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Abstract

This paper analyses the effects of sampling frequency on detrending methods based on an
underlying continuous time representation of the process of interest. Such an approach has
the advantage of allowing for the explicit – and different – treatment of the ways in which
stock and flow variables are actually observed. Some general results are provided before
the focus turns to three particular detrending methods that have found widespread use in
the conduct of tests for a unit root, these being GLS detrending, OLS detrending, and first
differencing, and which correspond to particular values of the generic detrending parameter.
In addition, three different scenarios concerning sampling frequency and data span, in each
of which the number of observations increases, are considered for each detrending method.
The limit properties of the detrending coefficient estimates, as well as an invariance principle
for the detrended variable, are derived. An example of the application of the techniques to
testing for a unit root, using GLS detrending on an intercept, is provided and the results of a
simulation exercise to analyse the size and power properties of the test in the three different
sampling scenarios are reported.
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1. Introduction

It has become common in recent econometric practice to implement some form of de-

trending procedure prior to carrying out a test for a unit root in an observed time series. The

three most widely used methods are detrending by first differencing, ordinary least squares

(OLS) detrending, and generalised least squares (GLS) detrending, the latter having become

popular since the work of Elliott, Rothenberg and Stock (1996). Once the data have been

detrended it is then a matter of carrying out a unit root test using the detrended data,

provided that the appropriate limit distribution is used to determine the critical value for

the test. This is because the process of detrending affects the data used for constructing the

test statistic and, hence, the form of the invariance principle that is used to describe the

limit distribution.

In many situations researchers are increasingly faced with a choice of sampling frequen-

cies with which to work, due to the rapidly expanding availability of time series data. Such

choices are not necessarily innocuous, however, and a number of investigations have been

carried out to assess the effects of sampling frequency and data span on the properties of

estimators and test statistics. In the context of unit root testing, Perron (1991) demon-

strated that, for the case of a stock variable observed at equispaced points in time, test

power was influenced more by the data span than the number of observations per se, while

Chambers (2004, 2008) carried out a similar analysis for the case of a flow variable observed

as a sequence of integrals and also showed that test consistency requires an increasing data

span.1 Neither of these studies, however, considered deterministic components in the un-

derlying processes and, hence, there was no need for any form of detrending. But given

the prominent role that detrending now occupies in the field of unit root testing it would

seem apposite to ascertain the effects of sampling frequency and data span on the different

detrending methods available to researchers.

The main aim of this paper is, therefore, to derive the limit properties of the estimated

coefficients in the detrending regressions and thereby to determine invariance principles for

the resulting detrended data. The underlying model is formulated in continuous time which

has two main advantages over a discrete time formulation for the analysis of the effects of

sampling frequency. The first is that the underlying model is not tied to any particular

(arbitrary) sampling frequency. The second advantage is that the form of model satisfied

by the discrete time observations is invariant to their sampling frequency, a feature that is

not necessarily true when aggregating a discrete time process; see, for example, the results

in Brewer (1973), Weiss (1984) and Marcellino (1999). The continuous time framework is

also ideally suited to handling the different ways in which measurements of stock and flow

variables are made, the former being recorded at discrete (equispaced) points in time, the

latter as integrals over the observation interval.

The general form of detrending regression itself extends the ideas of Chambers (2015b)

and is also formulated in continuous time. Its discrete time equivalent, satisfied by the

observations exactly, is presented in Theorem 1. The three particular detrending methods

considered then correspond to particular values of the generic detrending parameter. The

case of an observed stock variable is treated in detail in section 3. The asymptotic properties

1The importance of increasing span for estimator consistency has also been established in the context of
cointegration by Chambers (2011).
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are derived for three different sampling schemes corresponding to different scenarios for data

span and sampling frequency. The invariance principle which drives subsequent results is

presented in Lemma 2 and its implications for the (unobserved) detrended process in discrete

time are outlined in Lemma 3. The main results for the three detrending methods then follow

and are given in Theorems 2–4. Section 4 considers the case of detrending a flow variable

which affects the form of the underlying invariance principle (Lemma 4), mainly through the

effect of aggregation on the serial correlation properties. It is shown that the results for a

stock variable continue to hold, with one minor exception, provided the appropriate long run

variance is used. An application of the results using GLS detrending on an intercept with

a stock variable is provided in section 5 in which the performance of a test statistic, based

on the normalised autoregressive coefficient estimator, is assessed across the three sampling

schemes in a simulation exercise. The simulation results are found to be in accordance

with the predictions of the theory. Some concluding comments are provided in section

6. Three appendices are provided that contain proofs of theorems (Appendix A), proofs

of lemmas (Appendix B), and statements and proofs of supplementary lemmas (Appendix

C). Throughout, stock variables are represented by lower case characters (e.g. y) and flow

variables by upper case (e.g. Y ).

2. The model, detrending methods and some preliminary results

2.1. The model

The continuous time process of interest, yc(t), is assumed to consist of a (deterministic)

trend component, ψ′z(t), and a stochastic component, u(t), the latter containing a potential

unit root driven by a stationary process, η(t), More formally the model is given by

yc(t) = ψ′z(t) + u(t), t > 0, (1)

du(t) = αu(t)dt+ η(t)dt, t > 0, (2)

where α denotes the continuous time autoregressive parameter and (1) and (2) are initialised

by yc(0) and u(0), respectively. The parameter α is the object of interest in unit root testing

scenarios and we shall be more precise about its specification in subsequent sub-sections. It

is also assumed that z(t) = [1, t, t2, . . . , zm]′ and ψ is an (m + 1) × 1 vector of parameters.

More specifically we will focus on the cases m = 0 and m = 1 so that, respectively,

ψ′z(t) =

{
ψ0, m = 0,

ψ0 + ψ1t, m = 1;
; (3)

higher-order polynomials could be considered but are rarely used in practice. Now suppose

that ψ̂ is an estimate of ψ. We can then define the detrended process in continuous time as

y(t) = yc(t)− ψ̂′z(t) = u(t)− (ψ̂ − ψ)′z(t),

which converges to the unobservable process u(t) if ψ̂ is a consistent estimator of ψ. We

shall analyse such properties in what follows and derive the limit properties of the detrended

discrete time equivalents of y(t).
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For the purposes of analysing the properties of various detrending methods under differ-

ent sampling schemes it is not necessary to assume anything more specific about the process

η(t) other than it being stationary (and functionals of it satisfying an invariance principle;

see below). For the conduct of unit root tests in the observed data, however, it may be

necessary to make additional assumptions, depending on the type of test being conducted.

For example, the tests of Phillips and Perron (1988) would not require further assumptions,

while the tests of Said and Dickey (1984) would rely on a parameteric specification of the

dynamics governing η(t). In a continuous time framework Chambers (2015b) has consid-

ered unit root tests based on a discrete time series of skip-sampled (stock) data generated

according to (1) and (2) with η(t) satisfying the CARMA(p, q) specification2

φ(D)η(t) = θ(D)ε(t),

where ε(t) is a continuous time white noise, D denotes the mean square differential operator,

φ(z) = zp + φp−1z
p−1 + . . . + φ1z + φ0 and θ(z) = 1 + θ1z + . . . + θq−1z

q−1 + θqz
q. This

specification leads to discrete time ARMA dynamics in the discrete time equivalent of (2)

which is specified below.

We shall assume that a sequence of discrete time observations is available and that the

sampling interval is h; this is the length of time between successive observations on stock

variables and the interval of time over which the observations on flow variables are recorded.

The corresponding sampling frequency is 1/h. We also assume that the time span over

which observations are recorded is denoted N , implying that the number of observations is

T = N/h. We shall consider two types of variables, stocks and flows, whose discrete time

observations are determined by:

Stocks: yth = yc(th), t = 1, . . . , T ;

Flows: Yth =
1

h

∫ th

th−h
yc(r)dr, t = 1, . . . , T.

For a stock variable3 the observed sequence is therefore yh, y2h, . . . , yTh = yN , while for a

flow variable the observed sequence is given by Yh, Y2h, . . . , YTh = YN . The properties of the

discrete time observations generated by the underlying continuous time system (1) and (2)

are given below.

Lemma 1. Let yc(t) be generated by (1) with ψ′z(t) = ψ0 + ψ1t. Then discrete time

observations on stock variables satisfy

yth = ψ0 + ψ1th+ uth, t = 1, . . . , T, (4)

where uth = u(th) is determined by the stochastic difference equation

uth = eαhuth−h + vth, vth =

∫ th

th−h
eα(th−r)η(r)dr, t = 1, . . . , T. (5)

2It is also assumed that q < p; this condition ensures that the spectral density function of η(t) is integrable
and, therefore, that η(t) has finite variance.

3It would also be possible to observe y0 = y(0) in principle for a stock variable, resulting in T + 1
observations, although for convenience we assume the observations start at t = 1.
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For flow variables the discrete time observations satisfy

Yth = ψ0 + ψ1

(
th− h

2

)
+ Uth, t = 1, . . . , T, (6)

where the dynamics of Uth are governed by

Uh =

(
eαh − 1

αh

)
u(0) + Vh, Vh =

1

h

∫ h

0

∫ s

0
eα(s−r)η(r)drds, (7)

Uth = eαhUth−h + Vth, Vth =
1

h

∫ th

th−h

∫ s

s−h
eα(s−r)η(r)drds, t = 2, . . . , T. (8)

Alternatively, if ψ′z(t) = ψ0, the discrete time representations above are still valid but with

ψ1 = 0 in (4) and (6).

Lemma 1 shows that the discrete time observations reflect the linear trend inherent in

(1), although in the case of a flow variable the process of integration results in the trend

being evaluated at the mid-point of the sampling interval i.e. th − (h/2) rather than th

itself. An implication of normalising the flow variables by (1/h) is that the linear trend in

continuous time is transformed into a linear trend (subject to the adjustment mentioned

above) in discrete time. Without this normalisation the linear trend would be of the form

ψ0h+ ψ1

(
th2 − (h2/2)

)
.

The processes uth and Uth appearing in Lemma 1 are driven by the stationary processes

vth and Vth, respectively, whose precise properties depend on the underlying process η(t). In

cases where η(t) is CARMA(p, q) (with q < p) it can be shown (see Chambers and Thornton,

2012) that vth is ARMA(p, p − 1) and Vth is ARMA(p, p). The additional order of moving

average component in Vth, compared to vth, becomes apparent by noting that Vth can be

written in the form (assuming α 6= 0)

Vh =
1

h

∫ h

0

(
eα(h−r) − 1

α

)
η(r)dr,

Vth =
1

h

∫ th

th−h

(
eα(th−r) − 1

α

)
η(r)dr +

1

h

∫ th−h

th−2h

(
eαh − eα(th−h−r)

α

)
η(r)dr,

the second expression holding for t = 2, . . . , T . This representation is obtained by changing

the orders of integration in the double-integral representation in Lemma 1 as in, for example,

McCrorie (2000). When α = 0 the appropriate representation can be found by taking limits

using the series expansion of ex; we find that

eα(th−r) − 1

α
= (th− r) +O(α),

eαh − eα(th−h−r)

α
= −(th− 2h− r) +O(α)

and hence, in this case,

Vh =
1

h

∫ h

0
(h− r)η(r)dr,

Vth =
1

h

∫ th

th−h
(th− r)η(r)dr − 1

h

∫ th−h

th−2h
(th− 2h− r)η(r)dr, t = 2, . . . , T,
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which demonstrates the additional source of moving average in the limit when α = 0.

2.2. Detrending methods

The objective is to detrend the observations so that the discrete time detrended series

is consistent with detrending the underlying continuous time series under the given trend

specification. Chambers (2015b) shows how GLS detrending can be achieved in continuous

time for a stock variable and we extend the method below to a flow variable as well as

considering other detrending methods. To motivate ideas, suppose α is known and use the

substitution u(t) = yc(t)− ψ′z(t) in (2), yielding

dyc(t) = αyc(t)dt+ ψ′dz(t)− αψ′z(t)dt+ η(t)dt.

