate with risk of  coronary 
heart disease and compared this with causal estimates 
from three diff erent Mendelian randomisation 
approaches based on multiple plasma urate-associated 
genetic variants. We used summary estimates for eff ects 
of genotype on exposures and outcomes from the largest 
available meta-analyses of previous GWAS studies to 
address the research question, focusing on datasets with 
participants predominantly of European descent, to 
ensure allele frequencies were consistent over datasets 
and overcome possible modifi cation of genetic eff ect by 
ancestral origin.

Observational association between urate and coronary 
heart disease events and risk factors
We fi rst did a fi xed-eff ects meta-analysis of study 
summary estimates to update the meta-analysis of 
prospective observational studies by Wheeler and 
colleagues4 with the addition of 326 myocardial infarction 
or coronary revascularisation cases and 1618 controls 
from the British Women’s Health and Heart Study 
(BWHHS), which was the only study available to the 
UCLEB Consortium15 with suitable data that had not 
already been included in the report by Wheeler and 
colleagues.4 This update gave a combined observational 
dataset of 17 studies, with 166 486 individuals and 
9784 coronary heart disease events. Analyses were done 
without adjustment for renal function.

To estimate the observational association between 
urate and several coronary heart disease risk factors, 
including BMI, creatinine concentration, blood pressure, 
glucose concentration, HDL cholesterol, LDL cholesterol, 
total cholesterol, and triglycerides, we assimilated (by 
fi xed-eff ects meta-analysis) data from UCLEB with 
studies that were included in the analysis by Wheeler and 
colleagues (appendix pp 1–2).4,15

Development of a genetic instrument for plasma urate 
concentration
To generate a genetic instrument for urate 
concentration, we searched for SNPs associated with 
urate concentration from the GWAS catalogue 
(accessed on Feb 18, 2015). We identifi ed 31 independent 
loci (R²<0·3; separated by >140 kb) that had associations 
with urate at p<5 × 10–⁷ (appendix pp 1–2). Where the 
p value was greater than 5 × 10–⁸, inclusion was only on 

the basis of a clear functional role in urate metabolism 
(this applied to only one SNP, rs164009, that was 
previously designated to the gene PRPSAP1 by the 
GRAIL [Gene Relationships Across Implicated Loci] 
process). In all cases, the SNP association had been 
replicated in studies done mainly in populations of 
European ancestry and eff ect sizes were taken from 
published meta-analyses. For each locus, we recorded 
the published eff ect size and the SE for the lead SNP 
(ie, the SNP with strongest association in the largest 
dataset). Where possible, we obtained eff ect size 
estimates for the lead SNP, or a suitable proxy, from 
additional publications (appendix pp 2–3) and 
combined the estimates for an SNP by fi xed-eff ects 
meta-analysis. Details of lead SNPs and putative genes 
are reported in the appendix (p 3). Notably, an almost 
identical set of loci was used as an instrument for 
urate with a reported R2 of about 4·2% in the 
Rotterdam Study (n=5791).16 The 31 selected SNPs had 
been genotyped in the largest reported genetic 
association studies of coronary heart disease 
(CARDIoGRAMplusC4D, comprising C4D [Coronary 
Artery Disease consortium] and CARDIoGRAM 
[Coronary ARtery DIsease Genome wide Replication 
And Meta-analysis consortium]). Details of the original 
sources of information about SNP association with 

Urate 
concentration

G1
G2
:
G30
G31

Coronary heart disease

Causal association
independent of other 
measured covariables

SNP selected 
from the genome 
on the basis of 
an association 
with urate concentration

Total cholesterol
LDL cholesterol
HDL cholesterol*
Triglycerides*
Glucose
SBP*
DBP*
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pleiotropy
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causal 
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(covariables 
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of urate mediated 
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 Figure 1: Conceptual framework for the Mendelian randomisation analysis of urate concentration and risk of 
coronary heart disease
G1–31 are genes containing urate variants that together form the multilocus instrument for urate concentration. 
Horizontal pleiotropy occurs when the instrument associates with traits other than urate that become confounders if 
also associated with coronary heart disease. Vertical pleiotropy occurs if their level is aff ected by urate, and does not 
invalidate Mendelian randomisation analysis. SNP=single nucleotide polymorphism. SBP=systolic blood pressure. 
DBP=diastolic blood pressure. *Multivariable Mendelian randomisation, including DBP, SBP, HDL cholesterol, and 
triglycerides as covariates was used to account for possible horizontal pleiotropy arising from association of the 
instrument with these variables. The eff ect of the adjustment is to block the paths indicated with red crosses. Egger 
Mendelian randomisation analysis was used to account for unknown or unmeasured pleiotropic confounders.
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urate are provided in the appendix (pp 2–3). Genotyping 
in the UCLEB studies was done with the Illumina 
CardioMetabochip (Illumina, San Diego, CA, USA) and 
in the other consortia as described in the original 
publications.

