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Abstract

We develop methods for Bayesian model averaging (BMA) or selection
(BMS) in Panel Vector Autoregressions (PVARs). Our approach allows us to
select between or average over all possible combinations of restricted PVARs
where the restrictions involve interdependencies between and heterogeneities
across cross-sectional units. The resulting BMA framework can find a parsi-
monious PVAR specification, thus dealing with overparameterization concerns.
We use these methods in an application involving the euro area sovereign debt
crisis and show that our methods perform better than alternatives. Our findings
contradict a simple view of the sovereign debt crisis which divides the euro
zone into groups of core and peripheral countries and worries about financial
contagion within the latter group.
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1 Introduction

This paper develops Bayesian methods for estimation and model selection with
large PVARs. PVARs are used in several research fields, but are most commonly used
by macroeconomists or financial economists working with data for many countries.
In such a case, the researcher may want to jointly model several variables for each
country using a VAR, but also allow for linkages between countries. Papers such
as Dees, Di Mauro, Pesaran and Smith (2007) and Canova and Ciccarelli (2009)
emphasize that PVARs are an excellent way to model the manner in which shocks
are transmitted across countries and to address issues such as financial contagion
that have played an important role in recent years.1 As the global economy becomes
more integrated, examining such issues is increasingly important for the modern
applied economist.

We consider the case where we have N countries, each with G macroeconomic
variables observed for T periods. In such a setup, the PVAR is the ideal tool for
examining the international transmission of macroeconomic or financial shocks. A
major difference between a PVAR and a univariate dynamic panel regression is that
the VAR specification can explicitly allow an endogenous variable of interest (e.g.
the i-th macroeconomic variable for the j-th country) to depend on several lags
of: i) the endogenous variable itself; ii) other macroeconomic variables of that
country; and iii) macroeconomic variables of all other N � 1 countries. Thus, the
PVAR can uncover all sorts of dynamic or static dependencies between countries
or the existence of heterogeneity in coefficients on the macroeconomic variables
of different countries. Additionally, given the autoregressive structure of a PVAR,
concerns about endogeneity are eliminated and the usual macroeconomic exercises
involving multiple-period projections in the future (e.g. forecast error variance
decompositions, or impulse responses) can be implemented.

However, this flexibility of the PVAR comes at a cost. The researcher working
with an unrestricted PVAR with P lags must estimate K = (NG)2 P autoregres-
sive coefficients, coefficients on any deterministic terms, and the NG(NG+1)

2
free

parameters in the error covariance matrix. In most cases, when the number of
countries N is moderate or large, the number of parameters might exceed the
number of observations available for estimation. Accordingly, interest centers
on various restricted PVAR models. Many such restrictions are possible and the
methods developed in this paper can easily be generalized to deal with any of them.
Nevertheless, we focus on panel restrictions as defined in e.g. Canova and Ciccarelli
(2013). These restrictions pertain to the absence of dynamic interdependencies
(DI), static interdependencies (SI) and cross-section heterogeneities (CSH). DIs
occur when one country’s lagged variables affect another country’s variables. SIs
occur when the correlations between the errors in two countries’ VARs are non-

1Canova and Ciccarelli (2013) offers an excellent survey of the PVAR literature. The reader is
referred to this paper for an extensive list of papers using PVAR methods.
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zero. CSHs occur when two countries have VARs with different coefficients - in
other words, homogeneity (absense of heterogeneity) arises when the coefficients
on the own lagged variables for the two countries are exactly the same.

The total number restrictions on DIs, SIs and CSHs we may wish to impose
is potentially huge. For instance, in our empirical work we have 10 countries
in the PVAR which leads to 90 DI restrictions to examine, 45 SI restrictions,
and 45 CSH restrictions which can be imposed in any combination meaning that
the total number of restriction to examine is 290+45+45. Thus, the researcher
is faced with an over-parameterized unrestricted model and a large number of
potentially interesting restricted models. This situation is familiar in the BMA
literature. Following this literature we rely on hierarchical priors and Markov Chain
Monte Carlo (MCMC) methods so as to avoid the huge computational burden of
exhaustively estimating every restricted model. These allow for the joint estimation
of the PVAR parameters in each model along with the probabilities attached to
each model. Such algorithms are far from new in the literature. There are
several similar approaches used in traditional regression models, with notable early
contributions by George and McCulloch (1993, 1997) and Raftery, Madigan and
Hoeting (1997). In economics, BMA algorithms using MCMC methods have been
influential, particularly in the problem of finding relevant predictors for economic
growth; see, among many others, Fernández, Ley and Steel (2001a,b), Eicher,
Papageorgiou and Raftery (2010), and Ley and Steel (2012).

With univariate linear regression models, there is a single dependent variable
and the restrictions considered are typically simple ones (e.g. a coefficient is set
to zero). With VARs, one has a vector of dependent variables, but the existing
literature has still worked with simple restrictions. In the VAR literature, stochastic
search variable selection (SSVS)2 methods have proved popular. Early papers
include Cripps, Carter and Kohn (2005) and George, Sun and Ni (2008) and
recent VAR extensions and applications include Koop (2013) and Korobilis (2013).
With PVARs, we have many dependent variables and the restrictions can be more
complicated. From an econometric perspective, the contribution of this paper lies in
extending previous VAR methods to deal with the PVAR and the more complicated
DI, SI and CSH restrictions. Since we are not selecting a single variable, as the V
in SSVS implies, but rather a particular specification of a restricted PVAR, we name
our algorithm Stochastic Search Specification Selection (S4) for PVARs.

The other contribution of the paper is to use these methods in an empirical
study of financial contagion during the recent euro area sovereign debt crisis. Using
data on sovereign bond spreads, bid ask spreads and industrial production for euro
area countries, we use our PVAR methods to investigate the nature and extent

2We use this as a general term for methods which use a hierarchical prior which allows a variable
to be selected (i.e. its coefficient estimated in an unconstrained manner) or not selected (i.e. its
coefficient set to zero or shrunk to being nearly zero). Other terminologies such as “spike and slab”
priors are sometimes used.
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of spillovers within the euro area. We do find there are extensive links between
countries. However, these links do not correspond to a conventional division of
euro area countries into core and periphery countries and an accompanying fear of
financial contagion within the periphery countries. We do find a group of countries
which are, in a sense we describe below, homogeneous. But the grouping does not
correspond closely with the conventional core/periphery grouping. Furthermore,
we find spillovers from one country to another, but these spillovers are largely
within the core countries or reflect core countries shocks propagated to periphery
countries, rather than the reverse.

