
Ambrosini & Costantini 

 

Page 1 of 29 

Body posture differentially impacts on visual attention towards tool, graspable, and non-1 

graspable objects.  2 

Ettore Ambrosini
1
 & Marcello Costantini

2,3 
3 

 
4 

1
 Department of Neuroscience, University of Padua, Via Giustiniani 5, 35128 Padua, Italy  5 

2
 Centre for Brain Science, Department of Psychology, University of Essex, UK 6 

3
 Department of Neuroscience and Institute for Advanced Biomedical Technologies, University “G. 7 

d’Annunzio”, Chieti, Italy. 8 

 9 

Abbreviated title: Perception for action 10 

Corresponding author: Ettore Ambrosini. Department of Neuroscience, University of Padua, Via 11 

Giustiniani 5, 35128 Padua, Italy. E-mail: ettore.ambrosini@gmail.com 12 

 13 

Conflict of interest: The authors declare no competing financial interests. 14 



Ambrosini & Costantini 

 

Page 2 of 29 

Abstract 15 

Viewed objects have been shown to afford suitable actions, even in absence of any intention 16 

to act. Little is known, however, as to whether gaze behavior, that is the way we simply look at 17 

objects, is sensitive to action afforded by the seen object, and how our actual motor possibilities 18 

affect this behavior. We recorded participants’ eye movements during the observation of tools, 19 

graspable and ungraspable objects while their hands were either freely resting on the table or tied 20 

behind their back. The effects of the observed object and hand posture on gaze behavior were 21 

measured by comparing the actual fixations distribution with that predicted by two widely 22 

supported models of visual attention, namely the Graph-Based Visual Saliency and the Adaptive 23 

Whitening Salience models. Results showed that saliency models did not predict accurately 24 

participants’ fixation distributions for tools. Participants, indeed, mostly fixated the action-related, 25 

functional part of the tools, regardless of its visual saliency. Critically, the restriction of the 26 

participants’ action possibility led to a significant reduction of this effect and significantly improved 27 

the models prediction of the participants’ gaze behavior. We suggest, first, that action-relevant 28 

object information at least in part guides gaze behavior. Second, postural information interacts with 29 

visual information to the generation of priority maps of fixation behavior. We support the view that 30 

the kind of information we access from the environment is constrained by our readiness to act. 31 
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1. Introduction 32 

On one view, visual perception is a modular encapsulated process that is unaffected by 33 

nonvisual factors (Pylyshyn, 2003). On a different view, visual perception is embodied in the sense 34 

that it relates body states and goals to the opportunities of acting in the environment (Proffitt, 2006; 35 

Proffitt & Linkenauger, 2013). According to the latter view, perception, and particularly object 36 

perception, heavily depends upon our possibility to act in the environment (Gibson, 1979). Gibson 37 

originally put forward this idea using the notion of affordance. Affordance is defined as the demand 38 

to act offered by the environment/objects. But how deeply is action information tied to object 39 

perception? And how deeply does our possibility to act impact the way we visually explore objects? 40 

To answer these questions we investigated gaze behavior while healthy participants observed 41 

common tools (e.g. pliers), non-tools graspable objects (e.g. towel) and ungraspable objects (e.g. 42 

barrel).  43 

The correct allocation of visual attention in space and time is mandatory in order to 44 

accomplish visually-guided behavior. Indeed, to proficiently interact with the environment, an agent 45 

has to attend locations relevant to the ongoing behavioral goal, and this can be done efficiently by 46 

directing foveal vision and fixating those locations to extract the relevant information (Land, 2006). 47 

Pioneering studies by Koch and Ullman (1985), (see also: Itti & Koch, 2000; Itti, Koch, & Niebur, 48 

1998) have provided reliable models able to predict, from low-level, bottom-up visual features, 49 

those locations. Further studies have largely elaborated on these models providing evidence 50 

showing that gaze behavior reflects the interplay between bottom-up and top-down sources of 51 

information generating priority maps (Kowler, 2011; Malcolm & Henderson, 2010; Tatler et al., 52 

2013; Torralba, Oliva, Castelhano, & Henderson, 2006). This holds true for both complex visual 53 

scenes and single objects (Tatler, et al., 2013). Interestingly, action goals, conceived as top-down 54 

sources of information, play a pivotal role on the generation of these priority maps (Ballard, 55 

Hayhoe, Li, & Whitehead, 1992; Einhauser, Rutishauser, & Koch, 2008a; Rothkopf, Ballard, & 56 

Hayhoe, 2007). This is evident in the tight coupling between vision and action during object 57 
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manipulations, where the selection of priorities depends heavily on the ongoing behavioral goal 58 

(Belardinelli, Herbort, & Butz, 2015; Hayhoe, Shrivastava, Mruczek, & Pelz, 2003; Land, Mennie, 59 

& Rusted, 1999; Land, 2006). However, regardless of our intentions and goals, graspable objects, 60 

especially tools, are intrinsically associated with motor goals and have a specific functional identity 61 