We used a gene ontology enrichment analysis based on 
genes in closest proximity to the selected SNPs 
(AmiGO 2.1.4) to identify which gene ontology terms 
were over-represented in this set of genes relative to a 
null hypothesis that the SNPs were selected 
independently of their published associations (p values 
were obtained from the hypergeometric distribution).

Instrumental variable analysis
The conventional instrumental variables linear 
regression analysis of the SNP eff ect on outcome versus 
the SNP eff ect on urate concentration was weighted by 
the inverse variance of the outcome eff ect estimate, and 
constrained (forced to pass through the origin). This 
approach equates to the summary method proposed by 
Johnson,17 and is the univariate case of the multivariate 
Mendelian randomisation method for summarised data 
described by Burgess and colleagues.12

To correct for observed pleiotropy, we included 
regression coeffi  cients for phenotypes showing 
pleiotropy with the urate instrument as covariate in the 
instrumental variable model. Summary level association 
statistics used in the analysis were obtained from the 
relevant publications or from the public domain data 
deposits from the relevant GWAS (appendix pp 2–3), 
incorporating additional non-overlapping data from 
UCLEB where available.

Data for coronary artery disease or myocardial 
infarction contributed by CARDIoGRAMplusC4D 
investigators were downloaded from the 
CARDIoGRAMplusC4D website.

Summary statistics for the association of each of the 
31 urate-associated SNPs with glucose, BMI, type 2 
diabetes, plasma lipids, and blood pressure were 
obtained, respectively, from MAGIC (Meta-Analyses of 
Glucose and Insulin-related traits Consortium), GIANT 
(Genetic Investigation of ANthropometric Traits), 
DIAGRAM (DIAbetes Genetics Replication And Meta-
analysis), GLGC (Global Lipids Genetic Consortium), 
and ICBP (International Consortium for Blood Pressure) 
GWAS consortia data (appendix p 2).

To test for unmeasured net pleiotropy, we used the 
Bowden and colleagues’ method13 to test the hypothesis 
that the strength of the instrumental variable estimates 
of individual SNPs were symmetrically distributed 
around the point estimate. Symmetrical distribution 
suggests that pleiotropic eff ects, if present, are balanced 
and should not systematically bias the estimate of causal 
eff ect. To avoid the need to infer the SE, we resampled 
distributions of the summary statistics of the SNPs 
100 000 times with replacement, recalculating the 
Mendelian randomisation estimate each time. We report 

statistical signifi cance and CIs from this empirically 
derived distribution.

Consistency between observational and instrumental 
variables analyses
We compared estimates for a 1 SD increase in urate 
generated with the instrumental variables meta-analysis 
with the updated observational estimate of the 
association between urate concentration and risk of 
coronary heart disease. Risk estimates of coronary heart 
disease in Wheeler and colleagues’ study4 were 
originally reported as comparisons of the top versus 
bottom tertile of the urate distribution. To derive the 
per-SD estimate from this range, we exploited the 
properties of the normal distribution in which the top 
and bottom tertiles are separated by 2·18 SDs; we 
checked that the distribution of urate in participant 
data in the UCLEB Consortium data was approximately 
normal (appendix p 11).

Sensitivity analyses
We examined the stability of the summary causal 
estimate by repeatedly (100 000 times) excluding six 
(~20%) SNPs from the instrument, chosen at random in 
each cycle, and collecting the resulting instrumental 
variable estimates. By noting the proportion of these 
sensitivity coeffi  cients that lie outside the CI from the 
normal distribution of the estimate with complete data, 
we obtained an indication of sensitivity. That is, when 
more than 5% of the sensitivity coeffi  cients were outside 
the CI, there was evidence that the result was sensitive to 
SNP selection. We repeated the sensitivity analysis for an 
appropriate range of covariate models covering all 
phenotypes identifi ed as potentially pleiotropic.