The paper is organized as follows. In the following section we define the PVAR
and the restrictions of interest. The third section describes our S4 methods for
doing BMA and BMS with PVARs (with additional details provided in the Technical
Appendix). The fourth section contains a brief Monte Carlo study showing that
our methods are effective at choosing PVAR restrictions. Section 5 contains our
empirical application and the sixth section concludes.

2 Panel VARs

Let yit denote a vector of G dependent variables for country i (i = 1; ::; N) at time t
(t = 1; ::; T ) and Yt = (y01t; ::; y

0
Nt)

0. A VAR3 for country i can be written as:

yit = A1;iYt�1 + :::+ AP;iYt�P + "it (1)

where Ap;i are G � NG matrices for each lag p = 1; :::; P , and "it are uncorrelated
over time and are distributed asN (0;�ii)with �ii covariance matrices of dimension
G � G. Additionally, we define cov ("it; "jt) = E ("it; "jt) = �ij to be the covariance
matrix between the errors in the VARs of country i and country j. We refer to this
specification as the unrestricted PVAR.

Note that the unrestricted PVAR is very general and that lagged variables from
any country can influence any other country (e.g. lagged values of country 1
variables can impact on current country 2 variables) and the magnitude of such
influences are completely unrestricted (e.g. events in country 1 can have different
impacts on country 2 than on country 3). Similarly, contemporaneous relationships,
modelled through the error covariance matrices, are unrestricted so that, e.g.,
shocks in country 1 can be strongly correlated with shocks in country 2, but weakly
correlated with shocks in country 3.

Unrestricted PVARs such as (1) can suffer from concerns about over-parameterization
due to the high dimensionality of the parameter space. For instance, Canova and
Ciccarelli (2009) use data on four dependent variables (G = 4) for the G-7 countries

3For ease of exposition, the formulae in this section for our VARs do not include deterministic
terms or exogenous variables. These can be added with straightforward extensions of the formulae.
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(N = 7) and one lag (P = 1). An unrestricted PVAR with such choices would have
784 VAR coefficients and 406 error variances and covariances to estimate.

One strand of the macro VAR literature relies on shrinkage and model selection
methods to deal with such high dimensional parameter spaces. For example,
Banbura et al. (2010) uses the Minnesota prior (Littermann, 1986) to estimate
VARs of large dimension and shrinks towards zero irrelevant coefficients. Papers
such as Carriero, Clark and Marcellino (2015), Carriero, Kapetanios and Marcellino
(2009), Giannone, Lenza, Momferatou and Onorante (2010), Gefang (2013), Koop
(2013) and Korobilis (2013) use similar shrinkage and model selection methods
to estimate VARs with hundreds or even thousands of coefficients. BMS and BMA
applications in this strand of the literature simply restrict each individual coefficient
to be zero (or not). However, in a PVAR there are a variety of restrictions of interest
which reflect the panel nature of the data. These are ignored in conventional large
VAR approaches. Therefore, there can be gains in not treating a PVAR in the same
manner as a standard large VAR. Canova and Ciccarelli (2013) provide an excellent
survey of the various restrictions used and what their implications are. In the
introduction, we explained briefly the DI, SI and CSH restrictions considered in
this paper. Here we provide precise definitions.

DIs refer to links across countries through PVAR coefficients. In (1), the
endogenous variables for each country depend on the lags of the endogenous
variables of every country. It is often of interest to investigate if DIs exist and, if
not, to estimate restricted PVARs which lack such interdependencies. To formally
define DIs between countries j and k, we partition the PVAR coefficient matrices
(for p = 1; ::; P ) into G� G matrices Ap;jk which control whether lags of country k
dependent variables enter the VAR for country j. That is, define

Ap =

26664
Ap;1
Ap;2

...
Ap;N

37775 =
26664
Ap;11 Ap;12 ::: Ap;1N

Ap;21 Ap;22
. . . ...

... . . . . . . Ap;(N�1)N
Ap;N1 ::: Ap;N(N�1) Ap;NN

37775 : (2)

Within the unrestricted VAR, we can define N (N � 1) restrictions which imply
there are no DIs from country k to j by imposing the restriction that A1;jk = :: =
AP;jk = 0 for j; k = 1; ::; N and j 6= k. Note that the algorithm developed in this
paper will allow for selection between a large number of restricted models since we
are allowing for every possible configuration of DIs between countries. Using the
G-7 countries as an example, our algorithm could select a restricted PVAR that has
France exhibiting DIs with Germany, USA and Italy but not Canada, Japan and the
UK. Another restricted PVAR would have France exhibiting DIs with Germany, USA,
Italy and Canada but not Japan and the UK, etc.. Allowing for every country to have
DIs with any or all of the N � 1 remaining countries leads to N (N � 1) restricted
PVARs that our algorithm can choose between when investigating DIs. Note that
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it is possible for such linkages between two countries to flow in one direction only.
For instance, it is possible that lagged German variables influence French variables
(and, thus, there are DIs from Germany to France), but that lagged French variables
do not influence German variables (and, thus, there are no DIs from France to
Germany).

SIs are modelled through the error covariance matrix. If �jk = 0, then there
are no SIs between countries j and k. We can define N(N�1)

2
restricted PVARs which

impose �jk = 0 for j; k = 1; ::; N and j 6= k. In contrast to the DI restrictions, these
are always symmetric. For instance, if there are SI’s from Germany to France, they
will also exist from France to Germany.

CSHs occur if the VAR coefficients differ across countries.4 Such homogeneity
occurs between two countries if Ap;jj = Ap;kk for j 6= k and p = 1; ::; P . Thus,
we can construct N(N�1)

2
restricted PVARs which impose homogeneity between two

different countries. We could also consider restrictions which impose homogeneity
of error covariances, but we do not do so in practice since such restrictions are
less likely to be reasonable in macroeconomic and financial applications than
homogeneity restrictions involving VAR coefficients.

Table 1 contains a list of the restrictions considered in this paper.

Table 1: Possible Specification Restrictions in PVARs
Name Restriction Number
No DIs from
country k to j A1;jk = ::: = AP;jk = 0 N (N � 1)

No SIs between
countries k and j �jk = 0

N(N�1)
2

No CSHs between
countries k and j

Ap;jj = Ap;kk
8 p = 1; ::; P

N(N�1)
2

Note that the number of restrictions we have described is potentially huge.
And there are many other restrictions which might be interesting in the context
of a particular empirical application. For instance, global VARs (see, e.g., Dees, Di
Mauro, Pesaran and Smith, 2007) can be obtained by imposing restrictions on Ap
such that only cross-country averages enter the PVAR. In the empirical work of this
paper, we will not consider global VAR restrictions, but note that they can easily be
accommodated in our approach.