(Bub, Masson, & Cree, 2008; Bub & Masson, 2010; Creem-Regehr & Lee, 2005). What is more, 62 

even in absence of any intention to act, viewing graspable objects, and in particular tools, triggers 63 

suitable motor actions provided that the observer has the actual ability to act (Ambrosini, Sinigaglia, 64 

& Costantini, 2012).  65 

Drawing from this knowledge, we investigated gaze behaviour towards everyday tools, non-66 

tools graspable objects, and ungraspable objects. If action information impacts on the way we 67 

explore objects, we expect that the pattern of fixations during the observation of tools be mostly 68 

focused on object’s action-relevant parts whilst the pattern of fixations during the observation of 69 

both non-tool graspable and ungraspable objects should not.  70 

Furthermore, we tested the action information effect on visual exploration by manipulating 71 

the degree of activation of implicit motor plan elicited by object observation (Ambrosini, 72 

Costantini, & Sinigaglia, 2011; Ambrosini, Sinigaglia, et al., 2012; Costantini, Ambrosini, 73 

Cardellicchio, & Sinigaglia, 2014; Costantini, Ambrosini, Scorolli, & Borghi, 2011; Costantini, 74 

Ambrosini, & Sinigaglia, 2012a, 2012b; Costantini, Ambrosini, Tieri, Sinigaglia, & Committeri, 75 

2010). To this aim, we limited the action ability of a group of participants by tying their hands 76 

behind their backs, a manipulation that has proven effective in modulating performance in tasks that 77 

recruit motor resources (Ambrosini, Sinigaglia, et al., 2012; Ionta & Blanke, 2009; Ionta, Fourkas, 78 

Fiorio, & Aglioti, 2007). Hence, if the supposed bias of the pattern of fixations towards the object’s 79 

action-relevant parts is due to the recruitment of motor representations pertaining the skillful 80 

interaction with them, we expect to observe a shift in the fixations distribution from the action-81 

relevant to the perceptually-salient part of tool pictures when participants were temporarily unable 82 

to perform the evoked actions. 83 
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2. Methods 84 

2.1. Participants  85 

Forty healthy undergraduate students took part in the study for course credits. All 86 

participants provided informed consent, had normal or corrected-to-normal visual acuity, and were 87 

right-handed. The study was carried out in accordance with the Declaration of Helsinki and was 88 

approved by the local ethical committee. The first twenty (15 female, mean age = 21.7 years) 89 

participants were assigned to the unconstrained posture condition, the other twenty (13 90 

female, mean age = 21.3 years) were assigned to the constrained posture condition (see Stimuli 91 

and Procedure section).  92 

2.2. Apparatus 93 

Participants’ eye movements were recorded with a remote infrared eye tracker (RK-826PCI 94 

pupil/corneal tracking system; ISCAN ETL-400, Burlington, MA). The eye tracker recorded the 95 

position of the right eye during observation of stimulus pictures at a sampling rate of 120 Hz. 96 

Stimuli were displayed on a 17-inch LCD monitor (60 Hz refresh rate; 1240 × 1028 pixels screen 97 

resolution). The monitor was placed 60 cm in front of the participants and a headrest was used to 98 

maintain a constant viewing distance and to prevent head movement. 99 

2.3. Stimuli and Procedure 100 

The images used in the experiment consisted of 60 digitized pictures depicting common 101 

everyday man-made objects taken from Google Images. The stimuli were rendered in grayscale on 102 

a uniform white background, and their scales were standardized within a 500 × 500 pixel frame to 103 

subtend about 12.5°. The stimuli were balanced for average pixel brightness and for the number of 104 

non-background pixels occupied by each object by using custom scripts written in Matlab (the 105 

Mathworks, Inc.). The 60 objects were equally subdivided into three categories: 1) Tools (e.g., 106 

pliers), which presents, in a clear distinguishing way, a functional part (e.g., the jaws); 2) Graspable 107 
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objects (e.g., a sponge), which are small enough to be picked up and usable as a whole; and 3) 108 

Ungraspable objects (e.g., a couch), which are too big to be acted upon by hands. Figure 1 shows a 109 

sample of the stimulus images.  110 

Figure 1 Near Here 111 

Each participant completed two recording blocks, in each of which 30 pictures were 112 

presented, balanced for category in a randomized order. Each recording block began with a standard 113 

nine point calibration procedure to ensure eye movements were correctly monitored and recorded 114 

during the experiment (Ambrosini et al., 2011). Each trial began with a fixation cross, which was 115 

presented randomly at either 8° above or below the center of the screen (i.e., outside the area 116 

occupied by the objects), and remained visible for 4000 ms. Then, object images were presented 117 

centrally for 6000 ms (see Figure 1). Participants were simply asked to observe the images, without 118 

any particular constraints apart that to refrain from blinking during the presentation of the object.  119 