Assessment of the proteins encoded by individual genes 
as therapeutic targets
To identify drugs and research compounds targeting 
proteins encoded by genes implicated by urate associated 
SNPs, we queried the ChEMBL (Chemical database of 
the European molecular biology laboratory) database 
(release chembl_19).19 To link genes to target identifi ers 
in the ChEMBL database, we used the Ensembl Rest API 
and Uniprot web-services and thus obtained Uniprot 
accession keys representing the translated product of 
each gene queried.19,20

Drugs were identifi ed from the Mechanism/Binding 
Annotation table from ChEMBL release 19, which 
provides manually curated compound–target associations 
for licensed drugs. Research compounds (experimental 
drugs) were identifi ed from the Activities table, which 
stores measured compound–target interactions. Results 
were limited to measurements from binding or functional 
assays with an assigned pChEMBL value, where 
pChEMBL is defi ned as −log10 (molar IC50, XC50, EC50, 
AC50, Ki, Kd or Potency). Assay targets were required to 
be identical or homologous to the submitted query.

For mRnd: Power calculations 
for Mendelian Randomisation 

see http://cnsgenomics.com/
shiny/mRnd

For the CARDIoGRAMplusC4D 
website see http://www.

cardiogramplusc4d.org
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Statistical analysis
We estimated the power of the Mendelian randomisation 
analyses using Brion and colleagues’ method.21 The origin 
and magnitude of the data used to generate the estimates 
are shown in the appendix (pp 4–5). For these calculations, 
we interpreted fully adjusted observational associations 
between urate concentration and cardiovascular risk 
factors and events as the most realistic approximation of 
the causal eff ect of urate. We also estimated power 
retrospectively using the instrumental variable estimates 
and corresponding SEs for each method. In this case, 
power was the complement of the false rejection rate, 
with a two-sided α of 0·05.

These prospective estimates of power suggested that 
we had 83% power to detect the same magnitude of 
association as for the observational association of urate 
concentration and risk of coronary heart disease 
(appendix p 4). However, with the instrumental variable 
estimates from the diff erent methods in a retrospective 
analysis, we noted that available power to detect the eff ect 
of urate concentration on coronary heart disease was 
much lower than this (appendix pp 4, 5, 12) and that the 
Egger Mendelian randomisation analysis was notably 
lower in power than the other Mendelian randomisation 
methods used.

Data were analysed with R (version 2.15.2). Meta-
analyses and Egger tests were done and forest and funnel 
plots were drawn with the metafor() package of R.

Role of the funding source
The funders of the study had no role in the study design, 
data collection, data analysis, data interpretation, or 
writing of the report. JW had full access to all the data in 
the study and had fi nal responsibility for the decision to 
submit for publication.

Results
In our fi xed-eff ects meta-analysis of prospective 
observational studies in which urate was quantifi ed 
before incident coronary heart disease, plasma urate 
concentration was associated with increased risk of 
coronary heart disease: a 1 SD increased urate 
concentration was associated with an OR for coronary 
heart disease of 1·07 (95% CI 1·04–1·10; from 17 studies 
with 166 486 individuals and 9784 cases; I2 41%; fi xed-
eff ects meta-analysis), after adjustment for age, sex, and 
other variables (appendix p 13). Urate concentration was 
also observationally associated with other established or 
putative risk factors for coronary heart disease, including 
age, smoking status, BMI, blood pressure, total 
cholesterol, and triglycerides (table 1).

Examination of the individual SNPs in the instrument 
in a meta-analysis of up to 68 studies, including 
145 000 individuals, showed that each of the 31 SNPs 
selected for inclusion in the genetic instrument was 
associated with plasma urate concentration (appendix 
p 15). From a set of 21 804 annotated genes, those in 

proximity to the 31 urate-associated genetic variants 
showed signifi cant functional enrichment for both urate 
and purine metabolism (appendix p 5).