4Note that our definition of cross-country homogeneity involves only the VAR part of the model
for each country. For instance, it says country 1’s lagged dependent variables influence country
1’s variables in the same manner as country 2’s lagged dependent variables influence country 2’s
variables. It does not involve restricting, say, country 3’s lagged dependent variables to have the
same impact on country 1 as on country 2. Such an alternative could be handled by simply re-
defining the restrictions.
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3 Stochastic Search Specification Selection (S4)

To define our S4 algorithm, we begin by writing the PVAR more compactly as:

Yt = Zt�+ "t; (3)

where "t � N (0;�) for t = 1; ::; T (uncorrelated over time), � is a vector containing
the K = P (NG)2 VAR coefficients and Zt is an appropriate NG � K matrix such
that the VAR for each country contains P lags of the variables for all countries. That
is,

Zt =

0BBB@
zt 0 � � � 0

0 zt
. . . ...

... . . . . . . 0
0 � � � 0 zt

1CCCA ;

where zt =
�
Y 0
t�1; Y

0
t�2; :::; Y

0
t�P
�
. This is the unrestricted PVAR.

The basic idea underlying SSVS as done, e.g., in George, Sun and Ni (2008),
can be explained simply. Let �j denote the jth element of �. SSVS specifies a
hierarchical prior (i.e. a prior expressed in terms of parameters which in turn have
a prior of their own) which is a mixture of two Normal distributions:

�jj
j �
�
1� 
j

�
N
�
0; c� � 2j

�
+ 
jN

�
0; � 2j

�
; (4)

where 
j 2 f0; 1g is an unknown parameter estimated from the data. In standard
SSVS implementations, the researcher chooses specific values for c and � 2j such
that the first element in the Normal mixture has a prior variance near zero and
the second element has a larger prior variance. Large variance priors are relatively
noninformative, allowing for a coefficient to be estimated in an unrestricted fashion.
Small variance priors are informative, shrinking the coefficient towards the prior
mean (which, in this case, is zero). Thus, if 
j = 0, �j is shrunk to zero whereas
if 
j = 1 it is not. In Bayesian estimation of the model, it is conventional to
use a Bernoulli prior for 
j (e.g. Pr

�

j
�
= �j with �j =

1
2

expresses a view
that the jth coefficient is, a priori, equally likely to be excluded or included). In
this paper, we extend this standard approach by using hierarchical priors for �j
and � 2j . In particular, we assume these are unknown parameters with Beta and
Gamma priors, respectively. In this way, we lessen concerns about prior sensitivity.
Complete details, including choices of c and the prior hyperparameters in the Beta
and Gamma priors are given in the Technical Appendix.

The basic ideas underlying our S4 algorithm can be expressed in terms of (4). In
this section, we outline how we do this, partly relying on a three country example.
Additional details are given in the Technical Appendix. We define the N (N � 1)
vector 
DI , the N(N�1)

2
vector 
SI , and the N(N�1)

2
vector 
CSH , which control the

DI, SI, and CSH restrictions, respectively and let 
 =
�

DI ; 
SI ; 
CSH

�
.
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Handling the DI and SI restrictions is fairly easy, since each involves restricting
a specific matrix of parameters to be zero (or not). For the DIs, 
DI is made up
of elements 
DIjk 2 f0; 1g, j = 1; :::; N , k = 1; :::; N , j 6= k. If 
DIjk = 0, then the
coefficients on the lags of all country k variables in the VAR for country j are set
to zero. Using a simple extension of the hierarchical prior in (4) and the methods
of George, Sun and Ni (2008), it is straightforward to produce MCMC draws of

DI . The only difference between our approach and that of George, Sun and Ni
(2008) is that each 
DIjk will apply to a whole block of parameters instead of a single
parameter. Similarly, while equation (4) pertains to a scalar �j, our algorithms tries
to set to zero all G2 elements that pertain to DIs between countries j and k.

For the SIs, 
SI is made up of elements 
SIjk 2 f0; 1g, j = 1; :::; N � 1, k =
j+1; :::; N . If 
SIjk = 0 then the block of the PVAR error covariance matrix relating to
the covariance between countries j and k is set to zero. In contrast to conventional
SSVS, 
SIjk will restrict an entire block of the error covariance matrix to be zero,
rather than a single element, but this involves only trivial changes to the algorithm
of George, Sun and Ni (2008).

Handling restrictions which do not simply restrict a vector or matrix of coeffi-
cients to be zero is more complicated, and treatment of this issue is a contribution
of this paper. CSH restrictions take this form. Consider the case of three countries
(N = 3) with one variable each (G = 1), then the vector of coefficients � is simply
� = (�1; �2; �3)

0. Applying the SSVS prior of equation (4) in this simple case gives

�jj
j �
�
1� 
CSHi;j

�
N
�
�k; c� � 2j

�
+ 
CSHi;j N

�
0; � 2j

�
:

It is immediately evident that it is hard to handle all possible combinations of
coefficients �j being equal to coefficients �k (note also that for the general case
with G > 1, these will be vectors and not scalars). In order to deal with this issue,
we introduce restriction selection matrices: �j;k for j = 1; ::; N�1 and k = j+1; ::; N .
�j;k contains one dummy variable, 
CSHjk 2 f0; 1g, which is used to estimate whether
cross-country homogeneity exists between countries j and k. For instance, in our
simple example with N = 3 and G = 1 we have matrices

�1;2 =

"

CSH12 1� 
CSH12 0
0 1 0
0 0 1

#
; �1;3=

"

CSH13 0 1� 
CSH13

0 1 0
0 0 1

#
; �2;3 =

"
1 0 0
0 
CSH23 1� 
CSH23

0 0 1

#
;

where 
CSH =
�

CSH12 ; 
CSH13 ; 
CSH23

�
is the original vector of CSH restrictions

between countries 1 and 2, countries 1 and 3, and countries 2 and 3, respectively. If

homogeneity exists between countries 1 and 2 then 
CSH12 = 0 and �1;2� =

24 �2
�2
�3

35
so that the first and second coefficients are restricted to be equal to one another.
If instead these two countries are heterogeneous, 
CSH12 = 1 and �1;2 is the identity
matrix such that �1;2� = � and the coefficients are left unrestricted. By defining
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matrices �1;3 and �2;3 in a similar fashion we can impose analogous restrictions
involving country 3.