During the presentation of the stimuli, half of the participants positioned their hands on the 120 

table in front of them in a natural resting position (unconstrained hands condition), while the other 121 

half held their hands tied behind their back (constrained hands condition).  122 

2.4. Data analysis 123 

As a first step, raw gaze traces were pre-processed with an ad-hoc algorithm implemented in 124 

Matlab to discard blinks and noisy artifacts and to distinguish saccade jumps (detected using a 125 

velocity criteria: point-to-point velocity of the gaze trace > 35 deg/s) from fixations. Therefore, pre-126 

processed fixation gaze data consisted in all those data points that were not categorized as blinks, 127 

noise, or saccades. Next, we compared quantitatively the distribution of participants’ fixations with 128 

that predicted by models of visual saliency. To this aim, we used a slightly modified version of the 129 

Fixation Region Overlap Analysis (FROA) methodology (see Johnston & Leek, 2009; Leek et al., 130 

2012; for a full description; see Fig. 2). 131 

In brief, for each object we determined an observed area of interest (oAOI) and two 132 
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predicted areas of interest (pAOIs). The oAOI was created empirically from participants’ pre-133 

processed fixation gaze data. The pAOIs were created using an algorithm, from model-based 134 

theoretical predictions, rather than arbitrarily, i.e., on the basis of subjective criteria defined by the 135 

researcher (see Caldara & Miellet, 2011, for a discussion of problems arising from the a priori 136 

segmentation of the images).  137 

To determine the oAOI, for each object in each experiment, we first applied a 2-D Gaussian 138 

smoothing function (SD = 0.5°) to the filtered gaze data of each participant. In this way, the oAOI 139 

also takes into account the within-and between-subjects variability, as well as measurement errors. 140 

Because the number of fixation data points varied between subjects and objects, the resulting 141 

smoothed fixation maps were normalized to the 0-1 range (min-max normalization). Next, we 142 

created a global fixation map (oMAP) of each object by averaging the normalized fixation maps of 143 

the 20 participants in each body posture group and normalizing again the resulting map to 1. 144 

Finally, the oAOI was determined, at the group level, by binary thresholding the corresponding 145 

oMAP using a fixed parameter (0.5) across all conditions, the oAOIs representing the thresholded 146 

region maps for the fixation data (Figure 2). In other words, the oAOI consisted of those areas of 147 

the oMAP that exceeded the threshold value of 0.5, and thus showed the highest density of fixation 148 

data points. It is important to emphasize that the choice of this threshold does not affect the final 149 

result (Johnston & Leek, 2009; Leek, et al., 2012). 150 

After determining the oAOIs, we calculated for each object the pAOIs predicted by two 151 

bottom-up visual saliency models, that is, the Graph-Based Visual Saliency (GBVS; Harel, Koch, & 152 

Perona, 2006) and the Adaptive Whitening Saliency (AWS, Antón Garcia-Diaz, Fdez-Vidal, Pardo, 153 

& Dosil, 2012; Garcia-Diaz, Leboran, Fdez-Vidal, & Pardo, 2012) models. These bottom-up 154 

models provide a measure of the saliency of each location in the image, the so-called predicted 155 

saliency map (pMAP, see Figure 2), on the basis of various low-level visual features. It should be 156 

noted that the GBVS model also takes into account the so-called “image center-bias” (Bindemann, 157 

2010; Tatler, 2007) by promoting higher saliency values in the center of the image plane. Therefore, 158 
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because objects were presented in the center of the screen, the GBVS model would predict both the 159 

image center-bias and potential object center-bias (Henderson, 1993; Nuthmann & Henderson, 160 

2010) or center-of-mass effects (e.g., Vishwanath & Kowler, 2003). Moreover, the AWS has 161 

recently been shown to be the best performing model in predicting humans’ fixations during the 162 

observation of photographs of common natural scenes (Borji, Sihite, & Itti, 2013; see also Stoll, 163 

Thrun, Nuthmann, & Einhauser, 2015). 164 

Both saliency maps (GBVS and AWS) were calculated for each object using the Matlab 165 

implementation of the corresponding algorithms, and consist of a visual salience value (range: 0-1) 166 

for each pixel of the image. This salience value indicates the probability that the corresponding 167 

location of the image will be fixated on the basis of its low-level perceptual features. The integral of 168 

the pMAP were then approximated to that of the corresponding global fixation map by using the 169 

imhistmatch function in Matlab, in order to ensure that thresholded areas of interest derived from 170 

the saliency models were approximately equivalent in size to those derived from the fixation data. 171 

Finally, the pAOIs were determined by binary thresholding the corresponding saliency maps using 172 

the same criterion-threshold of 0.5 (Figure 2). These empirical and predicted binary AOI region 173 

maps formed the basis for the subsequent analysis of participants’ gaze behavior during the 174 

observation of our stimuli. 175 

At this point, for each object in each experiment, we evaluated the goodness of the 176 

prediction of each of the two saliency models by calculating the “Actual Overlap Percentage” 177 