We identifi ed potential pleiotropic eff ects of a subset of 
the 31 SNPs. For example, in addition to associations 
with urate, SNPs within OVOL1/LTBP3 and 
ATXN2/PTPN11 were associated with systolic blood 
pressure, diastolic blood pressure, HDL cholesterol, and 

Studies 
(n)*

N or n:n Diff erence in risk factor for 
a 1 SD higher plasma urate 
(95% CI)

p value

Continuous variables

HDL cholesterol (mmol/L) 4 22 669 –0·08 (–0·087 to –0·065) <0·0001

LDL cholesterol (mmol/L) 2 19 195 0·07 (–0·019 to 0·163) 0·121

Total cholesterol (mmol/L) 5 68 446 0·14 (0·07 to 0·213) 0·0001

Triglycerides (mmol/L) 3 25 606 0·31 (0·216 to 0·393) <0·0001

Fasting glucose (mmol/L) 3 14 571 –0·08 (–0·23 to 0·066) 0·276

Creatinine (mg/L) 2 6696 4·43 (1·235 to 7·634) 0·0066

BMI (kg/m2) 7 84 419 1·29 (0·879 to 1·694) <0·0001

SBP (mm Hg) 7 84 419 3·31 (2·498 to 4·128) <0·0001

DBP (mm Hg) 4 19 033 1·95 (0·926 to 2·977) 0·0002

Age (years) 3 5713 0·21 (0·045 to 0·383) 0·013

eGFR (mL/min/1·73m2) 2 4393 –4·59 (–4·905 to –4·269) <0·0001

Binary traits

Sex (female vs male) 3 3738:1975 0·80 (0·746 to 0·865) <0·0001

Smoking (ever vs never) 2 2678:1615 1·11 (1·041 to 1·185) 0·0015

Diabetes (present vs absent) 2 517:3877 1·07 (0·976 to 1·162) 0·157

SBP=systolic blood pressure. DBP=diastolic blood pressure. eGFR=estimated glomerular fi ltration rate. *Sources of data 
are reported in the appendix (p 2).

Table 1: Observational associations of plasma urate concentration with cardiovascular risk factors

For R software see http://
www.R-project.org
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triglycerides; SNPs tagging NFAT5, INHCB/INHCE, 
BAZ1B/MLX1PL, and GCKR were associated with HDL 
cholesterol and triglycerides; SNPs within TMEM171, 
IGFR1, SLC17A1/SLC17A3, ABCG2, and VEGFA were 
associated with HDL cholesterol; and SNPs within 
BCAS3 and VEGFA were associated with systolic blood 
pressure and diastolic blood pressure (appendix p 15 and 
p 17). We subsequently adjusted for this pleiotropy by the 
inclusion of combinations of these phenotype eff ect 
estimates as covariates in our multivariate Mendelian 
randomisation. Putative gene functions for these loci are 
noted in the appendix (pp 6–9).

 In combination, the 31 SNP urate instrument was 
associated with systolic blood pressure, diastolic blood 
pressure, HDL cholesterol, and triglycerides (all p<0·05) 
(appendix pp 14–16), indicating pleiotropy of the 
instrument.

Data from roughly 145 000 individuals (68 studies) with 
information about genotype and urate concentration and 
198 598 individuals (51 studies) with information about 
genotype and coronary heart disease (60 785 coronary 
heart disease events) were included in the Mendelian 
randomisation analysis of the association of plasma urate 
with risk of coronary heart disease. The instrumental 
variable eff ect estimate derived from conventional 
Mendelian randomisation was OR 1·18 (95% CI 
1·08–1·29) per 1 SD increase in urate concentration 
(fi gure 2). The Cochran Q test showed heterogeneity 
among the instrumental variable estimates from 
individual SNPs (Q=47·67; p=0·02).

To examine the eff ect of the association of the 
31 variants on systolic blood pressure, diastolic blood 

pressure, HDL cholesterol, and triglycerides on the 
Mendelian randomisation estimate, we included all 
combinations of systolic blood pressure, diastolic blood 
pressure, triglycerides, and HDL cholesterol as covariates 
in a multivariate Mendelian randomisation by including 
the genetic association of SNPs with these covariates in 
the instrumental variable regression analysis (fi gure 2). 
Multivariate Mendelian randomisation yielded an OR for 
risk of coronary heart disease of 1·10 (95% CI 1·00–1·22) 
per 1 SD diff erence in urate concentration (table 2; 
fi gure 3). It is important to note that multivariate 
Mendelian randomisation cannot account for pleiotropic 
infl uences that have not been measured.