If we define:
� = �1;2 � �1;3 � �2;3:

then we obtain a selection matrix that covers all possible combinations of CSH
restrictions. For instance, assume that there is homogeneity between countries 1
and 3 (so that 
CSH13 = 0) and the coefficients of countries 1 and 2, and countries 2
and 3 are heterogeneous (
CSH12 = 
CSH23 = 1). In this case, it is easy to see that �
takes the form

� =

24 0 0 1
0 1 0
0 0 1

35 ;
so that the restricted coefficients matrix is �� = (�3; �2; �3). In this case, the first
and third countries coefficients are the same, thus imposing homogeneity between
them. If 
CSH1 = 
CSH2 = 
CSH3 = 0 then there is homogeneity among all countries
and in this case �� = (�3; �3; �3)

0.
We can generalize the procedure above when we have N countries to impose

(or not) the 2N(N�1)=2 possible combinations of CSH restrictions if we write the
posterior of � as

�j� � N

 
N�1Y
j=1

NY
k=j+1

�j;k��; D�

!
;

where �� and D� are the posterior mean and variance of � , and the � shows that �
is conditional on some quantities such as data and other parameters (exact formulas
are available in the Technical Appendix). This formula imposes that if 
CSHjk = 0,
then ��;j = ��;k and at the same time D�;jj is very small, thus, shrinking the whole
posterior of �j towards the posterior of �k. The simple formula above allows for
the application all possible CSH restrictions using fast sparse matrix multiplications.
The alternative would be to index all possible pairs (�j; �k) and check whether their
associated index 
CSHjk is zero or one, which is computationally infeasible for large
N .

Once the PVAR is transformed in this way, sampling from the conditional
posterior of the restricted coefficients becomes a straightforward problem. In
particular, conditional upon draws of the restriction indicators, we have a particular
restricted PVAR. The parameters of this specific PVAR can be drawn using standard
formulae for restricted VAR models. We provide additional details in the Technical
Appendix. Using this MCMC algorithm, we can find the posterior mode for 
 and
this can be used to select the optimal restricted PVAR, thus doing BMS. Or, if we
simply average over all draws provided by the MCMC algorithm we are doing BMA.
Our empirical results use the BMA approach.
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4 Monte Carlo Study

In order to demonstrate the performance of our algorithm, we carry out a small
Monte Carlo study. We consider a case where the number of observations is
fairly small relative to the number of parameters being estimated and a variety
of restrictions hold. In particular, we generate 1,000 artificial data sets, each with
T = 50 from a PVAR with N = 3, G = 2 and P = 1. Using the notation of (2), the
PVAR parameters are set to the values:

Atrue1 =

266664
0:7 0 0:2 0:2 0 0
0 0:7 0:3 0:3 0 0
0 0 0:6 0:5 0 0
0 0 0 0:5 0 0

0:3 �0:4 0 0 0:6 0:5
0:2 0:4 0 0 0 0:5

377775 ;�true =
266664

1 0 �0:5 �0:5 0 0
0 1 �0:5 �0:5 0 0

�0:5 �0:5 1 0:5 0 0
�0:5 �0:5 0:5 1 0 0

0 0 0 0 1 0
0 0 0 0 0 1

377775 :
The structure above implies that we have DIs from country 2 to country 1

and from country 1 to country 3. We have SIs between countries 1 and 2 and
cross-sectional homogeneity between countries 2 and 3. Put another way, the data
generating process imposes the following restrictions that we hope our S4 algorithm
will find:

1. A1;13 = A1;21 = A1;23 = A1;32 = 0

2. A1;22 = A1;33

3. �13 = �23 = 0

For each of our 1,000 artificial data sets we produce 55,000 posterior draws us-
ing our MCMC algorithm and discard the first 5,000 as burn in draws. Results pass
standard convergence diagnostics (e.g. inefficiency factors reveal that retaining
50,000 draws is more than enough for accurate posterior inference). The relatively
noninformative priors we use are described in the Technical Appendix.

To give the reader an idea of how well our algorithm is estimating the PVAR
parameters, the following matrices contain the averages (over the 1,000 artificial
data sets) of their posterior means.

AS
4

1 =

266664
:64 :03 :25 :28 �:02 :01
:01 :65 :37 :33 :01 :00
:00 :00 :59 :51 :01 :00
:00 �:01 :05 :51 :02 �:01
:34 �:42 :00 :00 :61 :50
:23 :41 :00 :01 �:02 :46

377775 ;�S4 =
266664

1:01 �:02 �:51 �:51 :00 :00
�:02 :99 �:42 �:44 :00 :00
�:51 �:42 1:22 :55 �:01 :00
�:51 �:44 :55 1:21 :01 :01
:00 :00 �:01 :01 :95 :00
:00 :00 :00 �:01 �:00 1:02

377775 :
Considering the relatively small sample size, these posterior means are quite

close to the true values used to generate the data sets.
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For comparison, the following matrices present ordinary least squares (OLS)
estimates averaged over the 1,000 artificial data sets:

AOLS1 =

266664
:59 �:02 :22 :19 �:07 �:06
:00 :60 :39 :27 :00 :08
:06 :09 :50 :51 :06 �:05
:08 :04 �:09 :52 :10 �:09
:34 �:44 �:01 :00 :61 :50
:23 :42 :02 :02 �:02 :46

377775 ;�OLS =
266664

1:02 :04 �:59 �0:53 :02 �:07
:04 :96 �:44 �0:46 :01 :00

�:59 �:44 1:42 :60 :02 :02
�:53 �:46 :60 1:30 :01 :05
:02 :01 �:02 :01 :88 �:01

�:07 :00 :02 :05 :01 1:08

377775 :
The OLS estimates are similar to the ones produced by our S4 algorithm. However,
note that the OLS estimates do not do as good a job of shrinking to zero the
parameters which are truly zero. In order to measure how good the performance of
each estimator is, we are using the Absolute Percentage Deviation (APD) statistic

APD =
1

K

KX
i=1

�e�i � �truei

�
;

where e� is the vectorized form of the matrix A1 for estimated coefficients, and
�true is the vectorized form of the true coefficients Atrue1 . Under this statistic
APDS4 = 0:04842 < 0:11534 = APDOLS, thus, on average, the coefficients from
the S4 algorithm are closer to the true coefficients compared to OLS. The same
qualitative result is obtained if we compare �OLS and �S4.

We now turn to the issue of how accurate the S4 algorithm is in picking the
correct restrictions. Remember that the restrictions are controlled through the S4

dummy variables so that, for instance, 
CSH2;3 = 0 indicates that countries 2 and 3 are
homogeneous. In our MCMC algorithm, the proportion of draws of 
CSH2;3 = 0 will
be an estimate of the posterior probability that countries 1 and 2 are homogeneous
and, thus, that A1;22 = A1;33. Thus, we will use notation where p (A1;22 = A1;33)
is the posterior probability that countries 1 and 2 are homogeneous, averaged over
the 1000 artificial data sets (and adopt the same notational convention for the other
restrictions).