(AOP), defined as the amount of spatial overlap between the oAOI for each stimulus and the pAOI 178 

for each saliency model normalized by the size of the oAOI (Figure 2). The statistical significance 179 

of the observed overlap percentage is then determined with reference to a critical value, that is the 180 

“Chance Overlap Percentage” (COP), which corresponds to the percentage of overlap we would 181 

expect at the 95% confidence interval of a random distribution of oAOI-pAOI overlap (Figure 2). 182 

The bootstrapped probability distributions were derived from Monte Carlo simulations (1000 183 

iterations). Monte Carlo simulations were ran separately for each stimulus, experiment, and data–184 
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model contrast (Johnston & Leek, 2009; Leek, et al., 2012). Now, by comparing Actual and Chance 185 

Overlap Percentage values we were able to determine if the corresponding saliency model reliably 186 

predicts the pattern of participants’ gaze behavior: AOP values greater than COP values indicate 187 

that that model significantly predict fixations distribution.  188 

Figure 2 Near Here 189 

To obtain a more sensitive measure of the degree of the correspondence between observed 190 

fixation data and predicted saliency maps, we calculated a “Model Matching Dissimilarity” index 191 

(MMD) by subtracting AOP from COP values. Therefore, lower (negative) values of MMD indicate 192 

better correspondence between the tested model and the observed fixation data (i.e., reliable 193 

predictions), whereas higher values of MMD indicate worse observed fixation data-saliency model 194 

correspondence. It is important to note that the MMD distance measure is robust against variation in 195 

oAOI and pAOI size across items, because both COP and AOP are expressed as percentages of the 196 

thresholded fixation map of the corresponding object. The MMD value was the primary dependent 197 

variable of our subsequent analyses. 198 

3. Results 199 

3.1. Models Matching Dissimilarity 200 

We compared MMD values across object categories and body postures to assess the 201 

goodness with which the saliency models predicted participants’ gaze behavior, and whether the 202 

actual state of an observer’s body, in terms of her specific action ability (Ambrosini, Sinigaglia, et 203 

al., 2012; Mele, 2003), could affect the way we visually explore objects. We ran a mixed-design, 204 

by-items ANOVA on MMD values with saliency Model (GBVS vs AWS) and Body Posture 205 

(Unconstrained hands vs. Constrained hands) as within-items factors, and Object Category (Tool, 206 

Graspable, and Ungraspable objects) as between-items factor. 207 

The ANOVA revealed the marginally significant effects of the Model factor (F1, 57 = 3.09, p 208 
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= .084, ηp
2
 = .051) and the Object Category by Model interaction (F2, 57 = 3.02, p = .057, ηp

2
 = 209 

.096): The AWS model tended to predict participants’ fixations better than the GBVS model did 210 

(5.96% vs. 10.18%, SD = 19.37% and 18.65%, respectively), especially for Tool objects (7.58% vs. 211 

18.86%, SD = 14.34% and 16.40%, respectively).  212 

Critically, the ANOVA revealed a significant Body Posture by Object Category interaction 213 

(F2, 57 = 8.24, p < .001, ηp
2
 = .224). This interaction indicates that body posture manipulation was 214 

effective in modulating participants’ gaze behavior specifically during the observation of Tools. 215 

Indeed, the Newman-Keuls’s post-hoc tests revealed that when the participants' action possibility 216 

was reduced by tying their hands behind their back, the MMD values for Tool objects were lower 217 

(9.47%, SD = 12.74%) as compared to when the participants' were free to move their hands 218 

(16.97%, SD = 14.36%; p = .002), indicating a better fixation data-model correspondence (see 219 

Figure 3). This effect of the posture modulation was not significant for either the Graspable or the 220 

Ungraspable objects (both ps > .160).  221 

To further investigate the Body Posture by Object Category interaction, we compared the 222 

effect of the Body Posture manipulation on participants’ gaze behavior across object categories. We 223 

thus computed a difference score by subtracting the mean MMD values in the constrained condition 224 

from that in the unconstrained condition and carried out a between-item one-way ANOVA with 225 

object category as factor. The Newman-Keuls’s post-hoc tests on the Object Category effect 226 

revealed that the effect of the Body Posture manipulation was significantly higher for the Tool 227 

objects (7.51%, SD = 8.65%) as compared to the Graspable (-2.68%, SD = 7.43%; p = .001) and 228 

Ungraspable (-.69%, SD = 9.06%; p = .003) objects. Moreover, the effect of the Body Posture 229 

manipulation was reliable for the Tool category only, as revealed by one-sample one-tailed t-tests 230 

against 0 on the Unconstrained-Constrained MMD difference scores (Tool: t19 = 3.88, p < .001, 231 

Cohen’s d = .868; Graspable: t19 = -1.61, p = .062, d = -.360; Ungraspable: t19 = -.34, p = .369, d = -232 