The Egger test suggested the presence of unmeasured 
pleiotropy of the instrument (Egger test p=0·01; appendix 
p 19). Using Egger Mendelian randomisation to account 
for this unmeasured pleiotropy, we derived a causal 
estimate of OR of 1·05 (95% CI 0·92–1·20) per 1 SD 
increase in urate (appendix p 19). This result underlines 
the potential for incomplete correction for pleiotropy 
obtained using multivariate Mendelian randomisation. 
Comparison of observational estimates to Mendelian 
randomisation estimates of the eff ect of urate 
concentration on all phenotypes studied are reported in 
fi gure 4 and fi gure 5.

We assessed the sensitivity of the Mendelian 
randomisation eff ect estimates to the exclusions of 
diff erent combinations of six SNPs at random from the 
instrument and to the inclusion of diff erent combinations 
of the covariates in a multivariable Mendelian 
randomisation analysis. Our results show that the model 
containing all covariates was not overly aff ected by SNP 

Studies N (cases) 31 SNP instrument Multivariate regression 
estimate*

Egger Mendelian 
randomisation

Coronary heart disease 58 206 822 (65 877) 1·1766 (1·0763 to 1·2861) 1·1013 (0·996 to 1·2178) 1·0488 (0·9191 to 1·1968)

Data are odds ratios per SD diff erence in plasma urate concentration (95% CI). *Covariates are diastolic blood pressure, systolic blood pressure, trigycerides, and high-density 
lipoprotein. SNP=single nucleotide polymorphisms. 

Table 2: Causal analysis of urate on risk of coronary heart disease derived from Mendelian randomisation analyses

0·90 1·00 1·10 1·20 1·30

OR CHD per SD uric acid

1·07 (1·04 –1·10)

1·18 (1·08–1·29)

1·10 (1·00–1·22)

1·05 (0·92–1·20)

OR (95% CI)Controls (n) Cases (n)

UCLEB + Wheeler et al (2005)

Instrumental variable regression (no covariates)

Instrumental variable regression (covariates; 

HDL cholesterol, triglycerides, SBP, and DBP)

Egger mendelian randomisation

18

58

58

58

156 702

140 945

140 945

140 945

9784

65 877

65 877

65 877

Studies (n)

Favours negative 
association

Favours positive 
association

Figure 3: Observational and estimated causal association of plasma urate concentration risk of coronary heart disease
 Values represent a per 1 SD increase in urate concentration. Error bars represent 95% CIs. The vertical dotted line indicates the expectation under the null hypothesis (of 
no association between plasma urate and risk of coronary heart disease). SBP=systolic blood pressure. DBP=diastolic blood pressure. OR=odds ratio. UCLEB=University 
College London-London School of Hygiene & Tropical Medicine-Edinburgh-Bristol. HDL=high-density lipoprotein. CHD=coronary heart disease.



Articles

www.thelancet.com/diabetes-endocrinology   Published online January 15, 2016   http://dx.doi.org/10.1016/S2213-8587(15)00386-1 7

selection (appendix p 10). We noted that models 
containing combinations of systolic blood pressure, 
diastolic blood pressure, and HDL cholesterol seemed 
insensitive to SNP selection; however, the unadjusted 
(conventional Mendelian randomisation) model and the 
model with triglycerides alone gave higher eff ect size 
estimates and a larger proportion of those estimates were 
outside the 95% CI of the corresponding model fi tted 
over eff ect estimates from all 31 SNPs. Egger Mendelian 

randomisation analysis proved insensitive to SNP 
selection, with only 3·8% of estimates lying outside the 
95% CI for Egger regression estimates with all SNPs 
included.