With regards to the DI restrictions we find the following:

p (A1;12 = 0) = 0
p (A1;13 = 0) = 1
p (A1;21 = 0) = 1
p (A1;23 = 0) = 1
p (A1;31 = 0) = 0
p (A1;32 = 0) = 1

:

It can be seen that the S4 algorithm is doing a very good job of picking up the correct
DI restrictions.
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With regards to the SI restrictions we find the following:

p (�12 = 0) = :238
p (�13 = 0) = :983
p (�23 = 0) = :920

:

Here S4 is also doing a good job in picking up the correct restrictions, although the
probabilities are smaller than those found for the DI restrictions.

With regards to the CSH restrictions we find the following:

p (A1;11 = A1;22) = :072
p (A1;11 = A1;33) = :055
p (A1;22 = A1;33) = :543

:

S4 is doing well at picking out the correct cross-sectional homogeneity restriction
between countries 2 and 3.

Overall, we find the results of our Monte Carlo study reassuring. This exercise
involved a sample size of only T = 50 observations in a PVAR with 57 unknown
parameters. Therefore, our S4 algorithm is doing well at picking the correct
restrictions in a case where the number of observations is small relative to the
number of parameters. We repeated this exercise with T = 100 but do not report
results here since the probabilities of the restrictions correctly holding are very
nearly one in every case.

5 Empirical Application

The issues of financial contagion and cross-country spillovers between sovereign
debt markets in euro area economies have figured prominently in debates about
the euro area debt crisis. A few examples of recent papers are Arghyrou and
Kontonikas (2012), Bai, Julliard and Yuan (2012), De Santis (2012) and Neri
and Ropele (2013). A common strategy in these papers (and many others) is to
develop a modelling approach involving sovereign bond spreads (reflecting credit
risk considerations), bid-ask spreads (to reflect liquidity considerations) and a
macroeconomic variable. Discussion is often framed in terms of core (Germany,
Netherlands, France, Austria, Belgium and Finland) and periphery (Greece, Ireland,
Portugal, Spain and Italy) countries.

Inspired by this literature, we use monthly data from January 1999 through
December 2012 on the 10 year sovereign bond yield, the percentage change in
industrial production and the average bid-ask spread averaged across sovereign
bonds of differing maturities for the core and periphery countries. Following
a common practice, we take spreads relative to German values and, hence, we
leave Germany out of our set of countries. Because the 10-year bond yields and
the associated bid-ask spreads are nonstationary time series, we first difference
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them. When we produce impulse responses, we transform back to levels so they
do measure responses of the spreads themselves. Thus, we have 168 monthly
observations for 3 variables for 10 countries. We include an intercept in each
equation. Our PVARs have a lag length of one, which is a reasonable assumption for
financial variables. Even so, the unrestricted PVAR has 1395 parameters to estimate
and is seriously overparameterized. Complete details about the priors are given in
the Technical Appendix.

Remember that our full approach involves working with the unrestricted PVAR
with the S4 prior which allows for selection (or not) of restrictions involving
dynamic interdependencies (DI), static interdependencies (SI) and cross-section
homogeneities (CSH). Inspired by similar choices in Canova and Ciccarelli (2009),
we begin estimating the following models:

1. M1: This is the full model with DI, SI and CSH restriction search.

2. M2: This is the model with DI and SI restriction search (no search for CSH).

3. M3: This is the model with DI restriction search (no search for SI and CSH).

4. M4: This is the model with CSH restriction search (no search for DI and SI).

5. M5: This is the model with SI restriction search (no search for DI and CSH).

6. M6: This is the model which reduces the PVAR to 10 individual country VARs
(i.e. DI and SI restrictions are imposed and not searched - no CSH restrictions
are applied).

7. M7: This is M6 with CSH additionally imposed (i.e. individual country VARs
which are also homogeneous).

8. M8: This is the full unrestricted PVAR model without any restriction searches
(i.e. treating it as a large VAR).

Models M2 through M8 are obtained by restricting the elements of 
 as
appropriate. For instance, M2, where we do not search for CSH restrictions, is
obtained by setting 
CSHjk = 1 for all j and k, but otherwise is identical to M1 in
every aspect. M6 is obtained by setting 
DIjk = 
SIjk = 0 for all possible j and k,
but otherwise is identical to M1, etc. Thus, we can be certain that any differences
across models are solely due to differences in which restrictions are imposed.

We begin by presenting information on which of M1 through M8 is supported by
the data using two popular methods of model comparison. Table 2 presents the log
of the marginal likelihood (ML) and Deviance information criterion (DIC) for each
model. DIC was developed in Spiegelhalter, Best, Carlin and van der Linde (2002)
and is an increasingly popular model selection criterion when MCMC methods are
used in models involving latent variables such as ours. Note that higher (lower)
values of ML (DIC) are associated with better model performance.

13



Table 2: Model fit (numerical standard errors in parentheses)
Method M1 M2 M3 M4 M5 M6 M7 M8

ML
�45:39
(0:09)

�45:06
(0:05)

�47:18
(0:03)

�52:04
(0:06)

�50:30
(0:03)

�48:59
(0:06)

�48:99
(0:04)

�51:95
(0:03)

DIC
�56:12
(0:09)

�53:40
(0:07)

�53:46
(0:03)

�56:82
(0:11)

�50:61
(0:05)

�52:82
(0:00)

�54:14
(0:00)

�50:73
(0:01)

A key message from Table 2 is that our full approach (M1) does well and the
large VAR approach (M8) does poorly, indicating that our S4 prior which takes into
account the panel structure of the model can lead to substantial improvements.
Results relating to which types of restrictions are most important are a bit less clear.
The DIC results suggest that most of the benefits from using the S4 prior (relative
to a large VAR) comes from the ability to impose cross-sectional homogeneities,
but the marginal likelihood suggests more of a role for the DI restrictions. The
ability to impose static interdependencies is of less benefit in this data set since M5
(which only allows for their imposition) does relatively poorly using either model
comparison metric.

What kind of restrictions does our preferred M1 model find? Tables 3a, 3b and 3c
address this question for DI, CSH and SI restrictions, respectively. Note that we have
90 possible DI, 45 CSH and 45 SI restrictions. Recall that we impose restrictions
through 
 which is a vector of dummy variables. We classify a restriction as being
imposed if the MCMC algorithm calculates the probability that the appropriate
element of 
 is zero to be greater than a half.5 For each part of Table 3 we
list the cases where the restrictions are not imposed. For the case of DI and SI,
these unrestricted cases are where there are interlinkages between countries. So an
examination of Table 3a and 3c will clearly show where such linkages exist. Country
pairs not listed in these tables are found to be not interlinked.