.076).  233 

To sum up, these results showed that the restriction of the participants’ action possibility led 234 
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to a significant reduction of the dissimilarity between the model prediction and the participants’ 235 

gaze behavior specifically during the observation of Tool objects. 236 

Figure 3 Near Here 237 

3.2. Spatial and temporal difference of fixations distribution for the tool category 238 

The analysis of the correspondence between the observed fixation distributions and the 239 

models previsions indicated that the way we visually explore tools is influenced by our specific 240 

action abilities. Since tools are characterized by spatially separated functional parts (the head of the 241 

hammer) and manipulation parts (the handle), we investigated in more details the relative influence 242 

of the functional representations that would be activated by the observation of this part on the 243 

spatial and temporal distribution of participants’ fixations.  244 

To this aim, we first partitioned the entire area occupied by each tool to determine the 245 

functional part of the tool and normalized its size by computing the percentage of the total object 246 

area occupied by it (M = 54.1%, SD = 21.0%). Next, for each participant and object, we calculated 247 

the percentage of the entire set of pre-processed, filtered data points (excluding those that were not 248 

located within the area occupied by the object) that were located within the functional part. This 249 

procedure was performed 1) for each 500 ms bin of the entire presentation time (6000 ms), and 2) 250 

for the first five fixations. We then normalized this percentage values by subtracting the percentage 251 

of the area occupied by the functional part from it, obtaining a normalized percentage (norm%) of 252 

the fixation gaze data located within the functional part of the tool. From now on, we refer to this 253 

measure as Normalized Fixation Functional (NFF). Therefore, the resulting NFF values take into 254 

account variation in the size of the functional part across tools, and represents the degree with 255 

which the observed fixations distribution exceed the distribution that one would expect by chance. 256 

In the same way, we also calculated the percentage of fixation data points that were located within 257 

the visually salient part of the tool, that is, the pAOIs predicted by the GBVS and the AWS models 258 

(see Section 2.4 and Figure 2) in each 500 ms bin and for each of the first five fixations. Again, for 259 
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both the GBVS and AWS saliency models, we normalized these percentage values for the size of 260 

the corresponding pAOI as described above. We thus obtained the norm% values for the visually 261 

salient part of the tools (hereafter Normalized Fixation Saliency, NFS) as predicted by the GBVS 262 

and AWS models (respectively, NFSGBVS and NFSAWS); these measures can be safely compared to 263 

the NFF one.  264 

Finally, the difference in the spatial distributions of fixations occurring within the functional 265 

and salient part of each tool, as well the strength of the action possibility modulation of these 266 

distributions, were assessed over time and fixations. We did this by carrying out two mixed-design, 267 

by-subjects repeated-measure ANOVA on the norm% values with Body Posture (Unconstrained vs. 268 

Constrained) as between-subjects factor and Tool Part (Functional vs. GBVS-Salient vs. AWS-269 

Salient) and either Time bin (12 levels, from 500 to 6000 ms) or Fixation (5 levels, from the 1
st
 to 270 

the 5
th

 fixation) as within-subjects factors. Post-hoc Newman-Keuls test was used when necessary. 271 

When the sphericity assumption was violated, Huynh-Feldt corrected degrees of freedom were 272 

reported for the F statistic. 273 

3.2.1. Time bins 274 

The ANOVA revealed a significant main effect of the Time bin factor (F6.37, 242.19 = 3.45, p = 275 

.002, ηp
2
 = .157) and a marginally significant effect of the Tool Part factor (F2, 76 = 2.64, p = .078, 276 

ηp
2
 = .065), which were further qualified by their significant interaction (F12.07, 458.70 = 9.70, p < 277 

.0001, ηp
2
 = .203) (see Figure 4A). Post-hoc analysis showed that, NFF values were higher during 278 

the first 1000 ms compared to all the other time bins (19.08% and 20.79% for 500 and 1000 ms 279 

bins, respectively; all ps < .017) and during the 1500 ms time bin (14.74%) as compared to all but 280 

the 2000 and 6000 ms time bins (all ps < .026). In addition, the NFSGBVS value for the first time bin 281 

was higher than those for the 1000 and 1500 ms bins (10.35% vs. 2.17% and 2.46%, respectively; 282 

all ps = .002) and the NFSAWS value for the first time bin was lower than those for the 1000, 1500, 283 

and 2000 ms bins (3.73% vs. 12.41%, 12.46%, and 12.24%, respectively; all ps < .002). Critically, 284 
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NFF values were significantly higher than the NFSGBVS values during the first 1500 ms of object 285 

presentation (all ps < .001), and they were also higher than the NFSAWS values in the first 1000 ms 286 

(all ps < .001) (see Figure 4A).  287 

The ANOVA also revealed the significant Tool Part by Body Posture interaction (F2, 76 = 288 

5.19, p = .008, ηp
2
 = .120, see Figure 4B). Post-hoc analysis revealed that, on average, NFF values 289 

were significantly higher than NFSGBVS values (i.e., the Functional parts of the tools were more 290 

fixated than GBVS-Salient ones) when the participants’ were free to move their hands (13.85% vs. 291 

4.70%, respectively; p = .004) and this difference was significantly higher than the non-significant 292 

one found in the Constrained condition (6.34% vs. 8.13%, respectively; p = .459). Moreover, the 293 