Taking m = 1 we have ψ = [ψ0, ψ1]′, z(t) = [1, t]′ and dz(t) = [0, dt]′, in which case the

above equation becomes

dyc(t) = [αyc(t)− ψ0α+ ψ1(1− αt)] dt+ η(t)dt. (9)

Of course, α is unknown in practice and so the different detrending methods choose a par-

ticular value, say ᾱ, and proceed to estimate ψ0 and ψ1 based on the equation

dyc(t) = [ᾱyc(t)− ψ0ᾱ+ ψ1(1− ᾱt)] dt+ η̄(t)dt, (10)

where η̄ is a stationary continuous time process. From (10) it is possible to derive an exact

representation for the discrete time observations which enables ψ0 and ψ1 to be estimated.

We present the general result in Theorem 1 before looking at different possible choices for

ᾱ.

Theorem 1. Let yc(t) be generated according to (1) with ψ′z(t) = ψ0+ψ1t. Then detrending

in continuous time is carried out by estimating the equation

dyc(t) = [ᾱyc(t)− ψ0ᾱ+ ψ1 (1− ᾱt)] dt+ η̄(t)dt, t > 0, (11)

where ᾱ is the detrending parameter and η̄(t) is a stationary continuous time disturbance

process. For a stock variable, estimation of (11) is equivalent to estimating

ỹth = ψ′z̃th + w̃th, t = 1, . . . , T, (12)

where ỹh = yh, z̃h = [1, h]′,

ỹth = yth − eᾱhyth−h, z̃th =

[
1− eᾱh

th− eᾱh(th− h)

]
, t = 2, . . . , T,

and w̃th denotes a stationary discrete time disturbance. For a flow variable the appropriate

regression is

Ỹth = ψ′Z̃th + W̃th, t = 1, . . . , T, (13)
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where Ỹh = Yh, Z̃h = [1, h/2]′,

Ỹth = Yth − eᾱhYth−h, Z̃th =

 1− eᾱh

th− 1

2
h− eᾱh

(
th− 3

2
h

)  , t = 2, . . . , T,

and W̃th denotes a stationary discrete time disturbance. Alternatively, if ψ′z(t) = ψ0, the

discrete time regressions above are still valid but with ψ1 = 0 in (12) and (13).

The continuous time detrending regressions in Theorem 1 mirror the detrending regres-

sions that take place in a more familiar discrete time framework in which the variable of

interest and deterministic terms are appropriately transformed. The first transformed ob-

servation is obtained directly from (1) (with an additional integration in the case of a flow

variable) while the remaining transformed observations are consistent with the dynamics in-

herent in (11), subject to accounting for the temporal aggregation effects in an appropriate

way. The presence of h/2 in Z̃h and th − (h/2) − eᾱh[th − (3h/2)] in Z̃th (t = 2, . . . , T )

arise due to the integration associated with a flow variable. If the flow variable was not

normalised by 1/h then both of these trend components (as well as the intercept) would

need to be multiplied by h.

The regressions in Theorem 1 enable ψ to be estimated by OLS, leading to the estimators

ψ̂ =

(
T∑
t=1

z̃thz̃
′
th

)−1 T∑
t=1

z̃thw̃th or ψ̂ =

(
T∑
t=1

Z̃thZ̃
′
th

)−1 T∑
t=1

Z̃thW̃th

in the case of a stock variable or a flow variable, respectively. Although not stated explicitly

above, the regression disturbances follow the same type of quasi-differencing as the observable

variables, so that in the stock case, w̃h = uh and w̃th = uth − eᾱhuth−h (t = 2, . . . , T ), while

for a flow variable W̃1 = Uh and W̃th = Uth − eᾱhUth−h (t = 2, . . . , T ). These definitions are

required for the analysis of the limit properties of ψ̂ − ψ. The detrended series for stocks

and flows are then given by

ydth = yth − ψ̂′zth and Y d
th = Yth − ψ̂′Zth,

respectively, where zth = [1, th]′ and Zth = [1, th− (h/2)]′.

We turn now to particular detrending methods and focus on three that have been em-

ployed in the literature, these being GLS detrending, OLS detrending, and first differencing.

Each of these methods entails a particular choice of detrending parameter ᾱ in place of the

unknown α. In a purely discrete time framework, in which sampling frequency is ignored,

the detrending regression (ignoring the initial observation for t = 1) for a generic variable yt
is of the form

yt − ᾱyt−1 = ψ′(zt − ᾱzt−1) + wt, t = 2, . . . , T,

where zt = [1, t]′ and wt is a stationary random disturbance. Under GLS detrending, ᾱ =

1+ c̄/T for some appropriate choice of constant c̄, while OLS detrending sets ᾱ = 0 and first-

differencing sets ᾱ = 1. The form of ᾱ under GLS detrending mimics a popular approach to

unit root testing in which the unknown parameter α is of the form α = 1 + c/T where c < 0

allows for a stationary near-unit root under the alternative hypothesis (the null of a unit
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root corresponding to c = 0). Elliot, Rothenberg and Stock (1996) suggest using c̄ = −7

when detrending on an intercept only and c̄ = −13.5 when using a linear trend. Note that,

when c̄ is fixed, ᾱ→ 1 as T →∞.

In analysing the effects of sampling frequency based on an underlying continuous time

specification, the sample size, T , depends on both data span (N) and sampling interval

(h): T = N/h. From Theorem 1 the discrete time detrending parameter is eᾱh and it is

possible to choose ᾱ so that the detrending reflects the usual discrete time approach but

acknowledges the implicit temporal aggregation effects. For GLS detrending we therefore

set ᾱ = c̄/N which results in eᾱh = ec̄h/N = ec̄/T and, noting that

ec̄/T = 1 +
c̄

T
+O

(
c̄2

T 2

)
,

we can see that the usual discrete time approach, using 1 + c̄/T as the quasi-differencing

parameter, truncates the series after the second term. For large sample sizes the usual

GLS detrending approach may therefore provide a reasonably good approximation with

temporally aggregated variables although for smaller samples the approximation will be less

accurate. The remaining two detrending methods can be regarded as extreme cases of the

GLS detrending parameter c̄. The first differencing procedure is obtained by setting c̄ = 0,

in which case we have ᾱ = 0 and, hence, eᾱh = 1 for all sampling intervals h. It is easily

seen from the results in Theorem 1 that the dependent variables become first differences

(except for the initial observation) as do the deterministic terms. At the other extreme we

can consider c̄ → −∞ in which case ᾱ → −∞ and eᾱh → 0, which corresponds to OLS

detrending because, in effect, the underlying trend equation, (1), is being estimated directly

by OLS, subject to accounting for the temporal aggregation. For convenience, the precise

form of the regressors under each type of detrending is given for stock and flow variables in

Table 1, in which z̃th = [z̃1,th, z̃2,th]′ and Z̃th = [Z̃1,th, Z̃2,th]′.

3. Asymptotic properties of detrending with stock variables

3.1. Some asymptotic results

Specifying an underlying continuous time model and working with its exact discrete

representation enables alternative asymptotic regimes to be considered, as both the data

span (N) and sampling interval (h) can be allowed to vary. We shall consider three different

asymptotic sampling schemes, which were also considered by Zhou and Yu (2015) in the case

of linear diffusion processes:

Scheme 1: h fixed, N →∞;

Scheme 2: h→ 0, N →∞;

Scheme 3: h→ 0, N fixed.

In all three cases the sample size T = N/h→∞. In order to derive the asymptotic proper-

ties of the detrended series an assumption needs to be made concerning the autoregressive

parameter in the continuous time representation (2). From Lemma 1 we know that the au-

toregressive parameter for the discrete time stock variable uth is eαh and we therefore make

the following assumption concerning α:
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Assumption 1. The autoregressive parameter in (2) is α = c/N for some constant c ≤ 0.

An immediate consequence of this assumption is that eαh = ech/N = ec/T which accords

with the formulation in Phillips (1987) and allows for the treatment of a near-unit root as well

as the analysis of the (power) properties of tests under stationary alternatives (c < 0). The

properties of the process uth are a key element in determining the properties of the detrended

series and constitute the first main set of results in this section. The next assumption

concerns the initial value u(0).

Assumption 2. The initial value u(0) = Op(1).

This assumption ensures that u(0) plays no role in the asymptotics in schemes 1 and

2 as N → ∞. In fact, the weaker assumption that u(0) = op(N
1/2) would suffice under

these two sampling schemes. Lemma 1 indicates that uth is driven by the stationary process

vth and we also make the following assumption with a view to establishing an invariance

principle (or functional central limit theorem) for the appropriately normalised disturbances

vth. The conditions concern the continuous time process η(t) and partly involve the strong

mixing coefficients defined for positive real values of s by α(s) = supt α(F t−∞,F∞t+s), where

α(F t−∞,F∞t+s) = sup
G∈Ft

−∞,H∈F∞t+s

|Pr(G ∩H)− P (G)P (H)| ,

and Fba denotes the sigma-field generated by η(t) for a ≤ t ≤ b. A process is strong mixing

if α(s) → 0 as s → ∞, but the invariance principle requires these coefficients to satisfy a

certain rate condition.

Assumption 3. η(t) is a stationary continuous time process satisfying:

(a) Eη(t) = 0.

(b) E|η(t)|β <∞ for some β > 2.

(c) η(t) is strong mixing with mixing coefficients satisfying∫ ∞
0

α(s)1−2/βds <∞.

The conditions in Assumption 3 are satisfied if η(t) is a Gaussian CARMA(p, q) process

(with q < p) but they allow for much more general continuous time processes.4 The mixing

condition in part (c) is satisfied, for example, if the process is geometrically strong mixing

i.e. if α(j) ≤ e−jθ for some θ > 0. Assumption 3 is used to establish the following result for

partial sums of vth.

Lemma 2. Under Assumption 3, as T →∞ the functional

xT (r) =
1

T 1/2

[Tr]∑
t=1

( vth
h1/2

)
⇒ σW (r), r ∈ [0, 1],

4In the CARMA case, if p = q then η(t) has infinite variance but it may still be possible to obtain an
invariance principle under stronger conditions and possibly a different rate of convergence. For example,
Shao (1993) provides a set of conditions under which an invariance principle holds for stationary ρ-mixing
processes with infinite variance.
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where W (r) is a Wiener process, σ2 denotes the long run variance given by

σ2 =
1

h

(
Ev2

th + 2
∞∑
k=1

Evthvth−kh

)
=


2πhfη(0), α = 0,

2πh
(
1− eαh

)2 ∞∑
j=−∞

fη(2πj/h)

h2α2 + (2πj)2
, α < 0,

and fη(λ) (−∞ < λ < ∞) is the spectral density function of the continuous time process

η(t).

The normalisation of vth by h1/2 in Lemma 2 is due to the variance (and covariances)

of vth being O(h). Also note that, as Th = N , an alternative form for the functional in

Assumption 2 is

xT (r) =
1

N1/2

[Tr]∑
t=1

vth.

Although N → ∞ in sampling schemes 1 and 2 it is fixed in scheme 3 which suggests that∑[Tr]
t=1 vth ⇒ σN1/2W (r) in this case. The long run variance, σ2, is presented in terms of

the spectral density function of η(t). When α = 0 it is proportional to the spectrum at the

origin but when α < 0 the doubly-infinite summation arises from the process of moving from

continuous time, where the spectral density is defined over −∞ < λ <∞, to discrete time,

where −π < λ ≤ π; see, for example, Grenander and Rosenblatt (1957, p.57).