One gene in the instrument (SLC22A11) encoded a 
target for probenecid, a drug previously used to lower 
urate concentration (appendix p 7). An instrumental 
variable analysis based solely on rs2078267 at the 
SLC22A11 locus yielded an OR for risk of coronary heart 
disease of 1·19 (95% CI 0·75–1·78) per 1 SD increment 
in urate concentration. Another gene in the instrument 
(VEGFA) is targeted by monoclonal antibody therapeutics 
or an aptamer used to block angiogenesis in the 
treatment of certain cancers and age-related macular 
disease. Another (IGF1R) encodes the receptor for 
mecasermin (recombinant human insulin-like growth 
factor 1). The products of two other genes in the 
instrument (ABGG2 and GCKR) were associated with 
compounds in the early stages of development.22

Discussion
In this study, we investigated a potential causal role for 
plasma urate in the development of coronary heart disease 
using 31 SNPs identifi ed from GWAS and using several 
complementary Mendelian randomisation approaches. 
The well powered, but potentially biased, conventional 
Mendelian randomisation analysis suggested a causal 
eff ect of urate on coronary heart disease. However, the 
31 SNP genetic instrument showed pleiotropic associations 
with several cardiovascular risk factors (including systolic 
blood pressure and triglycerides) that could bias this 
eff ect estimate. Multivariate Mendelian randomisation 
regression analysis that adjusted for the associations of the 
genetic instrument with measured confounders yielded a 
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causal estimate that was consistent with the results of both 
the meta-analysis of observational data and the 
conventional Mendelian randomisation analysis; however, 
the CIs for the causal eff ect derived from multivariate 
Mendelian randomisation were wider and included the 
null. Although multivariate Mendelian randomisation 
accounts for measured pleiotropy, as for conventional 
observational epidemiology, it cannot negate the eff ects of 
unmeasured or unknown confounding. Therefore, we 
used the recently developed Egger Mendelian 
randomisation analysis, which reduces infl ation of a causal 
eff ect estimate due to both measured and unmeasured net 
pleiotropy, at the cost of lower power. Although this 
analysis confi rmed the presence of unmeasured net 
pleiotropy, the causal estimate from Egger Mendelian 
Randomisation was again directionally consistent with the 
other two approaches, albeit with a smaller magnitude and 
even wider confi dence limits (which, as for multivariate 
Mendelian randomisation, included the null). Taken 
together, the most conservative conclusion from these data 
is that plasma urate has a modest, if any, causal eff ect on 
risk of coronary heart disease.

The main assumptions of Mendelian randomisation are 
that the genetic variant strongly associates with the 
exposure, the genetic instrument associates exclusively 
with the risk factor of interest (and not with any 
confounders of the risk factor–disease outcome 
association); and the eff ect of the instrument on disease 
outcome is mediated exclusively through the risk factor of 
interest.11 In this study, we show a strong association of the 
genetic instrument with plasma urate, but we also show 
that our instrument was associated with potential 
confounders; however, we were able to deploy recently 
developed methods to account for this. Specifi cally, the 
genetic instrument showed association with HDL 
cholesterol, triglycerides, systolic blood pressure, and 
diastolic blood pressure, which could be due to horizontal 
or vertical pleiotropy between some of the SNPs included 
and these phenotypes. Although it is diffi  cult to tease 
horizontal from vertical pleiotropy, that horizontal 
pleiotropy is the explanation for these fi ndings is supported 
by the observation that the Mendelian randomisation 
association with risk of coronary heart disease generally 
persisted even after the associations of SNPs with systolic 
blood pressure, diastolic blood pressure, HDL cholesterol, 
and triglycerides were added to the model in multivariate 
Mendelian randomisation (appendix p 10).

Our fi nding adds to those from a previous Mendelian 
randomisation study of plasma urate concentration that 
included roughly 70 000 participants with more than 
7000 cases of coronary heart disease from the 
Copenhagen General Population and Copenhagen City 
Heart Study.23 That study showed no evidence for a causal 
eff ect of urate on coronary heart disease.23 but it was 
based on a single urate-associated variant in SLC2A9 
(rs7442295), and, although the sample size was fairly 
large, it included only one-ninth of the number of 

coronary heart disease cases incorporated in the present 
analysis. Consistent with the Copenhagen study, in our 
much larger analysis, SLC2A9 was not associated with 
coronary heart disease. Kleber and colleagues24 recently 
identifi ed a causal eff ect of uric acid on cardiovascular 
death and sudden cardiac death in a dataset from 3315 
patients admitted to hospital for angiography; however, 
this outcome is diff erent from coronary heart disease. 
Two previous studies implicated a causal eff ect of urate 
on blood pressure: one that used only one SNP in 
SLC2A9 (rs16890979)25 and another that used a 30 SNP 
score, but included only 5791 participants.16