NFF values were significantly higher in the Unconstrained as compared to the Constrained 294 

condition (p = .039). No other effects were significant
1
.  295 

3.2.2. Fixations 296 

The ANOVA revealed a significant main effect of the Fixation and Tool Part factors (F4, 152 297 

= 4.53, p = .002, ηp
2
 = .106; F1.75, 66.31 = 2.64, p = .025, ηp

2
 = .098, respectively), which were further 298 

qualified by their significant interaction (F6.64, 252.49 = 6.29, p < .0001, ηp
2
 = .142) (see Figure 4C). 299 

Post-hoc analysis showed that, NFF values were higher for the first two fixations (14.43% and 300 

12.11%, respectively) as compared to the 4
th

 and 5
th

 ones (6.92% and 3.89%, respectively; all ps < 301 

.019) and for the 3
rd

 fixation (12.11%) as compared to the 5
th

 one (p = .008). No differences were 302 

found for the NFSGBVS values across fixations, while the NFSAWS value for the 2
nd

 fixation was 303 

higher than those for the 1
st
 and 5

th
 ones (13.16% vs. .74% and 3.47%, respectively; all ps < .010), 304 

and the NFSAWS value for the 3
rd

 fixation (9.27%) was higher than that for the 1
st
 one (p =.098). 305 

Critically, NFF values were significantly higher than the NFSGBVS values for the 2
nd

 and 3
rd

 306 

fixations (all ps < .009), and they were also higher than the NFSAWS values for the 1
st
 fixation (p < 307 

                                                 

1
 We also carried out a similar ANOVA by excluding the pAOI predicted by the GBVS model (i.e., the GBVS-

Salient level of the Tool Part factor), as the previous analysis of the correspondence between the observed fixation 

distributions and the models previsions indicated that this model tended to predict less accurately the participants’ gaze 

behavior as compared to the AWS model, especially for the tools. The reported results were essentially the same. 
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.001) (see Figure 4C).  308 

The ANOVA also revealed the significant Tool Part by Body Posture interaction (F1.75, 66.31 309 

= 4.71, p = .025, ηp
2
 = .110, see Figure 4D). Post-hoc analysis revealed that, on average, NFF values 310 

were significantly higher than both NFSGBVS and NFSAWS values (i.e., the Functional parts of the 311 

tools were more fixated than the visually salient ones) when the participants’ were free to move 312 

their hands (14.48% vs. 4.78% and 7.62%, respectively; all ps < .006) and these differences were 313 

significantly higher (respectively, p = .017 and .037) than the non-significant ones found in the 314 

Constrained condition (6.38% vs. 6.83% and 6.19%, respectively; p = .852 and .934). Moreover, the 315 

NFF values were significantly higher in the Unconstrained as compared to the Constrained 316 

condition (p = .007). No other effects were significant
2
.  317 

Taken together, the results of the analyses of the spatio-temporal differences of fixations 318 

distributions for the tool category confirm and refine those of the previous analyses, showing that 319 

the participants’ gaze behavior during the observation of Tool objects, especially for the first 320 

fixation or time bins, was mostly focused on their functional part and, thus, was not accurately 321 

predicted by saliency models. Moreover, they confirm that the way we look at tools depends on our 322 

specific action abilities. 323 

Figure 4 Near Here 324 

4. Discussion 325 

We investigated whether gaze behavior towards everyday tools is sensitive to the goal we 326 

can accomplish with them and how our actual motor possibilities affect this behavior. We recorded 327 

participants’ eye movements during the observation of tools, graspable, and ungraspable objects 328 

while their hands were either freely resting on the table (Unconstrained hands) or tied behind their 329 

back (Constrained hands). The effects of the observed object (Tool vs. Graspable vs. Ungraspable) 330 

                                                 

2
 Again, we also carried out a similar ANOVA by excluding the pAOI predicted by the GBVS model (i.e., the 

GBVS-Salient level of the Tool Part factor). The results were essentially the same. 
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and hand posture (Unconstrained Vs. Constrained) on gaze behavior were measured by comparing 331 

the actual fixations distribution with that predicted by two accredited models of visual exploration, 332 

namely the Graph-Based Visual Saliency (GBVS) model (Harel, et al., 2006) and the Adaptive 333 

Whitening Saliency (AWS) model (Garcia-Diaz et al., 2012a, b). 334 

Both models did not predict accurately fixation distributions for tools
3
. Participants, indeed, 335 

fixated the functional part of the tools (Bub, et al., 2008) regardless of the visual saliency, especially 336 

for the first fixation or time bins. This suggests that the functional knowledge of the stimulus 337 

affected gaze behavior towards tools (Roberts & Humphreys, 2011). This effect was significantly 338 

reduced when participants had their hands tied behind their backs. We suggest that the actual 339 

possibility to act upon an object, which is not taken into account by visual saliency models, at least 340 

in part guide gaze behavior. How can we account for these findings?  341 

One possibility is to look at those studies showing an effect of action knowledge or intention 342 

on object representation and recognition. For example, it has been shown that a specific action 343 

intention can bias visual processing of action-related objects and visual features (Bekkering & 344 