The building block for many of the results is contained in the following lemma, where

Jc(r) denotes the Ornstein-Uhlenbeck process which satisfies dJc(r) = cJc(r)dr+dW (r) and

has the solution Jc(r) =
∫ r

0 e
(r−s)cdW (s). It is also convenient to define the constants

δc =

(
ec − 1

c

)
, µc =

(
1− (1− c)ec

c2

)
,

which appear in the limits in scheme 3.

Lemma 3. Let u(t) satisfy (2) and let uth = u(th). Then, under Assumptions 1–3:

Scheme 1: As N →∞ with h fixed,

1

N1/2
u[Tr]h ⇒ σJc(r),

1

N3/2

T∑
t=1

uth ⇒
σ

h

∫ 1

0
Jc(r)dr,

1

N5/2

T∑
t=1

thuth ⇒
σ

h

∫ 1

0
rJc(r)dr.

Scheme 2. As N →∞ and h→ 0,

1

N1/2
u[Tr]h ⇒ σJc(r),

h

N3/2

T∑
t=1

uth ⇒ σ

∫ 1

0
Jc(r)dr,

h

N5/2

T∑
t=1

thuth ⇒ σ

∫ 1

0
rJc(r)dr.

Scheme 3. As h→ 0 with N fixed,

u[Tr]h ⇒ ecru(0) + σN1/2Jc(r), h
T∑
t=1

uth ⇒ Nδcu(0) + σN3/2

∫ 1

0
Jc(r)dr,

h
T∑
t=1

thuth ⇒ N2µcu(0) + σN5/2

∫ 1

0
rJc(r)dr.
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It is interesting to note from Lemma 3 that the normalisation for the convergence of

u[Tr]h is the same (1/N1/2) in schemes 1 and 2 and is independent of h. The limits of

sums of uth, however, depend on the fixed value of h in scheme 1 but h is needed in the

normalisations in scheme 2. The results for scheme 3 are not obtained from scheme 2 simply

by fixing the value of N . This is because the initial value u(0), which is asymptotically

negligible in schemes 1 and 2, plays a non-negligible role when N is fixed and only h varies.

Clearly, if u(0) = 0, this is not an issue.

All limit results in Lemma 3 depend on the parameter c via the process Jc(r). This would

not be the case if an alternative definition of α were to be assumed. For example, if, in place

of Assumption 1, it was assumed that α = c/T , so that the continuous time parameter α

tends to zero in all three sampling schemes, then the discrete time autoregressive parameter

becomes eαh = ech/T = ech
2/N . An implication of this5 is that Jc(r) is replaced by Jch(r) in

scheme 1 while in schemes 2 and 3 Jc(r) is replaced by W (r) (along with a modification of

the term multiplying u(0) in scheme 3). This alternative specification does not appear to be

realistic due to the dependence of the limit random process, Jch(r), on h in scheme 1 and

the absence of any dependence on c in schemes 2 and 3.

The analysis of the properties of the estimators of the parameters under the three dif-

ferent detrending methods is facilitated by using a common notation for each. In the most

general case of detrending on an intercept and trend this is given by

ψ̂ − ψ = Q−1p =
1

|Q|

(
∆0

∆1

)
, (14)

where ∆0 = Q22p1 − Q12p2, ∆1 = Q11p2 − Q12p1, |Q| = Q11Q22 − Q2
12, and Q and p are

defined by

Q =

T∑
t=1

z̃thz̃
′
th =

(
Q11 Q12

Q12 Q22

)
, p =

T∑
t=1

z̃thw̃th =

(
p1

p2

)
.

Clearly, the elements of Q and p depend on which detrending method is used, and their

limit properties are defined for each method in some supplementary lemmas in Appendix

C. These results are then incorporated into the proofs of the theorems that follow. As for

the detrended series itself we shall be interested in functional central limit theorems (or

invariance principles) for appropriately normalised versions of

yd[Tr]h = u[Tr]h −
(
ψ̂0 − ψ0

)
−
(
ψ̂1 − ψ1

)
[Tr]h, (15)

the relevant results following from Lemma 2 and the properties of ψ̂ − ψ. The results for

each of the detrending methods are contained in Theorems 2–4 that follow, beginning with

the OLS detrending results.

3.2. OLS detrending

Detrending by OLS involves estimation of (12) with ᾱ = −∞ (implying eᾱh = 0) and,

hence, no (quasi-)differencing applied to the intercept or trend. It is convenient, for the

5We do not provide details but the results are readily obtained by following the steps in the proof of
Lemma 3 but using this alternative definition of α.
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presentation of the results, to define the following functionals of Jc(r):

J̄c(r) = Jc(r)−
∫ 1

0
Jc(s)ds,

J0
c = 4

∫ 1

0
Jc(s)ds− 6

∫ 1

0
sJc(s)ds,

J1
c = 12

∫ 1

0
sJc(s)ds− 6

∫ 1

0
Jc(s)ds,

J2
c (r) = Jc(r)− (4− 6r)

∫ 1

0
Jc(s)ds+ (6− 12r)

∫ 1

0
sJc(s)ds = Jc(r)− J0

c − rJ1
c .

The results for the limit distribution of the estimator of ψ and the invariance principle for

the detrended series are as follows.

Theorem 2. Let yc(t) be generated according to (1) and (2), let ydth (t = 1, . . . , T ) denote

the detrended series and let Assumptions 1–3 hold.

(a) If OLS detrending is carried out using only an intercept:

Scheme 1: As N →∞ with h fixed,

1

N1/2
(ψ̂0 − ψ0)⇒ σ

∫ 1

0
Jc(r)dr,

1

N1/2
yd[Tr]h ⇒ σJ̄c(r).

Scheme 2. As N →∞ and h→ 0, the results of scheme 1 continue to hold.

Scheme 3. As h→ 0 with N fixed,

ψ̂0 − ψ0 ⇒ δcu(0) + σN1/2

∫ 1

0
rJc(r)dr, yd[Tr]h ⇒ (ecr − δc)u(0) + σN1/2J̄c(r).

(b) If OLS detrending is carried out using an intercept and a trend:

Scheme 1: As N →∞ with h fixed,

1

N1/2
(ψ̂0 − ψ0)⇒ σJ0

c , N1/2(ψ̂1 − ψ1)⇒ σJ1
c ,

1

N1/2
yd[Tr]h ⇒ σJ2

c (r).

Scheme 2. As N →∞ and h→ 0, the results of scheme 1 continue to hold.

Scheme 3. As h→ 0 with N fixed,

ψ̂0 − ψ0 ⇒ 12k1u(0) + σN1/2J0
c , ψ̂1 − ψ1 ⇒

12k2

N
u(0) +

σ

N1/2
J1
c ,

yd[Tr]h ⇒ k3(r)u(0) + σN1/2J2
c (r),

where

k1 =
δc
3
− µc

2
, k2 = µc −

δc
2
, k3(r) = ecr − 12(k1 + k2r).

The large span asymptotics (N →∞) in Theorem 2 provide the same results regardless

of whether the sampling interval (h) is fixed (scheme 1) or tends to zero (scheme 2). This

is not true, however, for the underlying sums of uth whose asymptotic properties are given

in Lemma 3 and whose normalisations depend on h and N . When span is fixed the results

are seen to depend quite explicitly on u(0).
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3.3. GLS detrending

We now turn to the case of GLS detrending, for which it is convenient to define the

random variable

X(c, c̄) =

(1− c̄)Jc(1) + c̄2

∫ 1

0
rJc(r)dr

1− c̄+ c̄2/3
= λJc(1) + 3(1− λ)

∫ 1

0
rJc(r)dr,

where λ = (1− c̄)/(1− c̄+ c̄2/3).

Theorem 3. Let yc(t) be generated according to (1) and (2), let ydth (t = 1, . . . , T ) denote

the detrended series and let Assumptions 1–3 hold.

(a) If GLS detrending is carried out using only an intercept:

Scheme 1: As N →∞ with h fixed,

ψ̂0 − ψ0 ⇒ uh,
1

N1/2
yd[Tr]h ⇒ σJc(r).

Scheme 2. As N →∞ and h→ 0,

ψ̂0 − ψ0 ⇒ u(0),
1

N1/2
yd[Tr]h ⇒ σJc(r).

Scheme 3. As h→ 0 with N fixed,

ψ̂0 − ψ0 ⇒ u(0), yd[Tr]h ⇒ σN1/2Jc(r)− (1− ecr)u(0).

(b) If GLS detrending is carried out using an intercept and a trend:

Scheme 1: As N →∞ with h fixed,

ψ̂0 − ψ0 ⇒ uh, N1/2(ψ̂1 − ψ1)⇒ σX(c, c̄),
1

N1/2
yd[Tr]h ⇒ σ (Jc(r)−X(c, c̄)r) .

Scheme 2. As N →∞ and h→ 0,

ψ̂0 − ψ0 ⇒ u(0), N1/2(ψ̂1 − ψ1)⇒ σX(c, c̄),
1

N1/2
yd[Tr]h ⇒ σ (Jc(r)−X(c, c̄)r) .

Scheme 3. As h→ 0 with N fixed,

ψ̂0 − ψ0 ⇒ u(0), ψ̂1 − ψ1 ⇒
k4

N
u(0) +

σ

N1/2
X(c, c̄),

yd[Tr]h ⇒ σN1/2 (Jc(r)−X(c, c̄)r)− (1− ecr + k4r)u(0),

where

k4 =

c̄2

(
µc −

1

2

)
− (1− c̄)(1− ec)

1− c̄+
c̄2

3

.

The estimators of ψ0 are inconsistent in all cases reported in Theorem 3 and there are also

differences in the results between schemes 1 and 2. In the former the limit is determined
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by uh while in the latter it is u(0). Noting that uh = eαhu(0) + vh and that vh → 0 in

probability as h → 0 explains the connection between these results. The limit properties

of yd[Tr]h are the same in schemes 1 and 2 and the influence of u(0) is once again evident

in scheme 3. The process Jc(r)−X(c, c̄)r appearing in the limits in Theorem 3(b) is often

denoted Vc(r, c̄) or Vc,c̄(r) in the literature; see, for example, Elliott, Rothenberg and Stock

(1996) in the former case and Chambers (2015a) in the latter.

3.4. Detrending by differencing

The final method of detrending we consider is differencing; the results are presented in

Theorem 4, in which the process

J3
c (r) = Jc(r)− rJc(1)

is defined for convenience.

Theorem 4. Let yc(t) be generated according to (1) and (2), let ydth (t = 1, . . . , T ) denote

the detrended series and let Assumptions 1–3 hold.

(a) If detrending is carried out by differencing using only an intercept:

Scheme 1: As N →∞ with h fixed,

ψ̂0 − ψ0 = uh,
1

N1/2
yd[Tr]h ⇒ σJc(r).

Scheme 2. As N →∞ and h→ 0,

ψ̂0 − ψ0
p→ u(0),

1

N1/2
yd[Tr]h ⇒ σJc(r).

Scheme 3. As h→ 0 with N fixed,

ψ̂0 − ψ0
p→ u(0), yd[Tr]h ⇒ σN1/2Jc(r)− (1− ecr)u(0).

(b) If detrending is carried out by differencing using an intercept and a trend:

Scheme 1: As N →∞ with h fixed,

ψ̂0 − ψ0 ⇒ uh, N1/2(ψ̂1 − ψ1)⇒ σJc(1),
1

N1/2
yd[Tr]h ⇒ σJ3

c (r).

Scheme 2. As N →∞ and h→ 0,

ψ̂0 − ψ0 ⇒ u(0), N1/2(ψ̂1 − ψ1)⇒ σJc(1),
1

N1/2
yd[Tr]h ⇒ σJ3

c (r).

Scheme 3. As h→ 0 with N fixed,

ψ̂0 − ψ0 ⇒ u(0), ψ̂1 − ψ1 ⇒
σN1/2Jc(1)− (1− ec)u(0)

N
,

yd[Tr]h ⇒ σN1/2J3
c (r)− [(1− ecr)− (1− ec)r]u(0).