Consider first the cross-sectional homogeneities. This is the category of
restrictions which is most often rejected. 36 of the 45 possible restrictions are not
imposed. By examining which countries are not listed in Table 3b, it can be seen
that there are several countries with VARs which are sufficiently heterogeneous so
as to reject most or all CSH restrictions with all other countries. That is, Belgium,
Finland and France have no homogeneities with any other countries and Greece and
Italy have homogeneities with only one other country. The remaining five countries
(Austria, Ireland, Netherlands, Portugal and Spain), with some exceptions, do tend
to have homogeneous VARs. This latter group of countries does contain some of the
periphery countries, but also some of the core countries. So we are not finding a
conventional core versus periphery division.

5The estimated probabilities for each restriction tend to be quite definitive (i.e. near either zero
or one), such that changing this threshold fairly substantially either up or down has little impact on
our findings.
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We stress that our definition of cross-sectional homogeneities only involves own
country variables and not linkages between countries. For instance, a finding
that Italy and Austria are homogeneous means that a VAR containing only Italian
variables and a VAR containing only Austrian variables have very similar estimated
coefficients. Such a finding would say nothing about how other-country variables
impact on Italy or Austria. Nevertheless, it is striking that we are finding such
homogeneity in some cases, but that the resulting grouping does not coincide with
the conventional core versus periphery division.

Table 3c shows that many static interdependencies exist. The main pattern here
is that France plus the small countries of Austria, Belgium and Finland have SIs
with every other country. This finding that small countries are quickly affected by
happenings elsewhere in the euro area is sensible. However, it is in contradiction
with some versions of the financial contagion story which would argue that events
in one peripheral country could quickly spillover to other peripheral countries.
Note that none of the peripheral countries exhibits SIs with any country other than
Austria, Belgium, Finland and France.

It is worth stressing that our definition of SIs implies, e.g., that the entire G�G
block of the error covariance matrix relating to covariances between France and
Greece is non-zero. So we do not present a more refined study of the nature of
these contemporaneous linkages. For instance, we cannot make statements such
as: “we are finding SIs between the French and Greek bond yields, but not between
French and Greek industrial production.” Adding such refinements would be a
straightforward extension of our approach, but would lead to a much larger model
space.

Finally consider the DIs. Remember that these may go from one country
(labelled “From” in Table 3a) to another country (labelled “To”) but do not have
to go in the reverse direction. So we find that lagged French variables can appear
in the VAR for Spain, but not vice versa. The main pattern is that the peripheral
countries lagged dependent variables rarely appear in any of the core countries’
VARs. That is, there are many DIs in Table 3a, but it is only rarely the case that
occurrences in peripheral countries are driving variables in core countries (nor other
peripheral countries). Another interesting finding is that Portugal does not appear
in the “From” columns of Table 3a at all. Again, we are finding a story which is not
consistent with two common views of the euro zone. We are not finding there is a
reasonably homogenous group of core and periphery countries. Nor are we finding
support for a financial contagion story where happenings in the periphery spill over
to the core or other peripheral countries.
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Table 3a. Countries where Dynamic Interdependency Restrictions do not hold
No To From No To From No To From

1 AUT FIN 19 IRL AUT 40 PRT AUT
2 BEL AUT 20 IRL BEL 41 PRT BEL
3 BEL FIN 21 IRL FIN 42 PRT FIN
4 BEL FRA 22 IRL FRA 43 PRT FRA
5 FIN AUT 23 IRL GRC 44 PRT GRC
6 FIN BEL 24 IRL ITA 45 PRT IRL
7 FIN FRA 25 IRL NLD 46 PRT ITA
8 FRA AUT 26 ITA AUT 47 PRT NLD
9 FRA BEL 27 ITA BEL 48 PRT ESP

10 FRA FIN 28 ITA FIN 49 ESP AUT
11 FRA GRC 29 ITA FRA 50 ESP BEL
12 FRA IRL 30 ITA GRC 51 ESP FIN
13 GRC AUT 31 ITA IRL 52 ESP FRA
14 GRC BEL 32 NLD AUT 53 ESP GRC
15 GRC FIN 33 NLD BEL 54 ESP IRL
16 GRC FRA 34 NLD FIN 55 ESP ITA
17 GRC IRL 35 NLD FRA 56 ESP NLD
18 GRC ITA 36 NLD GRC 57 ESP PRT

37 NLD IRL
38 NLD ITA
39 NLD ESP

Table 3b. Countries where Cross-Sectional Homogeneity Restrictions do not hold
No C1 C2 No C1 C2 No C1 C2 No C1 C2

1 AUT BEL 10 BEL IRE 19 FIN NLD 28 GRC NLD
2 AUT FIN 11 BEL ITA 20 FIN PRT 29 GRC PRT
3 AUT FRA 12 BEL NLD 21 FIN ESP 30 GRC ESP
4 AUT GRC 13 BEL PRT 22 FRA GRC 31 IRE ITA
5 AUT IRE 14 BEL ESP 23 FRA IRE 32 IRE NLD
6 AUT ESP 15 FIN FRA 24 FRA ITA 33 IRE PRT
7 BEL FIN 16 FIN GRC 25 FRA NLD 34 ITA NLD
8 BEL FRA 17 FIN IRE 26 FRA PRT 35 ITA PRT
9 BEL GRC 18 FIN ITA 27 FRA ESP 36 ITA ESP
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Table 3c. Countries where Static Interdependency Restrictions do not hold
No C1 C2 No C1 C2 No C1 C2

1 AUT BEL 11 BEL FRA 21 FIN ITA
2 AUT FIN 12 BEL GRC 22 FIN NLD
3 AUT FRA 13 BEL IRE 23 FIN PRT
4 AUT GRC 14 BEL ITA 24 FIN ESP
5 AUT IRE 15 BEL NLD 25 FRA GRC
6 AUT ITA 16 BEL PRT 26 FRA IRE
7 AUT NLD 17 BEL ESP 27 FRA ITA
8 AUT PRT 18 FIN FRA 28 FRA NLD
9 AUT ESP 19 FIN GRC 29 FRA PRT

10 BEL FIN 20 FIN IRE 30 FRA ESP

Finally we carry out an impulse response analysis to investigate spillovers of
financial shocks across the euro area. For the sake of brevity, we focus on a single
shock and ask what would happen to interest rate spreads around the euro area if
the Greek 10-year bond rate increased unexpectedly by 1% relative to the German
rate. Figures 1 and 2 plot these impulse responses for the unrestricted PVAR model,
M8, and our panel S4 model, M1, respectively.6 The black line in the figures is the
posterior median of the impulse responses and the shaded region is the credible
interval from the 16th to 84th percentile. To aid in comparability, we have used the
same Y-axis scale in the two figures. The results in Figure 2 can be interpreted as
BMA results in the sense described at the end of Section 3.