Neggers, 2002; Gutteling, Kenemans, & Neggers, 2011; Symes, Tucker, Ellis, Vainio, & Ottoboni, 345 

2008). Moreover, neuropsychological evidence showed that action templates activated by functional 346 

affordances may influence visual search and selection independently of their perceptual properties 347 

(Humphreys & Riddoch, 2001). Here we took advantage from the fact that representation of tools is 348 

grounded within the sensory-motor system, and tools observation recruits action representations 349 

(Matheson, White, & McMullen, 2015). This is supported by numerous behavioral and neural 350 

studies showing that observation of objects, particularly tools, induces the covert execution of 351 

motor actions (e.g. Tucker & Ellis, 2004; for a review see Martin, 2007). On the behavioral side, 352 

studies on compatibility effects showed that observing pictures of objects or real objects 353 

potentiates specific motoric representation of actions, that is the reaching and grasping 354 

                                                 

3
 The data also replicated a pilot study in which only two object categories, i.e. non-graspable object and 

tool objects, were used. 



Ambrosini & Costantini 

 

Page 16 of 29 

actions we typically perform to pick up and use them for their intended purpose (Bub, et al., 355 

2008; Tucker & Ellis, 1998, 2001), but only when they afford the potential to be readily used for 356 

functional actions (Ambrosini & Costantini, 2013; Ambrosini, Scorolli, Borghi, & Costantini, 2012; 357 

Cardellicchio, Sinigaglia, & Costantini, 2011; Costantini, et al., 2014; Costantini, Ambrosini, 358 

Scorolli, et al., 2011; Costantini, et al., 2012a, 2012b; Costantini, Ambrosini, Sinigaglia, & Gallese, 359 

2011; Costantini, et al., 2010; Costantini & Sinigaglia, 2012; Ferri, Riggio, Gallese, & Costantini, 360 

2011; Masson, Bub, & Breuer, 2011). These results reveal that manipulable objects are represented 361 

in terms of actions that can be realistically executed with them.  362 

Supporting these behavioral and neuropsychological findings, neurophysiological evidence 363 

showed that the simple observation of graspable objects leads to the activation of the canonical 364 

neuron system (Bonini, Maranesi, Livi, Fogassi, & Rizzolatti, 2014; Murata et al., 1997). The 365 

category of artifacts, and particularly tools, can be somewhat peculiar. Indeed, compared to 366 

ungraspable objects, observation of tools activates a specific, left-lateralized neural network 367 

regardless of the observer’s action intention. Along with posterior temporal areas involved in the 368 

processing of visual motion (Beauchamp & Martin, 2007), this network includes motor-related 369 

brain areas, especially the left premotor and posterior parietal cortices (e.g., Chao & Martin, 2000; 370 

Creem-Regehr & Lee, 2005). The activation of this dorsal network when viewing tools would 371 

reflect the activation of motor routines for the possible interactions with tools and is considered the 372 

neural substrate of affordances (Grezes & Decety, 2002; Jeannerod, 1995).  373 

Thus, behavioral, neurophysiological, and brain imaging studies have demonstrated that 374 

seeing objects activates motor representations of their skillful use. Here we propose that such motor 375 

recruitment impacts also on the way we simply look at objects. But why did tying participants’ 376 

hands behind their backs reduce this effect? One possible explanation pertains the idea that 377 

effective observation of tool depends on how readily the motor representation of that tool can 378 

be recruited (Ambrosini & Costantini, 2013; Ambrosini, Scorolli, et al., 2012; Cardellicchio, 379 

et al., 2011; Costantini, et al., 2014; Costantini, Ambrosini, Scorolli, et al., 2011; Costantini, et 380 
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al., 2012a, 2012b; Costantini, Ambrosini, Sinigaglia, et al., 2011; Costantini, et al., 2010; 381 

Costantini & Sinigaglia, 2012; Ferri, et al., 2011; Masson, et al., 2011). This idea is in line with 382 

previous evidence showing that observers’ motor abilities are needed for processing others’ 383 

actions. They show that the richer one’s motor repertoire, the greater one’s ability to make 384 

sense of others’ behavior (Aglioti, Cesari, Romani, & Urgesi, 2008; Ambrosini et al., 2013; 385 

Calvo-Merino, Glaser, Grezes, Passingham, & Haggard, 2005; Cross, Hamilton, & Grafton, 386 

2006). These findings could be explained by the action-specific perception account (Witt, 387 

2011), according to which people perceive the surrounding environment in terms of their 388 

ability. At the neural level, the integration of visual and proprioceptive/postural information might 389 

occur in the posterior parietal cortex and/or the superior colliculus, which receives input from a 390 

number of non-visual systems (Abrahams & Rose, 1975).  391 

One may possibly argue that the effect we found could also be explained as a body-parts 392 

position effect, rather than an action-possibility effect. Indeed, it has been shown that variations in 393 

hand position might affect visual processing (Abrams & Weidler, 2014; Brockmole, Davoli, 394 