The limit distributions of the detrended series coincide with those under GLS detrending

when only an intercept is used in the regression. However, when a time trend is also included
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the limit properties are characterised by a Brownian bridge-type process (and which is a

genuine Brownian bridge when c = 0).

4. Asymptotic properties of detrending with flow variables

When the variable of interest is a flow the observations are subject to a further integra-

tion over the sampling period as described in section 2. It is well known that this additional

integration induces a further moving average component into the observed series. The pro-

cess driving the results is now Uth, defined in Lemma 1, which in turn depends on Vth, whose

limit properties are described below.

Lemma 4. Under Assumption 3, as T →∞ the functional

XT (r) =
1

T 1/2

[Tr]∑
t=1

(
Vth
h1/2

)
⇒ ωW (r), r ∈ [0, 1],

where W (r) is a Wiener process and

ω2 =
1

h

(
EV 2

th + 2
∞∑
k=1

EVthVth−kh

)
=


2πhfη(0), α = 0,

2π
(
1− eαh

)2
fη(0)

hα2
, α < 0,

denotes the long run variance.

In contrast to the stock case the long run variance in Lemma 4 depends only on the

spectral density of η(t) at the origin when α < 0 and does not depend on the aliased

frequencies. The normalisation of Vth by h1/2 in the definition of the functional XT (r) is due

to the variance (and covariances) of Vth being O(h); recall that, although Vth is obtained by

an additional process of integration over the interval (th− h, th], it is also normalised by h.

The above invariance principle for Vth enables the properties of Uth to be determined.

The main result is as follows.

Theorem 5. Let u(t) satisfy (2) and let Uth be defined as in Lemma 1. Then, under

Assumptions 1–3, the results in Lemma 3 continue to hold with uth replaced by Uth and σ

replaced by ω.

Theorem 5 shows that sampling a flow variable rather than a stock affects neither the

form of the limits of the relevant functions of the variable nor the rates of convergence in

any of the sampling schemes. It is not immediately clear whether these features necessarily

translate across to the detrending regressions and detrended variable given that the form of

the regressors is different under a flow variable. An investigation of these regressions with a

flow variable yields the following result.

Theorem 6. Let yc(t) be generated according to (1) and (2), let Y d
th (t = 1, . . . , T ) denote

the detrended series and let Assumptions 1–3 hold. Then the conclusions of Theorems 2–4

remain valid with ydth replaced by Y d
th and σ replaced by ω except for Theorem 3(b) where the
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constant k4 in scheme 3 needs to be replaced by

k′4 =

c̄2

(
µc −

1

2

)
− (1− c̄)(1− ec)− 1

2

1− c̄+
c̄2

3

.

The same limit properties, including rates of convergence, therefore hold for flow data

as for stock data. One of the reasons for this is that the flows are normalised by h, and

without this normalisation different convergence rates would apply (at least in cases when

h→ 0).

5. An application

As an illustration of the application of the preceding theoretical results we consider the

task of testing for a zero root in continuous time with an observed stock variable. Perron

(1991) found that the span of the data, rather than the number of observations per se,

was the important determinant of the finite sample properties of tests for a random walk

in equispaced data, but didn’t consider the effects of detrending. We therefore consider a

similar set-up but also allow for the effects of GLS detrending. The model is given by

yc(t) = ψ0 + u(t), du(t) = αu(t)dt+ σudW (t), (16)

where α = c/N . The discrete time observations, yth = y(th), satisfy

yth = ψ0 + uth, uth = eαhuth−h + vth, (17)

where vth is Gaussian white noise with variance σ2
v = σ2

u(e2αh − 1)/2α. We consider the

regression of the GLS-detrended variable, ydth = yth − ψ̂0, on its lagged value, ydth−h, where

ψ0 is obtained in the manner outlined in Theorem 1 with ψ1 = 0 and ᾱ = −7/N . This

regression yields the OLS estimator of φh = eαh, given by

φ̂h =

T∑
t=1

ydth−hy
d
th

T∑
t=1

(
ydth−h

)2

from which an estimator of α can be obtained via α̂ = log(φ̂h)/h. It is convenient, for the

presentation of results, to define the functional

Z(X,Y ) =

∫ 1

0
X(r)dY (r)∫ 1

0
X(r)2dr

,

where X and Y are random processes on [0, 1], as well as the following two random func-
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tionals:

Z1(c,N, u(0)) = N1/2σu(0)

[
c

∫ 1

0
Jc(r)dr −

∫ 1

0
(1− ecr)dW (r)

]
− c(1− δc)u(0)2,

Z2(c,N, u(0)) = Nu(0)

[∫ 1

0
(1− ecr)2dru(0)− 2N1/2σ

∫ 1

0
(1− ecr)Jc(r)dr

]
.

The limit results for φ̂h and α̂ for the three sampling schemes are presented in Theorem 7.

Theorem 7. Let yc(t) be generated according to (16) and let ydth (t = 1, . . . , T ) denote the

GLS-detrended series. Then:

Scheme 1: As N →∞ with h fixed,

N(φ̂h − φh)⇒ hZ(Jc,W ), N(α̂− α)⇒ Z(Jc,W ).

Scheme 2. As N →∞ and h→ 0,

N

h
(φ̂h − φh)⇒ Z(Jc,W ), N(α̂− α)⇒ Z(Jc,W ).

Scheme 3. As h→ 0 with N fixed,

1

h
(φ̂h − φh)⇒

Nσ2

∫ 1

0
Jc(r)dW (r) + Z1(c,N, u(0))

N2σ2

∫ 1

0
Jc(r)

2dr + Z2(c,N, u(0))

,

(α̂− α)⇒
Nσ2

∫ 1

0
Jc(r)dW (r) + Z1(c,N, u(0))

N2σ2

∫ 1

0
Jc(r)

2dr + Z2(c,N, u(0))

,

where σ2 = σ2
v/h.

The results in Theorem 7 rest on the invariance principles for the GLS-detrended variable

yd[Tr]h given in Theorem 3. However, it is not simply a case of using these results in the

integral approximations of discrete sums as would usually be the case. This is principally

because it is not possible to replace uth with ydth in deriving the asymptotics due to the

inconsistency of ψ̂0 reported in Theorem 3. In fact, the proof of Theorem 7 shows that ydth
satisfies

ydth = φhy
d
th−h + vth − λth,

where λth = (ψ̂0−ψ0)(1−φh), and it is the presence of λth that needs additional attention in

deriving the results. Westerlund (2014), in particular, has recently highlighted this feature

that arises in testing for a unit root using GLS-detrended data.

The results for schemes 1 and 2 in Theorem 7 are, essentially the same, because nor-

malising by h in scheme 1 yields (N/h)(φ̂h − φh) ⇒ Z(Jc,W ), as in scheme 2. When

u(0) 6= 0 the limit distributions in scheme 3 depend in a complex way on the value of u(0).

However, when u(0) = 0 we find that (1/h)(φ̂h − φh) ⇒ (1/N)Z(Jc,W ) or, equivalently,

(N/h)(φ̂h − φh)⇒ Z(Jc,W ), as in schemes 1 and 2.
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The results in Theorem 7 highlight the importance of increasing span for the consistent

estimation of α. Although φh = eαh can be consistently estimated in all three sampling

schemes, in view of φ̂h − φh = op(1), the same is not true of α in view of the result that

α̂− α = Op(1) in scheme 3.

The results presented in Theorem 7 provide a basis for a simulation study to assess

the properties of a test for a zero root in continuous time i.e. a test of the null hypothesis

H0 : α = 0 against the (stationary) alternative H1 : α < 0. Under the null there exists a

unit root in discrete time as φh = 1 when α = 0 while 0 < φh < 1 when α < 0. The test

statistic under consideration is Nα̂ and we take u(0) = 0 so that, under the null hypothesis,

the limit distribution is

Nα̂⇒ Z(W,W ) =

∫ 1

0
W (r)dW (r)∫ 1

0
W (r)2dr

in all three sampling schemes, noting that J0(r) = W (r). The 5% critical value for this

distribution is −8.038 according to the numerical calculations of Perron (1989). Three

data spans and sampling frequencies are considered, these being N = {25, 50, 100} and

h = {1, 1/4, 1/52}, respectively, and 10,000 replications were used for each combination of

parameter values. If h = 1 is taken to correspond to a sampling interval of one year then

h = 1/4 and h = 1/52 correspond to quarterly and weekly intervals, respectively, while

the spans cover 25, 50 and 100 years. In order to assess the power properties of the test

statistic, the parameter α = c/N was considered for c = {0,−2.5,−5.0, . . . ,−17.5,−20.0}.
Table 2 contains the value of φh for each combination of N , h and c. For the smallest span

(N = 25) and lowest frequency (h = 1) the value of φh falls rapidly as c becomes more

negative, reaching 0.4493 for c = −20. As frequency increases φh remains much closer to

unity, falling only to 0.9847 for c = −20. For larger spans the deviation of φh from unity

lessens for a given value of h. This highlights an important trade-off – larger spans and/or

higher sampling frequencies result in more observations but the coefficient being estimated

becomes closer to unity so it is not entirely obvious which scenario is likely to yield highest

test power.

An issue of practical relevance concerns the calculation of α̂ from φ̂h, which involves

log φ̂h. This is only possible provided that φ̂h > 0,6 and so the final panel of Table 2 reports

the proportion of replications in which φ̂h < 0; this only occurred for the smallest sample size

when N = 25 and h = 1 (so that T = 25). As can be seen, this proportion was negligible

under the null (c = 0), being equal to just 0.01%, rising monotonically to 3.81% when

c = −20. This is due to the finite sample distribution of φ̂h shifting to the left as φh gets

smaller and, hence, the probability that φ̂h is negative increases. In any case, obtaining a

negative value of φ̂h in a reasonably-sized finite sample might suggest that the data were not

consistent with a continuous time AR(1) process as it is known that φh > 0 in this case for

any value of the continuous time autoregressive parameter. The simulations, however, show

that it is possible to obtain negative estimates in a small sample even with data generated

by a continuous time model, although the proportions reported in Table 2 are smaller than

many reported in Chambers (2005).

6Ignoring the possibility of complex values of the logarithm for negative arguments.
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The simulated size and power (both raw and size-adjusted) of Nα̂ are reported in Table

3. Under scheme 1, fixing h and allowing N to increase shows that the size of the test

falls towards the nominal 5% level, while the size-adjusted power increases with N . The

raw power is inflated at low frequency sampling owing to the over-sizing of the test in these

situations. For scheme 2 the sampling frequency increases with span, and this is reflected

in the sequence of (N,h) combinations (25, 1), (50, 1/4), (100, 1/52). Moving through this

sequence shows size falling towards the nominal 5% level and size-adjusted power increasing.

Finally, for scheme 3, we need to fix N and consider the sequence of falling h values. The

size of the test tends towards 5% while the size-adjusted power tends to increase in most

cases. That the test in scheme 3 performs so well is perhaps surprising in view of α̂ being

inconsistent for α. In effect, as h → 0 it follows that φh → 1 for any value of α (or,

equivalently, c), and the test is being asked to distinguish the effect of falling h from the

true value of α that is being estimated inconsistently. The simulations suggest it performs

remarkably well under such circumstances.

6. Concluding comments

This paper has analysed the effects of sampling frequency on detrending methods based

on an underlying continuous time representation of the process of interest. Such an approach

has the advantage of allowing for the explicit – and different – treatment of the ways in which

stock and flow variables are actually observed. Some general results were provided before

the focus turned to three particular detrending methods that have found widespread use

in the conduct of tests for a unit root, these being GLS detrending, OLS detrending, and

first differencing. In addition, three different scenarios concerning sampling frequency and

data span, in each of which the number of observations increases, were considered for each

detrending method. The limit properties of the detrending coefficient estimates, as well as an

invariance principle for the detrended variable, were derived. An example of the application

of the techniques to testing for a unit root, using GLS detrending on an intercept, was

provided and a simulation exercise carried out to analyse the size and power properties of

the test in the three different sampling scenarios.