Our study had several important strengths, but also 
some limitations. Strengths of the study include the 
incorporation of multiple urate-associated SNPs 
identifi ed from GWAS to generate a genetic instrument 
with greater power than any single variant in isolation, 
the use of two-sample Mendelian randomisation 
methods that allow incorporation of summary eff ect 
estimates from very large, publicly available GWAS 
datasets (such as CARDIoGRAMplusC4D and 
DIAGRAM) to bolster power substantially, and the 
application of emerging approaches to Mendelian 
randomisation that allow statistical adjustment for 
measured confounders and adjustment for unbalanced 
net pleiotropy—(ie, multivariable and Egger Mendelian 
randomisation, respectively).

Limitations include much of the data coming from 
case-control studies from genetic discovery consortia, in 
which coronary heart disease cases are recruited after 
presentation with an acute coronary syndrome, which is 
contingent on survival. It is therefore possible that our 
fi ndings were aff ected by survival advantage. However, 
the association of urate concentration with risk of 
coronary heart disease in prospective cohort studies (in 
which urate was measured before coronary heart disease 
events) provides evidence against survivorship bias. The 
mechanism by which some of the variants in our 
instrument aff ect urate concentration is not clear. 
However, understanding precise mechanisms is not a 
prerequisite for Mendelian randomisation, and seven of 
the 31 genes are known to be involved in the regulation 
of urate or purine metabolism. Finally, the observational 
association of plasma urate concentration with risk of 
coronary heart disease might be biased towards the null 
due to regression dilution bias, however absence of 
repeated measurements of plasma urate meant that it 
was not possible to assess the extent of this bias.26

Our study was designed to assess the causal role of 
plasma urate concentration in the risk of coronary heart 
disease, not the safety or effi  cacy of reducing plasma urate 
concentration through any particular therapeutic target. 
Randomised intervention trials will be necessary to test 
whether individual urate-lowering drugs might be eff ective 
for the prevention of coronary heart disease and have an 
acceptable safety profi le. Allopurinol and febuxostat, which 
target xanthine oxidoreductase, as well as probenicid and 
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sulfi npyrazone, which inhibit renal urate reabsorption, 
might be considered. Although variants in genes encoding 
drug targets of the probenecid and sulfi npyrazone were 
included in the genetic instrument (together with GCKR, 
which is a target for drug development for diff erent 
reasons),22 in view of the imprecision around the causal 
estimates for individual SNPs (together with estimates 
derived from multivariate and Egger analyses), the effi  cacy 
(and safety) of these drugs for the prevention of coronary 
heart disease remains uncertain. Further genetic analyses 
focusing on SNPs in genes encoding the targets of urate-
lowering drugs (eg, SNPs in XDH, which encoded 
xanthine oxidoreductase, the target of allopurinol, should 
these be shown to be associated with urate concentration), 
using a range of clinical outcomes, including but extending 
beyond coronary heart disease, would be necessary to 
address this distinct question, as has been done for other 
potential therapeutic targets.27,28

Our study was also designed to inform on any potential 
causal role of plasma urate in the onset rather than the 
progression of or outcome from coronary heart disease. 
Diff erent datasets would be needed to address the 
separate question of the eff ect of lowering plasma urate 
on outcome following a diagnosis of coronary heart 
disease, such as that assembled by the Genetics of 
Subsequent Coronary Heart Disease (GENIUS-CHD) 
consortium. We note, however, that a phase 3 randomised 
clinical trial of allopurinol (600 mg daily) plus standard 
care versus standard care alone in patients with 
established coronary heart disease designed to assess an 
eff ect on risk of coronary heart disease, stroke, and 
cardiovascular death is underway (ALL-HEART; UK 
Clinical Research Network UKCRN ID: 15328, Integrated 
Research Application System IRAS ID: 32017426).

In summary, genetic evidence based on conventional 
and novel Mendelian randomisation approaches suggest 
a modest, if any, causal eff ect of plasma urate 
concentration in the development of coronary heart 
disease. The fi ndings might help investigators to judge 
the relative priority of plasma urate, as against other risk 
factors, as a therapeutic target for the prevention of 
coronary heart disease.
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