It can be seen that the main impact of the use of S4 methods is precision.
The impulse responses coming from our S4 approach are much more precisely
estimated than those produced by an unrestricted, over-parameterized PVAR. This
improvement in precision can lead to improved policy conclusions. For instance,
the unrestricted VAR would suggest there is no effect in Spain from a Greek shock
since the bands cover zero completely. However, our panel S4 approach predicts
that there is a slight impact on the Spanish bond rate in the medium term. This
is consistent with the finding in Table 3a that dynamic interdependencies existed
from Greece to Spain.

6A brief comparison of impulse responses produced by some other models is given in the
Empirical Appendix.
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Figure 1: Responses to a shock to Greek bond yields from the unrestricted model,
M8.
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Figure 2: Responses to a shock to Greek bond yields from our model, M1.

6 Conclusions

In a globalized world, PVARs are an increasingly popular tool for estimating cross-
country spillovers and linkages. However, unrestricted PVARs are often over-
parameterized and the number of potential restricted PVAR models of interest can
be huge. In this paper, we have developed methods for dealing with the huge
model space that results so as to do BMA or BMS. These methods involve using a
hierarchical prior that takes the panel nature of the problem into account and leads
to an algorithm which we call S4.

Our empirical work shows that our methods work well at picking out restrictions
and selecting a tightly parameterized PVAR. Our findings are at odds with simple
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stories which divide the euro zone into a group of core countries and one of
peripheral countries and speak of financial contagion within the latter. Instead we
are finding a more nuanced story where there is a group of homogeneous countries,
but it does not match perfectly with the standard grouping. Furthermore, we do
not find evidence of interdependencies within the peripheral countries such as the
financial contagion story would suggest.
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Technical Appendix
We write this technical appendix for P = 1 (the value used in our empirical

work) for notational simplicity. Formulae easily generalize for longer lag lengths.
In this case, we can simplify our PVAR notation of (1) and (2). The VAR for country
i, i = 1; :::; N is, thus, of the form

yit = AiYt�1 + "it (A.1)
= Ai1y1t�1 + :::+ Aiiy1t�1 + :::+ AiNyNt�1 + "it;

where E ("it"0it) = �ii and E
�
"it"

0
jt

�
= �ij, i 6= j, i; j = 1; :::; N and � is the full error

covariance matrix for the entire PVAR. For future reference, we also define the upper
triangular matrix 	 through the equation � = 	�1

0
	�1 which is partitioned into

G � G blocks 	ii and 	ij conformably with �ii and �ij, respectively. In addition,
we denote the elements of the diagonal blocks of 	ii as  iijk. George, Sun and
Ni (2008) also parameterize their model in terms of 	. Smith and Kohn (2002)
provide a justification and derivation of results for the prior we use for 	.

Stochastic Search Specification Selection (S4): Hierarchical Prior
The DI, SI and CSH restrictions are given in Table 1. They are imposed through

the vectors of dummy variables 
DIij , 
DIij and 
CSHij described in Section 3. Our S4

algorithm is based on a hierarchical prior which allows for their imposition. This is
done through the following priors:7

1. DI prior:

vec (Aij) �
�
1� 
DIij

�
N
�
0; � 2ij � cDI � I

�
+ 
DIk N

�
0; � 2ij � IG2

�
; (A.2)

��2ij � Gamma
�
1; �DI

�
(A.3)

where the specification selection indicator for this DI restriction has prior


DIij � Bernoulli
�
�DIij

�
; (A.4)

�DIij � Beta
�
1; '
�
; (A.5)

for i = 1; :::; N , j = i; :::; N � 1, and i 6= j (so that DI restrictions do not apply
to matrices Aii, Ajj etc).

2. CSH prior:

vec (Aii) �
�
1� 
CSHij

�
N
�
Ajj;

�
�2ij � cCSH

�
� IG2

�
+ 
CSHi N

�
Ajj; �

2
ij � IG2

�
; 8 j 6= i;(A.6)

��2ij � Gamma
�
1; �CSH

�
: (A.7)

7In our empirical work, we also include a vector of intercepts in the PVAR. For these, we use a
noninformative prior which is a Normal prior with a very large variance.
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The specification selection indicator for this CSH restriction has prior:


CSHij � Bernoulli
�
�CSHij

�
; (A.8)

�CSHij � Beta
�
1; '
�
; (A.9)

for i = 1; :::; N , j = i; :::; N �1, and i 6= j (so that Aii and Ajj are not the same
matrix).

3. SI prior:

vec (	ij) �
�
1� 
SIij

�
N
�
0; �2ij � cSI � IG2

�
+ 
SIij N

�
0; �2ij � IG2

�
; (A.10)

��2ij � Gamma
�
1; �SI

�
(A.11)

where the specification selection indicator for this SI restriction has prior:


SIij � Bernoulli
�
�SIij
�
; (A.12)

�SIij � Beta
�
1; '
�
; (A.13)

where i = 1; :::; N , j = i; :::; N � 1, i > j.
This completes description of the hierarchical prior we use relating to the

restrictions. We also require a prior for the VAR error covariances which are not
subject to any restrictions. We do this through the following prior:

 iikl �
(

N (0; �22) ; if k 6= l

Gamma
�
�
1
; �
2

�
if k = l

; (A.14)

where k; l = 1; :::; G index each of the G macro variables of country i = 1; :::; N .
Stochastic Search Specification Selection (S4): MCMC Algorithm
The prior hyperparameters of the model are cDI ; cCSH ; cSI ; �DI ; �CSH ; �SI ; '; �22; �1

and �
2
. We have used relatively vague priors where possible, and for other priors

we have followed a full Bayes approach that allows to update priors from the
data. Nevertheless, prior choices in very large models do matter, especially for
structural results such as impulse responses (probably not so much for forecasting).
Therefore, we used slightly different prior hyperparameters in the Monte Carlo and
empirical exericises, considering always the PVAR size we had to work with. The
final decision does indeed depend on our experience with such large VARs, although
choices refer only to lower level priors and, thus, sensitivity is somewhat limited.
For example, in the prior for the DI restrictions in eq (A.2) we only choose one
hyperparameter, cDI , while all other hyperparameters have their own priors and
are updated by the data. The following table summarizes the prior distributions
and hyperparameter values used in the two exercises
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Monte Carlo Empirical
cDI 1e-6 1e-6
cCSH 1e-4 1e-5
cSI 1e-5 1e-5
�DI 50 10
�CSH 60 60
�SI 25 10
' 1 1
�22 4 4
�
1