The results presented here are likely to be of use in other situations where detrended data

are used and the effects of sampling frequency and data span are of interest. One particular

avenue currently being pursued is the analysis of testing for a unit root in continuous time

ARMA processes of the type considered by Chambers and Thornton (2012). The detrending

results obtained here feed in naturally to that investigation.

Appendix A. Proofs of theorems

Proof of Theorem 1. For a stock variable the equation for t = 0 is obtained by inserting

this value into (1), which gives y0 = ψ0 + w̃0 where w̃0 = u(0). For t = 1, . . . , T the discrete

time representation is obtained from the solution to (11), given by

yc(th) = eᾱthyc(0)− ψ0ᾱ

∫ th

0
eᾱ(th−r)dr + ψ1

∫ th

0
eᾱ(th−r)(1− ᾱr)dr +

∫ th

0
eᾱ(th−r)η̄(r)dr.

(18)
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This solution, which is unique in the mean square sense, can be used to derive the stochastic

difference equation

yc(th) = eᾱhyc(th− h)− ψ0ᾱ

∫ th

th−h
eᾱ(th−r)dr + ψ1

∫ th

th−h
eᾱ(th−r)(1− ᾱr)dr + w̃th, (19)

where w̃th =
∫ th
th−h e

ᾱ(th−r)η̄(r)dr. Evaluation of the deterministic integrals yields

yc(th) = eᾱhyc(th− h) + ψ0

(
1− eᾱh

)
+ ψ1

(
th− eᾱh(th− h)

)
+ w̃th, (20)

which yields the form for the regressors stated following (12).

For a flow variable the equation for t = 1 is obtained by integrating (1) over the interval

(0, h], with τ(t) = ψ0 + ψ1t, and noting that
∫ h

0 rdr = h2/2; the disturbance term is given

by W̃h = (1/h)
∫ h

0 u(r)dr. For t = 2, . . . , T the equation is obtained by integrating (20) over

(th− h, th] which yields

1

h

∫ th

th−h
yc(r)dr = eᾱh

1

h

∫ th−h

th−2h
yc(r)dr + ψ0

(
1− eᾱh

) 1

h

∫ th

th−h
dr

+ψ1
1

h

∫ th

th−h

(
r − eᾱh(r − h)

)
dr + W̃th, (21)

where W̃th = (1/h)
∫ th
th−h

∫ r
r−h e

ᾱ(r−s)η̄(s)dsdr. Evaluation of the integrals yields the form

for the regressors stated following (13). 2

Proof of Theorem 2. (a) Under OLS detrending on an intercept we find that

ψ̂0 =
1

T

T∑
t=1

yth = ψ0 +
h

N

T∑
t=1

uth.

The results for ψ̂0−ψ0 = (h/N)
∑T

t=1 uth then follow from Lemma 3, and the properties for

the detrended series are then obtained from yd[Tr]h = u[Tr]h − (ψ̂0 − ψ0).

(b) Under OLS detrending on an intercept and trend note that z̃th = zth = [1, th]′. It follows

that the elements of Q and p are given by

Q11 = T, Q12 =
T∑
t=1

th, Q22 =
T∑
t=1

(th)2, p1 =
T∑
t=1

uth, p2 =
T∑
t=1

thuth.

The limit properties of the elements of q are provided in Lemma C2 while those of the

elements of p appear in Lemma 3. Taking each sampling scheme in turn:

Scheme 1: As N →∞ with h fixed,

1

N4
|Q| = 1

N
Q11

1

N3
Q22 −

(
1

N2
Q12

)2

→ 1

12h2
,

1

N9/2
∆0 =

1

N3
Q22

1

N3/2
p1 −

1

N2
Q12

1

N5/2
p2 ⇒

σ

h2

(
1

3

∫ 1

0
Jc(r)dr −

1

2

∫ 1

0
rJc(r)dr

)
,
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1

N7/2
∆1 =

1

N
Q11

1

N5/2
p2 −

1

N2
Q12

1

N3/2
p1 ⇒

σ

h2

(∫ 1

0
rJc(r)dr −

1

2

∫ 1

0
Jc(r)dr

)
.

The results for the elements of ψ̂−ψ follow straightforwardly, while for the detrended series

we have

1

N1/2
yd[Tr]h =

1

N1/2
u[Tr]h −

1

N1/2
(ψ̂0 − ψ0)−N1/2(ψ̂1 − ψ1)

[
Nr

h

]
h

N

and the results follow noting that [Nr/h](h/N)→ r as N →∞.

Scheme 2: As N →∞ and h→ 0,

h2

N4
|Q| = h

N
Q11

h

N3
Q22 −

(
h

N2
Q12

)2

→ 1

12
,

h2

N9/2
∆0 =

h

N3
Q22

h

N3/2
p1 −

h

N2
Q12

h

N5/2
p2 ⇒ σ

(
1

3

∫ 1

0
Jc(r)dr −

1

2

∫ 1

0
rJc(r)dr

)
,

h2

N7/2
∆1 =

h

N
Q11

h

N5/2
p2 −

h

N2
Q12

h

N3/2
p1 ⇒ σ

(∫ 1

0
rJc(r)dr −

1

2

∫ 1

0
Jc(r)dr

)
.

These expressions yield the stated results for ψ̂−ψ, while the result for the detrended series

follows in the same way as in scheme 1 above.

Scheme 3: As h→ 0 with N fixed,

h2|Q| = hQ11hQ22 − (hQ12)2 → N4

12
,

h2∆0 = hQ22hp1 − hQ12hp2 ⇒ N4k1u(0) + σN9/2

(
1

3

∫ 1

0
Jc(r)dr −

1

2

∫ 1

0
rJc(r)dr

)
,

h2∆1 = hQ11hp2 − hQ12hp1 ⇒ N3k2u(0) + σN7/2

(∫ 1

0
rJc(r)dr −

1

2

∫ 1

0
Jc(r)dr

)
,

where k1 and k2 are defined in the theorem. As for the detrended series we may write

yd[Tr]h = u[Tr]h − (ψ̂0 − ψ0)−N(ψ̂1 − ψ1)

[
Nr

h

]
h

N
,

where pre-multiplication of ψ̂1 − ψ1 by N (which is fixed) ensures that the limit can be

expressed in a form that is easy to relate to those in schemes 1 and 2 while also ensuring

that [Nr/h](h/N) → r as h → 0. The result follows from Lemma 3 and the properties of

ψ̂ − ψ. 2

Proof of Theorem 3. (a) Under GLS detrending on an intercept we have

ψ̂0 =

T∑
t=1

z̃thỹth

T∑
t=1

z̃2
th

= ψ0 +

T∑
t=1

z̃thũth

T∑
t=1

z̃2
th

,

where z̃th and ỹth are given in Table 1 and where ũh = uh and ũth = uth − ec̄/Tuth−h
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(t = 2, . . . , T ). For the denominator,

T∑
t=1

z̃2
th = 1 +

T∑
t=2

(
1− ec̄/T

)2
= 1 + (T − 1)

(
1− ec̄/T

)2
→ 1

in all three sampling schemes (see the results for the quantity Q11 in Lemma C3). Hence

the limit properties of ψ̂0 − ψ0 are determined by

T∑
t=1

z̃thũth = ũh +
(

1− ec̄/T
) T∑
t=2

ũth = uh +
(

1− ec̄/T
) T∑
t=2

(
uth − ec̄/Tuth−h

)
,

which is equal to the quantity p1 in Lemma C3 and which immediately yields the results

for ψ̂0 − ψ0. The limits for yd[Tr]h = u[Tr]h − (ψ̂0 − ψ0) then follow from Lemma 3 and the

properties of ψ̂0 − ψ0.

(b) In the case of GLS detrending on an intercept and trend the elements of Q and p are

defined in Lemma C3 which also gives their limit properties. Taking each sampling scheme

in turn:

Scheme 1: As N →∞ with h fixed,

1

N
|Q| = Q11

1

N
Q22 −

1

N
Q2

12 → h

(
1− c̄+

c̄2

3

)
,

1

N
∆0 =

1

N
Q22p1 −

1

N1/2
Q12

1

N1/2
p2 ⇒ h

(
1− c̄+

c̄2

3

)
uh,

1

N1/2
∆1 = Q11

1

N1/2
p2 −

1

N1/2
Q12p1 ⇒ hσ

(
(1− c̄)Jc(1) + c̄2

∫ 1

0
rJc(r)dr

)
.

The results for the elements of ψ̂ − ψ follow straightforwardly, while for yd[Tr]h we obtain

1

N1/2
yd[Tr]h =

1

N1/2
u[Tr]h −N1/2(ψ̂1 − ψ1)

[
Nr

h

]
h

N
+ op(1),

from which the result follows.

Scheme 2: As N →∞ and h→ 0,

1

hN
|Q| = Q11

1

hN
Q22 −

h

N

(
1

h
Q12

)2

→
(

1− c̄+
c̄2

3

)
,

1

hN
∆0 =

1

hN
Q22p1 −

h

N1/2

1

h
Q12

1

hN1/2
p2 ⇒

(
1− c̄+

c̄2

3

)
u(0),

1

hN1/2
∆1 = Q11

1

hN1/2
p2 −

1

N1/2

1

h
Q12p1 ⇒ σ

(
(1− c̄)Jc(1) + c̄2

∫ 1

0
rJc(r)dr

)
.

These expressions yield the stated results for ψ̂ − ψ, while a similar decomposition applies

for yd[Tr]h as in scheme 1.

Scheme 3: As h→ 0 with N fixed,

1

h
|Q| = Q11

1

h
Q22 − h

(
1

h
Q12

)2

→ N

(
1− c̄+

c̄2

3

)
,
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1

h
∆0 =

1

h
Q22p1 − h

1

h
Q12

1

h
p2 ⇒ N

(
1− c̄+

c̄2

3

)
u(0),

1

h
∆1 = Q11

1

h
p2 −

1

h
Q12p1 ⇒

[
(1− c̄)ec + c̄2µc −

(
1− c̄+

c̄2

2

)]
u(0)

+σN1/2

(
(1− c̄)Jc(1) + c̄2

∫ 1

0
rJc(r)dr

)
.

The results for ψ̂ − ψ now follow, while that for the detrended series is obtained from

yd[Tr]h = u[Tr]h −
(
ψ̂0 − ψ0

)
−
(
ψ̂1 − ψ1

)[Nr
h

]
h,

noting that [Nr/h]h→ Nr as h→ 0. 2

Proof of Theorem 4. (a) Under detrending by differencing using an intercept, we have

ψ̂0 = ψ0 +

T∑
t=1

z̃2
th

T∑
t=1

z̃thw̃th

,

where z̃h = 1, z̃th = 0 (t = 2, . . . , T ), w̃h = uh and w̃th = uh − uth−h (t = 2, . . . , T ). It is

immediate that
T∑
t=1

z̃2
th = 1,

T∑
t=1

z̃thw̃th = uh,

and hence ψ̂0 − ψ0 = uh; this is the result for scheme 1. For schemes 2 and 3 recall that

uh = eαhu(0) + vh where vh =
∫ h

0 e
α(h−s)η(s)ds, so that uh → u(0) in probability as h→ 0.

For the detrended series we have, for schemes 1 and 2,

1

N1/2
yd[Tr]h =

1

N1/2
u[Tr]h + op(1)⇒ σJc(r),

while for scheme 3 no normalisation is required and the stated limit applies.

(b) Under detrending by differencing using an intercept and a trend the elements of Q and

p are

Q11 = 1, Q12 = h, Q22 = Th2 = hN, p1 = uh, p2 = huTh.

The appropriate normalisation for the elements of Q are immediate while those for p1 and

p2 follow straightforwardly from Lemma 3. Considering each sampling scheme in turn:

Scheme 1: As N →∞ with h fixed,

1

N
|Q| = Q11

1

N
Q22 −

1

N
Q2

12 → h,

1

N
∆0 =

1

N
Q22p1 −

1

N1/2
Q12

1

N1/2
p2 ⇒ huh,

1

N1/2
∆1 = Q11

1

N1/2
p2 −

1

N1/2
Q12p1 ⇒ hσJc(1).
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The results for the elements of ψ̂ − ψ follow straightforwardly, while for yd[Tr]h we obtain

1

N1/2
yd[Tr]h =

1

N1/2
u[Tr]h −N1/2(ψ̂1 − ψ1)

[
Nr

h

]
h

N
+ op(1),

from which the result follows.

Scheme 2: As N →∞ and h→ 0,

1

hN
|Q| = Q11

1

hN
Q22 −

h

N

(
1

h
Q12

)2

→ 1,

1

hN
∆0 =

1

hN
Q22p1 −

h

N1/2

1

h
Q12

1

hN1/2
p2 ⇒ u(0),

1

hN1/2
∆1 = Q11

1

hN1/2
p2 −

1

N1/2

1

h
Q12p1 ⇒ σJc(1).

These expressions yield the stated results for ψ̂ − ψ, while a similar decomposition applies

for yd[Tr]h as in scheme 1.

Scheme 3: As h→ 0 with N fixed,

1

h
|Q| = Q11

1

h
Q22 − h

(
1

h
Q12

)2

→ N,

1

h
∆0 =

1

h
Q22p1 − h

1

h
Q12

1

h
p2 ⇒ Nu(0),

1

h
∆1 = Q11

1

h
p2 −

1

h
Q12p1 ⇒ (ec − 1)u(0) + σN1/2Jc(1).

The results for ψ̂ − ψ now follow, while that for the detrended series is obtained from

yd[Tr]h = u[Tr]h −
(
ψ̂0 − ψ0

)
−
(
ψ̂1 − ψ1

)[Nr
h

]
h,

again noting that [Nr/h]h→ Nr as h→ 0. 2

Proof of Theorem 5. Using the expressions for Uh and Uth (t = 2, . . . , T ) in Lemma 1 we

find, by backward substitution, that

Uth = eαhUth−h + Vth

= eα(th−h)Uh +

t∑
j=2

eα(th−jh)Vjh

= eα(th−h)

(
eαh − 1

αh

)
u(0) + eα(th−h)Vh +

t∑
j=2

eα(th−jh)Vjh

= eαth
(

1− e−αh

αh

)
u(0) +

t∑
j=1

eα(th−jh)Vjh

= ect/T

(
1− e−c/T

c/T

)
u(0) +

t∑
j=1

ec(t−j)/TVjh,

noting that αh = c/T . This expression only differs from the corresponding expression for uth
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in the proof of Lemma 3 through the extra term in parentheses involving c/T that multiplies

u(0) and the obvious replacement of vth with Vth. It is then possible to write

U[Tr]h = ec[Tr]/T δ−c/Tu(0) +N1/2

∫ r

0
e(r−s)cdXT (s)

using the same arguments as in the proof of Lemma 3 and noting that(
1− e−c/T

c/T

)
=

(
e−c/T − 1

−c/T

)
= δ−c/T

based on the definition of the constant δc introduced prior to the statement of Lemma 3.

The results follow by noting that

δ−c/T =
1− e−c/T

c/T
= 1 +O

(
1

T

)
as T → ∞. Similarly, when considering sums of Uth, the differences compared to sums of

uth occur through the presence of δ−c/T and the replacement of vth with Vth (and xT (r) with

XT (r)). We therefore find that

T∑
t=1

uth =
N

h
δcδ−c/Tu(0) +

N3/2

h

∫ 1

0

∫ r

0
e(r−s)cdXT (s)dr,

T∑
t=1

thuth−h =
N2

h
µcδ−c/Tu(0) +

N5/2

h

∫ 1

0
r

∫ r−1/T

0
e(r−s)cdXT (s)dr,

from which the results follow. 2

Proof of Theorem 6. The cases with intercept only are straightforward to verify. In cases

with an intercept and trend it is possible to express the elements of Q in terms of the same

matrix used for stocks and to then analyse the properties of the difference in the different

sampling schemes. Let Qf be the matrix for the flows regression and Qs the matrix for

stocks. Then, for example, in the case of GLS detrending it can be shown that Qf = Qs + Γ

where

Γ =

T∑
t=1

(
γthγ

′
th − γthz̃′th − z̃thγ′th

)
,

γh = (0, h/2)′ and γth = (0, (1 − ec̄/T )h/2)′ (t = 2, . . . , T ). It can be shown that Γ11 = 0

while

Γ12 = −h
2

[
1 + (T − 1)

(
1− ec̄/T

)2
]
,

Γ22 =
h2

4

[
1 + (T − 1)

(
1− ec̄/T

)2
]
− h(1− ec̄/T )2

T∑
t=2

th− h2(T − 1)ec̄/T
(

1− ec̄/T
)
.
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The following limits then follow with the normalisations used for the elements of Qs:

Scheme 1: Γ12 = −h
2

+ o(1),
1

N
Γ22 = o(1),

Scheme 2:
1

h
Γ12 = −1

2
+ o(1),

1

hN
Γ22 = o(1),

Scheme 3:
1

h
Γ12 = −1

2
+ o(1),

1

h
Γ22 = o(1).

The non-zero limits of the normalised Γ12 elements, however, ultimately have no effect on

the properties of ψ̂− ψ because they are subject to additional normalisation through which

they are eliminated asymptotically. The one instance where such effects are not eliminated

concerns the element p2 under GLS detrending in scheme 3. Here it is possible to show that

p2 = p21 + p22 where

p21 =
(

1− ec̄/T
)2

T∑
t=1

thUth +
[
Nec̄/T

(
1− ec̄/T

)
+ hec̄/T

]
UTh,

p22 = −h
2

[
ec̄/TUh +

(
1− ec̄/T

)2
T∑
t=1

Uth + ec̄/T
(

1− ec̄/T
)
UTh

]
.

The first term is of the same form as p2 for stocks (see the proof of Theorem 3(b)) so the

limits are given in Lemma C3 (with σ replaced by ω). For the second term we have:

Scheme 1:
1

N1/2
p22 ⇒ 0,

Scheme 2:
1

hN1/2
p22 ⇒ 0,

Scheme 3:
1

h
p22 ⇒ −

1

2
u(0).

Hence the limits for p2 are of the same form as stocks in schemes 1 and 2 but it is the

non-zero limit of (1/h)p22 in scheme 3 that ultimately feeds through into the constant k′4
defined in the Theorem. 2

Proof of Theorem 7. We begin by noting that the detrended series is given by

ydth = yth − ψ̂0 = uth − (ψ̂0 − ψ0),

using the fact that yth = ψ0 +uth. In order to derive the law of motion for ydth we substitute

uth = ydth + (ψ̂0 − ψ0) into the equation for uth in (17), yielding

ydth = φhy
d
th−h + vth − λth,

where λth = (ψ̂0 − ψ0)(1− φh). It therefore follows that

φ̂h =

T∑
t=1

ydth−hy
d
th

T∑
t=1

(ydth−h)2

= φh +

T∑
t=1

ydth−h(vth − λth)

T∑
t=1

(ydth−h)2

.
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Given that
∑T

t=1 y
d
th−hλth = (1−φh)(ψ̂0−ψ0)

∑T
t=1 y

d
th−h it follows that we need to determine

the limit properties of the following three quantities: (i)
∑T

t=1 y
d
th−h; (ii)

∑T
t=1(ydth−h)2; and

(iii)
∑T

t=1 y
d
th−hvth. The aim is to express these quantities in terms of yd[Tr]h and then to use

the results in Theorem 3 in conjunction with the continuous mapping theorem. It follows

straightforwardly that

h

N

T∑
t=1

ydth−h =

∫ 1

0
yd[Tr]hdr,

h

N

T∑
t=1

(ydth−h)2 =

∫ 1

0
(yd[Tr]h)2dr,

noting that h/N = 1/T , while use of the expression vth = h1/2T 1/2
∫ t/T

(t−1)/T dxT (r) results in

(using h1/2T 1/2 = N1/2)

T∑
t=1

ydth−hvth = N1/2
T∑
t=1

∫ t/T

(t−1)/T
yd[Tr]hdxT (r) = N1/2

∫ 1

0
yd[Tr]hdxT (r),

where xT (r) is defined in Lemma 2. Taking each sampling scheme in turn:

Scheme 1: From Theorem 3 we know that N−1/2yd[Tr]h ⇒ σJc(r) and so

1

N3/2

T∑
t=1

ydth−h =
1

h

∫ 1

0

1

N1/2
yd[Tr]hdr ⇒

σ

h

∫ 1

0
Jc(r)dr,

1

N2

T∑
t=1

(ydth−h)2 =
1

h

∫ 1

0

(
1

N1/2
yd[Tr]h

)2

dr ⇒ σ2

h

∫ 1

0
Jc(r)

2dr,

1

N

T∑
t=1

ydth−hvth =

∫ 1

0

1

N1/2
yd[Tr]hdxT (r)⇒ σ2

∫ 1

0
Jc(r)dW (r),

the last result using the convergence of xT (r) in Lemma 2. Theorem 3 also shows that

ψ̂0 − ψ0 ⇒ uh and so

1

N1/2

T∑
t=1

ydth−hλth = N(1− eαh)(ψ̂0 − ψ0)
1

N3/2

T∑
t=1

ydth−h ⇒ −cσuh
∫ 1

0
Jc(r)dr,

which also uses Lemma C1 for 1− eαh = 1− ec/T . It follows that

N(φ̂h − φh) =

1

N

T∑
t=1

ydth−hvth

1

N2

T∑
t=1

(ydth−h)2

+ op(1)

which leads to the stated limit distribution.

Scheme 2: Proceeding in a similar fashion we find that

h

N3/2

T∑
t=1

ydth−h =

∫ 1

0

1

N1/2
yd[Tr]hdr ⇒ σ

∫ 1

0
Jc(r)dr,
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h

N2

T∑
t=1

(ydth−h)2 =

∫ 1

0

(
1

N1/2
yd[Tr]h

)2

dr ⇒ σ2

∫ 1

0
Jc(r)

2dr,

1

N

T∑
t=1

ydth−hvth =

∫ 1

0

1

N1/2
yd[Tr]hdxT (r)⇒ σ2

∫ 1

0
Jc(r)dW (r),

1

N1/2

T∑
t=1

ydth−hλth =
N

h
(1− eαh)(ψ̂0 − ψ0)

h

N3/2

T∑
t=1

ydth−h ⇒ −cσu(0)

∫ 1

0
Jc(r)dr,

resulting in

N

h
(φ̂h − φh) =

1

N

T∑
t=1

ydth−hvth

h

N2

T∑
t=1

(ydth−h)2

+ op(1)

and the limit distribution follows.

Scheme 3: In this case yd[Tr]h ⇒ σN1/2Jc(r)− (1− ecr)u(0) and so:

h

T∑
t=1

ydth−h = N

∫ 1

0
yd[Tr]hdr ⇒ N

∫ 1

0

(
σN1/2Jc(r)− (1− ecr)u(0)

)
dr,

h

T∑
t=1

(ydth−h)2 = N

∫ 1

0

(
yd[Tr]h

)2
dr ⇒ N

∫ 1

0

(
σN1/2Jc(r)− (1− ecr)u(0)

)2
dr,

T∑
t=1

ydth−hvth = N1/2

∫ 1

0
yd[Tr]hdxT (r)⇒ N1/2

∫ 1

0

(
σN1/2Jc(r)− (1− ecr)u(0)

)
σdW (r),

T∑
t=1

ydth−hλth =
1

h
(1− eαh)(ψ̂0 − ψ0)h

T∑
t=1

ydth−h

⇒ −cu(0)

∫ 1

0

(
σN1/2Jc(r)− (1− ecr)u(0)

)
dr.