0.01 0.01
�
2

0.01 0.01

Additionally, as explained in Section 3, we define a matrix � =
N�1Y
i=1

NY
j=i+1

�i;j,

where �i;j areK�K matrices constructed using the CSH restriction indicators 
CSHij .
First note that 
CSHij = 0 implies that countries i and j have similar coefficients
(i.e. the homogeneity restriction Aii � Ajj holds), and the opposite is true when

CSHij = 1. The matrix �i;j is the identity matrix with the exception that its fi; ig
diagonal element is equal to 
CSHij and its fi; jg non-diagonal element is equal to�
1� 
CSHij

�
. Therefore, each of the possible N (N � 1) =2 matrices �i;j allow us

to impose on the PVAR coefficients the CSH restriction between countries i and

j, and their product, which is the matrix � =
N�1Y
i=1

NY
j=i+1

�i;j, allows us to index all

2N(N�1)=2 possible CSH restrictions among the N countries. Therefore, if �� denotes
the posterior mean of the unrestricted vectorized PVAR coefficients (i.e. using a

noninformative prior), then e�� = ��� = N�1Y
i=1

NY
j=i+1

�i;j�� is simply the K � 1 vector

of posterior means of the PVAR coefficients with the cross-sectional homogeneity
restrictions imposed.

Gibbs sampler algorithm for the S4 algorithm

1. Sample vec (A) from

(vec (A) j�) � N (�� ��; D�) ; (A.15)

where D� =
�
��1 
X 0X + (V 0V )�1

��1
and �� = D� [(�

�1 
X 0X)�OLS],
where �OLS is the OLS estimate of �, and V is a diagonal matrix which has
its respective diagonal block of G2 elements equal to � 2ij � 1 if 
DIij = 1 or
equal to � 2ij � cDI � 1 if 
DIij = 0, and equal to �2ij � 1 if 
CSHij = 1 or equal to
�2ij � cCSH � 1 if 
CSHij = 1 , where 1 is a G2 � 1 vector of ones.
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2. Sample � 2ij from

�
� 2ijj�

�
� Gamma

 
1 +

1

2
G; �DI +

1

2

GX
k=1

�
vec (Aij)k

�2
(cDI)1�


DI
ij

!

3. Sample �2ij from

�
�2ijj�

�
� Gamma

 
1 +

1

2
G; �CSH +

1

2

GX
k=1

[vec (Aii)k]
2

(cCSH)1�

CSH
ij

!

4. Sample 
DIij from �

DIij j�

�
� Bernoulli

�
!DIij

�
; (A.16)

where !DIij =
u2;ij

u1;ij+u2;ij
with u1;ij = � (vec (Aij) j0; � 21IG2)�DIij and u2;ij =

� (vec (Aij) j0; � 22IG2)
�
1� �DIij

�
, and � (xja; b) denotes the p.d.f. of the Normal

distribution with mean a and variance b evaluated at x.

5. Sample �DIij from�
�DIij j�

�
� Beta

�
1 +

X

DIij ; '+

X�
1� 
DIij

��
: (A.17)

6. Sample 
CSHij from �

CSHij j�

�
� Bernoulli

�
!CSHij

�
; (A.18)

where !CSHij =
v2;ij

v1;ij+v2;ij
with v1;ij = �

�
vec (Aii) jvec (Ajj) ; �2ij � cCSH � IG2

�
�CSHij

and v2;ij = �
�
vec (Aii) jvec (Ajj) ; �2ij � IG2

� �
1� �CSHij

�
.

7. Sample �CSHij from�
�CSHij j�

�
� Beta

�
1 +

X

CSHij ; '+

X�
1� 
CSHij

��
: (A.19)

8. Sampling vec (	ij) and  iikl, follows exactly the algorithm of Appendix A of
George, Sun and Ni (2008) as applied to G�G blocks of the error covariance
matrix (as opposed to individual elements).

The reader can also see complete details of our algorithm by looking at our panel
VAR MATLAB code, which is available through the website:

https://sites.google.com/site/dimitriskorobilis/matlab/panel_var_restrictions.
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Empirical Appendix
We begin by presenting evidence on the convergence of the MCMC algorithms

for the eight models used in Section 5. For each model in that section, we
use 220,000 MCMC draws. An initial 20,000 draws are discarded and, from
the remaining 200,000, every 10th draw is retained leaving us with a chain of
20,000 draws. As MCMC diagnostics, we consider the correlation between MCMC
draws which are well separated in the chain (in our case 10 draws apart) and
the MCMC inefficiency factor. Since � contains up to 900 parameters and �
up to 435 parameters, we present results using boxplots of each diagnostic for
each parameter. Figures A.1 through A.4 show that the algorithm for M1 (our
preferred model) sometimes converges slightly slower than other algorithms, but it
is always is converging fast enough such that our 20,000 retained draws should be
sufficient to produce accurate estimates of posterior moments. For instance, with
M1, inefficiency factors for for the great majority of the elements of � and � are
less than 5 and there are only a handful of inefficiency factors greater than 50 and
none greater than 70.
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Figure A1: Boxplots of order 10 autocorrelations of MCMC draws of �
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Figure A2: Boxplots of order 10 autocorrelations of MCMC draws of �
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Figure A3: Boxplots of inefficiency factors for elements of �
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Figure A4: Boxplots of inefficiency factors for elements of �

In the body of the text, we presented impulse responses only for M1 (which
searched over all types of restrictions) and M8 (the completely unrestricted model).
In order to see the impact of some of the restrictions that the other models imply,
Figure A.5 presents impulse responses for M1, M6, M7 and M8. Since our impulse
response is a measure of the impact of a Greek shock on other countries, all models
which do not allow for interdependencies between countries will, by definition,
have zero impulse responses for countries other than Greece. Accordingly, Figure
A.5 only presents impulse responses for Greece.

It can be seen that M7, which imposes cross-country homogeneity restrictions on
all countries leads to an impulse response which is roughly one at all horizons. This
is very different, in a counter-intuitive direction, from the results M1 is producing.
M6, which uses a VAR involving only Greek variables, is also producing impulse
responses at odds with M1. Among other differences, M6 indicates the shock is
much more persistent than M1 indicates.
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Impulse response of  Greece, Model 1
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Impulse response of  Greece, Model 6
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Impulse response of  Greece, Model 7
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Impulse response of  Greece, Model 8
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Figure A5: Comparing Greek rate impulse responses for different models
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