Combining these results and rearranging yields the required limit distribution.

Finally, turning to α̂ = (1/h) log φ̂h, we begin with a mean value expansion of log φ̂h
around φh, yielding

log φ̂h = log φh +
1

φ∗h
(φ̂h − φh),

where |φ∗h − φh| ≤ |φ̂h − φh|. As in the proof of Theorem 3.3 of Wang and Yu (2014) it can

be shown that limT→∞ Pr(|φ∗h−1| > ε) = 0 for some ε > 0; this applies to all three sampling

schemes as T →∞ in each of them. Hence

N(α̂− α) =
N

h
(log φ̂h − log φh) =

N

h
(φ̂h − φh) + op(1).

The results follow immediately. 2
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Appendix B. Proofs of lemmas

Proof of Lemma 1. For a stock variable, yth = yc(th) and (4) is immediate. The dynamics

for uth are obtained from the unique mean square solution to (2), given by

u(th) = eαthu(0) +

∫ th

0
eα(th−r)η(r)dr. (22)

This can be used to relate uth = u(th) to uth−h:

u(th) = eαh
(
eα(th−h)u(0) +

∫ th−h

0
eα(th−h−r)η(r)dr

)
+

∫ th

th−h
eα(th−r)η(r)dr

= eαhu(th− h) +

∫ th

th−h
eα(th−r)η(r)dr, (23)

which yields (5). The results for a flow variable are obtained by integrating (1):

Yth =
1

h

∫ th

th−h
yc(r)dr =

1

h

∫ th

th−h
(ψ0 + ψ1r + u(r)) dr.

Noting that
∫ th
th−h rdr = th2−(h2/2) yields (6). The equation relating Uh to u(0) is obtained

by integrating (22) over the interval (0, h], yielding

Uh =
1

h

∫ h

0
eαsdsu(0) +

1

h

∫ h

0

∫ s

0
eα(s−r)η(r)drds.

The stated equation results from evaluating the integral multiplying u(0). Finally, the

equation for the law of motion of Uth = (1/h)
∫ th
th−h u(r)dr for t = 2, . . . , T is obtained via a

further integration of (23). 2

Proof of Lemma 2. We verify that the conditions of Corollary 2.2 of Phillips and Durlauf

(1986) are satisfied; these are essentially the same as those in Assumption 3 but applied to vth
instead of η(t). Assumption 3(a) implies immediately that Evth = 0 while from Assumption

3(b) we obtain

E|vth|β = E

∣∣∣∣∫ h

0
eαsη(th− s)ds

∣∣∣∣β ≤ E|η(th)|β
[∫ h

0
eαsds

]β
<∞,

the inequality arising from Lemma A3 of Chambers (2003). To verify the mixing condition

we note that vth is a measurable function of η(t) over a finite interval and so inherits the

same mixing properties; see, for example Theorem 14.1 of Davidson (1994). Thus if αvj
denotes the strong mixing coefficient for vth then

∑∞
j=1(αvj )

1−2/β < ∞ under Assumption

3(c). The validity of the invariance principle is thereby established.

To derive the long run variance σ2, we use the representation σ2 = 2πfdv (0), where

fdv (λ) (−π < λ ≤ π) denotes the spectral density function of the discrete time process vth.

In order to derive fdv (λ) we first derive the spectral density of vth as a continuous time
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process, denoted f cv(λ) (−∞ < λ <∞), and then apply the folding formula

fdv (λ) =
1

h

∞∑
j=−∞

f cv

(
λ+ 2πj

h

)
, −π < λ ≤ π;

see, for example, Grenander and Rosenblatt (1957, p.57). It is convenient to use filter

notation to link η(t) and vth:

vth =

∫ h

0
eαsη(th− s)ds =

∫ h

0
eαse−sDη(th)ds = gαh (D)η(th),

noting that η(th− s) = e−sDη(th) and where

gαh (z) =

∫ h

0
e(α−z)sds =

e(α−z)h − 1

α− z
.

As a continuous time process the spectral density of vth is

f cv(λ) = |gαh (−iλ)|2 fη(λ) =

(
1 + e2αh − 2eαh coshλ

α2 + λ2

)
fη(λ), −∞ < λ <∞.

Applying the folding formula yields

fdv (λ) = h
(

1 + e2αh − 2eαh cosλ
) ∞∑
j=−∞

fη(λ+ 2πj/h)

h2α2 + (λ+ 2πj)2
, −π < λ ≤ π.

When α < 0 setting λ = 0 yields the stated result straightforwardly. However, when α = 0,

note that

(1− eαh)2 = α2h2 +O(α3)

as α→ 0, thereby nullifying the contributions for j 6= 0, which leaves the term for j = 0 and

the result follows. 2

Proof of Lemma 3. First note that we can write, by backward substitution,

uth = eαhuth−h + vth = eαthu(0) +

t∑
j=1

eα(t−j)hvjh = ect/Tu(0) +

t∑
j=1

ec(t−j)/T vjh,

using the fact that αh = ch/N = c/T . Consider, first,

u[Tr]h = ec[Tr]/Tu(0) +

[Tr]∑
j=1

ec([Tr]−j)/T vjh

= ec[Tr]/Tu(0) +

[Tr]∑
j=1

ec([Tr]−j)/Th1/2T 1/2

∫ j/T

(j−1)/T
dxT (s)

= ec[Tr]/Tu(0) +N1/2

∫ r

0
e(r−s)cdxT (s).

The limits for u[Tr]h follow using the invariance principle for xT (r) in Lemma 2.
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Turning to sums of uth we obtain

T∑
t=1

uth =

T∑
t=1

ect/Tu(0) +

T∑
t=1

t∑
j=1

ec(t−j)/T vjh

= T
T∑
t=1

∫ t/T

(t−1)/T
ect/Tdru(0)

+h1/2T 3/2
T∑
t=1

∫ t/T

(t−1)/T
dr

t∑
j=1

ec(t−j)/T
∫ j/T

(j−1)/T
dxT (s)

=
N

h

∫ 1

0
ecrdru(0) +

N3/2

h

∫ 1

0

∫ r

0
e(r−s)cdxT (s)dr.

The results follow by noting that
∫ 1

0 e
crdr = (ec − 1)/c = δc.

Finally, sums of thuth are handled by noting that

T∑
t=1

thuth =
T∑
t=1

thect/Tu(0) +
T∑
t=1

th
t∑

j=1

ec(t−j)/T vjh = Ahu(0) + hB,

where

A =
T∑
t=1

tect/T = T 2
T∑
t=1

(
t

T

)∫ t/T

(t−1)/T
ect/Tdr = T 2

∫ 1

0
recrdr = T 2µc,

B =
T∑
t=1

t
t∑

j=1

ec(t−j)/T vjh

= h1/2T 5/2
T∑
t=1

(
t

T

)∫ t/T

(t−1)/T
dr

t∑
j=1

ec(t−j)/T
∫ j/T

(j−1)/T
dxT (s)

= h1/2T 5/2

∫ 1

0
r

∫ r−1/T

0
e(r−s)cdxT (s)dr,

and where µc =
∫ 1

0 re
crdr = [1− (1− c)ec]/c2. It follows that

T∑
t=1

thuth−h =
N2

h
µcu(0) +

N5/2

h

∫ 1

0
r

∫ r−1/T

0
e(r−s)cdxT (s)dr,

and the stated results are a consequence of this expression. 2

Proof of Lemma 4. It is convenient to define the random process

ξth =

∫ th

th−h
η(s)ds, t = 1, . . . , T,

which is simply vth when α = 0. This enables us to express Vth in terms of vth and ξth, using
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the expressions in Remark 3, in the form

Vh =
1

αh
vh −

1

αh
ξh,

Vth =
1

αh
vth −

1

αh
ξth +

eαh

αh
ξth−h −

1

αh
vth−h,

=
1

αh
(vth − vth−h)− 1

αh
(ξth − eαhξth−h), t = 2, . . . , T.

Now consider

T∑
t=1

Vth =
1

αh
vh −

1

αh
ξh +

1

αh

T∑
t=2

(vth − vth−h)− 1

αh

T∑
t=2

(ξth − eαhξth−h)

=
1

αh
vTh −

1

αh

(
ξTh +

T−1∑
t=2

(1− eαh)ξth − eαhξh + ξh

)

=
1

αh
vTh −

1

αh

(
(1− eαh)

T∑
t=1

ξth + eαhξTh

)
.

We know, from Lemma 2, that (setting α = 0),

1

T 1/2

[Tr]∑
t=1

(
ξth
h1/2

)
⇒ σW (r)

as T →∞, where σ2 = 2πhfη(0). It follows that

1

T 1/2

[Tr]∑
t=1

(
Vth
h1/2

)
= −(1− eαh)

αh

1

T 1/2

[Tr]∑
t=1

(
ξth
h1/2

)
+ op(1)⇒ ωW (r),

as T →∞, where the long run variance is given by

ω2 = σ2

(
(1− eαh)

αh

)2

=
2π(1− eαh)2fη(0)

hα2

when α 6= 0. The result for the case when α = 0 is obtained from above by noting that

(1− eαh)

αh
= 1 +O(α)

as α→ 0, yielding the stated expression for ω2.7 2

Appendix C. Supplementary lemmas

Lemma C1. Let c̄ be a fixed constant and let T = N/h. Then:

Scheme 1: As N →∞ with h fixed,

N
(

1− ec̄/T
)
→ −c̄h, N2

(
1− ec̄/T

)2
→ c̄2h2, Nec̄/T

(
1− ec̄/T

)
→ −c̄h.

7The same result can also be obtained using filters in the same spirit as the proof of Lemma 2.
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Scheme 2. As N →∞ and h→ 0,

N

h

(
1− ec̄/T

)
→ −c̄, N2

h2

(
1− ec̄/T

)2
→ c̄2,

N

h
ec̄/T

(
1− ec̄/T

)
→ −c̄.

Scheme 3. As h→ 0 with N fixed,

1

h

(
1− ec̄/T

)
→ − c̄

N
,

1

h2

(
1− ec̄/T

)2
→ c̄2

N2
,

1

h
ec̄/T

(
1− ec̄/T

)
→ − c̄

N
.

Proof of Lemma C1. All proofs follow from the expansion

ec̄/T = 1 +
c̄

T
+O

(
1

T 2

)
= 1 +

c̄h

N
+O

(
h2

N2

)
which can be used to establish the limits of the stated quantities under the different sampling

schemes. 2

Lemma C2. Let

Q11 = T, Q12 =
T∑
t=1

th, Q22 =

T∑
t=1

(th)2.

Then:

Scheme 1: As N →∞ with h fixed,

1

N
Q11 =

1

h
,

1

N2
Q12 →

1

2h
,

1

N3
Q22 →

1

3h
.

Scheme 2. As N →∞ and h→ 0,

h

N
Q11 = 1,

h

N2
Q12 →

1

2
,

h

N3
Q22 →

1

3
.

Scheme 3. As h→ 0 with N fixed,

hQ11 = N, hQ12 →
N2

2
, hQ22 →

N3

3
.

Proof of Lemma C2. The results for Q11 = T = N/h are immediate. For Q12 we have

Q12 = h
T∑
t=1

t =
h

2
T (T + 1) =

1

2

(
N2

h
+N

)
,

while for Q22 a similar procedure establishes that

Q22 = h2
T∑
t=1

t2 =
h2

6
T (T + 1)(2T + 1) =

1

6

(
2N3

h
+ 3N2 + hN

)
.

The results follow straightforwardly. 2
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Lemma C3. Let

Q11 = 1 + (T − 1)
(

1− ec̄/T
)2
,

Q12 = h+
(

1− ec̄/T
) T∑
t=2

(
th− ec̄/T (th− h)

)
,

Q22 = h2 +

T∑
t=2

(
th− ec̄/T (th− h)

)2
,

p1 = uh +
(

1− ec̄/T
) T∑
t=2

(
uth − ec̄/Tuth−h

)
,

p2 = huh +
T∑
t=2

(
th− ec̄/T (th− h)

)(
uth − ec̄/Tuth−h

)
.

Then:

Scheme 1: As N →∞ with h fixed,

Q11 → 1, Q12 → h

(
1− c̄+

c̄2

2

)
,

1

N
Q22 → h

(
1− c̄+

c̄2

3

)
,

p1 ⇒ uh,
1

N1/2
p2 ⇒ σh

[
(1− c̄)Jc(1) + c̄2

∫ 1

0
rJc(r)dr

]
.

Scheme 2. As N →∞ and h→ 0,

Q11 → 1,
1

h
Q12 →

(
1− c̄+

c̄2

2

)
,

1

hN
Q22 →

(
1− c̄+

c̄2

3

)
,

p1 ⇒ u(0),
1

hN1/2
p2 ⇒ σ

[
(1− c̄)Jc(1) + c̄2

∫ 1

0
rJc(r)dr

]
.

Scheme 3. As h→ 0 with N fixed,

Q11 → 1,
1

h
Q12 →

(
1− c̄+

c̄2

2

)
,

1

h
Q22 → N

(
1− c̄+

c̄2

2

)
.

p1 ⇒ u(0),
1

h
p2 ⇒

[
(1− c̄)ec + c̄2µc

]
u(0) + σN1/2

[
(1− c̄)Jc(1) + c̄2

∫ 1

0
rJc(r)dr

]
.

Proof of Lemma C3. From the series expansion of ec̄/T it can be shown that(
1− ec̄/T

)2
=

c̄2

T 2
+O

(
1

T 3

)
=
c̄2h2

N2
+O

(
h3

N3

)
and hence

Q11 = 1 +

(
N

h
− 1

)[
c̄2h2

N2
+O

(
h3

N3

)]
= 1 +

c̄2h

N
+O

(
h2

N2

)
→ 1
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in all three sampling schemes. For Q12 we can write

Q12 = h+
(

1− ec̄/T
)2

T∑
t=2

th+ (T − 1)hec̄/T
(

1− ec̄/T
)
.

Now (T − 1)h = N − h and
∑T

t=2 th =
∑T

t=1 th− h which gives

Q12 = h+
(

1− ec̄/T
)2
(

T∑
t=1

th− h

)
+ (N − h)ec̄/T

(
1− ec̄/T

)
= h

[
1−

(
1− ec̄/T

)2
− ec̄/T

(
1− ec̄/T

)]
+
(

1− ec̄/T
)2

T∑
t=1

th+Nec̄/T
(

1− ec̄/T
)
.

But the coefficient multiplying h is simply ec̄/T while
∑T

t=1 th can be simplified (see the

entry for Q12 in Lemma C2), resulting in

Q12 = hec̄/T +Nec̄/T
(

1− ec̄/T
)

+
1

2

(
N2

h
+N

)(
1− ec̄/T

)2
.

Turning to Q22 note that(
th− ec̄/T (th− h)

)2
=

[(
1− ec̄/T

)
th+ hec̄/T

]2

=
(

1− ec̄/T
)2

(th)2 + 2hec̄/T
(

1− ec̄/T
)
th+ h2e2c̄/T .

It follows that

Q22 = h2 +
(

1− ec̄/T
)2

T∑
t=2

(th)2 + 2hec̄/T
(

1− ec̄/T
) T∑
t=2

th+ h2(T − 1)e2c̄/T

= h2 +
(

1− ec̄/T
)2
(

T∑
t=1

(th)2 − h2

)
+ 2hec̄/T

(
1− ec̄/T

)( T∑
t=1

th− h

)
+h2(T − 1)e2c̄/T

= h2

[
1−

(
1− ec̄/T

)2
− 2ec̄/T

(
1− ec̄/T

)
− e2c̄/T

]
+
(

1− ec̄/T
)2

T∑
t=1

(th)2

+2hec̄/T
(

1− ec̄/T
) T∑
t=1

th+ h2Te2c̄/T

But the coefficient on h2 is zero while h2T = hN and Lemma C2 provides expressions for

the sums involving th and (th)2. Utilising these simplifications results in

Q22 =
1

6

(
2N3

h
+ 2N2 + hN

)(
1− ec̄/T

)2
+ (N2 + hN)ec̄/T

(
1− ec̄/T

)
+ hNe2c̄/T .

The limits for these quantities under each sampling scheme now follow.
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Turning to p1 we have

p1 = uh +
(

1− ec̄/T
) T∑
t=2

(
uth − ec̄/Tuth−h

)
= uh +

(
1− ec̄/T

) T∑
t=2

uth − ec̄/T
(

1− ec̄/T
) T∑
t=2

uth−h

= uh +
(

1− ec̄/T
)( T∑

t=1

uth − uh

)
− ec̄/T

(
1− ec̄/T

)( T∑
t=1

uth − uTh

)

= ec̄/Tuh +
(

1− ec̄/T
)2

T∑
t=1

uth + ec̄/T
(

1− ec̄/T
)
uTh.

The limit results for uth in Lemma 3 allied with the limits in Lemma C1 for expressions

involving ec̄/T can be used to establish that

p1 ⇒

{
uh, scheme 1,

u(0), schemes 2 and 3.

Finally, turning to p2 we find that

p2 = huh +

T∑
t=2

(
th− ec̄/T (th− h)

)(
uth − ec̄/Tuth−h

)
= huh +

(
1− ec̄/T

) T∑
t=2

th
(
uth − ec̄/Tuth−h

)
+ hec̄/T

T∑
t=2

(
uth − ec̄/Tuth−h

)
= huh +

(
1− ec̄/T

) T∑
t=2

thuth − ec̄/T
(

1− ec̄/T
) T∑
t=2

thuth−h

+hec̄/T
T∑
t=2

uth − he2c̄/T
T∑
t=2

uth−h.

We can use the substitutions

T∑
t=2

thuth =
T∑
t=1

thuth − huh,

T∑
t=2

thuth−h =

T−1∑
t=1

(th+ h)uth =

T∑
t=1

(th+ h)uth − (Th+ h)uTh

=
T∑
t=1

thuth + h

T∑
t=1

uth − (Th+ h)uTh,

T∑
t=2

uth =
T∑
t=1

uth − uh,
T∑
t=2

uth−h =
T−1∑
t=1

uth =
T∑
t=1

uth − uTh,

which enable the results in Lemma 3 to be applied directly. Making these substitutions and
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rearranging it can be shown that

p2 =
(

1− ec̄/T
)2

T∑
t=1

thuth +
[
Nec̄/T

(
1− ec̄/T

)
+ hec̄/T

]
uTh.

Lemmas 3 and C1 then yield the limit properties of p2 under the three sampling schemes. 2
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Table 1

Transformed variables for detrending regressions

Stock variable

ᾱ eᾱh ỹh z̃1,h z̃2,h ỹth z̃1,th z̃2,th

GLS detrending

c̄

N
ec̄/T yh 1 h yth − ec̄/T yth−h 1− ec̄/T th− ec̄/T (th− h)

Differencing

0 1 yh 1 h yth − yth−h 0 h

OLS detrending

−∞ 0 yh 1 h yth 1 th

Flow variable

ᾱ eᾱh Ỹh Z̃1,h Z̃2,h Ỹth Z̃1,th Z̃2,th

GLS detrending

c̄

N
ec̄/T Yh 1

h

2
Yth − ec̄/TYth−h 1− ec̄/T th− h

2
− ec̄/T

(
th− 3h

2

)
Differencing

0 1 Yh 1
h

2
Yth − Yth−h 0 h

OLS detrending

−∞ 0 Yh 1
h

2
Yth 1 th− h

2
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Table 2

Discrete time autoregressive parameter (φh = eαh = ec/T )

c

h 0.0 −2.5 −5.0 −7.5 −10.0 −12.5 −15.0 −17.5 −20.0

N = 25

1 1.0000 0.9048 0.8187 0.7408 0.6703 0.6065 0.5488 0.4966 0.4493

1/4 1.0000 0.9753 0.9512 0.9277 0.9048 0.8825 0.8607 0.8395 0.8187

1/52 1.0000 0.9981 0.9962 0.9942 0.9923 0.9904 0.9885 0.9866 0.9847

N = 50

1 1.0000 0.9512 0.9048 0.8607 0.8187 0.7788 0.7408 0.7047 0.6703

1/4 1.0000 0.9876 0.9753 0.9632 0.9512 0.9394 0.9277 0.9162 0.9048

1/52 1.0000 0.9990 0.9981 0.9971 0.9962 0.9952 0.9942 0.9933 0.9923

N = 100

1 1.0000 0.9753 0.9512 0.9277 0.9048 0.8825 0.8607 0.8395 0.8187

1/4 1.0000 0.9938 0.9876 0.9814 0.9753 0.9692 0.9632 0.9572 0.9512

1/52 1.0000 0.9995 0.9990 0.9986 0.9981 0.9976 0.9971 0.9966 0.9962

Proportion of negative estimates of φh when N = 25 and h = 1

0.0001 0.0005 0.0011 0.0022 0.0045 0.0085 0.0169 0.0252 0.0381
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Table 3

Simulated size and power of unit root test statistic Nα̂

c

N h 0.0 −2.5 −5.0 −7.5 −10.0 −12.5 −15.0 −17.5 −20.0

Size (c = 0) and raw power

25 1 14.67 34.39 54.85 72.54 84.75 92.16 95.83 97.83 98.90

1/4 7.32 20.71 42.50 65.36 83.39 93.01 97.65 99.38 99.88

1/52 5.08 14.43 32.35 55.53 76.58 90.59 97.12 99.31 99.90

50 1 10.56 26.57 47.83 68.71 84.17 92.92 97.10 98.91 99.66

1/4 6.53 18.53 37.58 61.07 80.64 92.14 97.51 99.49 99.87

1/52 5.13 14.98 32.18 55.11 76.36 90.40 96.97 99.35 99.90

100 1 7.60 21.05 41.28 64.62 82.36 92.89 97.86 99.51 99.90

1/4 5.47 15.89 34.18 57.21 78.34 91.20 97.43 99.42 99.91

1/52 4.94 14.32 31.43 54.45 75.16 89.90 96.91 99.35 99.92

Size (c = 0) and size-adjusted power

25 1 14.67 13.46 25.70 40.62 55.17 68.64 79.06 85.92 90.49

1/4 7.32 14.71 31.65 53.31 72.97 86.90 94.28 97.95 99.41

1/52 5.08 14.20 32.04 54.95 76.08 90.37 96.97 99.28 99.89

50 1 10.56 13.26 26.65 44.03 61.41 76.92 87.20 93.50 96.87

1/4 6.53 14.29 30.67 52.15 72.95 87.37 95.04 98.60 99.73

1/52 5.13 14.66 31.70 54.46 75.96 90.17 96.86 99.31 99.88

100 1 7.60 14.75 31.42 52.31 71.86 86.52 94.27 98.15 99.50

1/4 5.47 15.07 32.34 55.35 76.21 90.06 96.94 99.24 99.88

1/52 4.94 14.41 31.63 54.73 75.40 90.04 96.95 99.36 99.92

40