Abrams, & Witt, 2013; Davoli & Brockmole, 2012; Davoli, Brockmole, & Goujon, 2012; Kelly & 395 

Brockmole, 2014; Reed, Grubb, & Steele, 2006) and gaze behavior (Thura, Hadj-Bouziane, 396 

Meunier, & Boussaoud, 2008). However, this explanation cannot fully account for the fact that our 397 

experimental manipulation specifically affected participants’ gaze behavior towards tools. 398 

Moreover, it has been shown that the hand position effect on object perception is actually action-399 

dependent (Chan, Peterson, Barense, & Pratt, 2013).  400 

Our results complement and extend previous studies on fixation behavior showing that 401 

visual exploration involves both low- and high-level information in scenes (van der Linden, Mathot, 402 

& Vitu, 2015). A common finding is that what we expect the target to look like and where we 403 

expect to find it are important sources of information in gaze behavior (Ehinger, Hidalgo-Sotelo, 404 

Torralba, & Oliva, 2009; Kanan, Tong, Zhang, & Cottrell, 2009; Spotorno, Malcolm, & Tatler, 405 

2014; Tatler, Hayhoe, Land, & Ballard, 2011; Torralba, et al., 2006). Interestingly, in our case, the 406 
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high-level information was intrinsic to the observed objects, which are known to be represented in 407 

terms of the action they afford.  408 

According to the visual salience hypothesis, gaze control is a reaction to the visual 409 

properties of the stimulus confronting the viewer: we look at scene locations on the basis of image 410 

properties, such as intensity, color, and edge orientation, generated in a bottom-up manner from the 411 

scene (Harel, et al., 2006; Itti & Koch, 2000; Itti, et al., 1998; Kanan, et al., 2009; Koch & Ullman, 412 

1985; Parkhurst, Law, & Niebur, 2002; Tatler, Baddeley, & Gilchrist, 2005). This hypothesis has 413 

had a large impact on research in scene perception, in part because it has been instantiated within a 414 

neurobiologically plausible computational model (Itti & Koch, 2000) that has been found to capture 415 

gaze behavior under some conditions (e.g. Derrick Parkhurst, Klinton Law, & Ernst Niebur, 2002). 416 

Recently, the model proposed by Itti and Koch has been extended to take into account other low-417 

level factors, such as the so-called object center-bias, the tendency to look at the center of objects 418 

when observing visual scenes (Henderson, 1993; Nuthmann & Henderson, 2010) and at the center-419 

of-mass of an isolated visual object (e.g., Vishwanath & Kowler, 2003), or the so-called image 420 

center-bias, the tendency to look towards the center of images  421 

Despite the prominence of feature-based accounts of eye guidance in recent years, empirical 422 

evaluations of such models have shown that these are insufficient to account for human fixation 423 

behavior ( Henderson, Brockmole, Castelhano, & Mack, 2007; e.g., Tatler, et al., 2005; 2006). Even 424 

the above mentioned extensions of earlier models, such as the GBVS and AWS we used, still 425 

showed large gap compared to the human performance, especially when the behavioral task is 426 

manipulated, (Einhauser, Rutishauser, & Koch, 2008b; Foulsham & Underwood, 2008; Underwood 427 

& Foulsham, 2006; Geoffrey Underwood, Foulsham, van Loon, Humphreys, & Bloyce, 2006). 428 

Even if the low, but significant, explanatory power of visual saliency models may account for our 429 

results, our interest was not in their explanatory power per se, rather how the observed object (Tool 430 

vs. Graspable vs. Ungraspable) and body posture (Unconstrained vs. Constrained) impacted on the 431 

way we explore visual objects.  432 
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To conclude, the present findings suggest that the way we visually explore object is biased 433 

towards action-relevant information (Handy, Grafton, Shroff, Ketay, & Gazzaniga, 2003; Roberts & 434 

Humphreys, 2011), and the kind of information we access from them is constrained by our 435 

readiness to act. 436 
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Figure Captions 666 

Figure 1. Trial structure and exemplar stimuli. The figure shows the timeline of three exemplar 667 

trials in which a graspable object (Rubik’s cube), an ungraspable object (coach), and a tool (peeler) 668 

were shown. 669 

Figure 2. Schematic representation of the FROA methodology. The figure shows the 670 

computational steps carried out to compute the absolute and chance overlap percentages (AOP and 671 

COP, respectively) based on the participants’ fixation gaze data and the visual saliency model(s) for 672 

an exemplar stimulus (peeler).  673 

Figure 3. Results of the Model Matching Dissimilarity analysis. The figure shows the MMD values 674 

as a function of object Category (Tool, Graspable, and Ungraspable) and Body Posture 675 

(Unconstrained vs. Constrained). * indicates the significant effect of the body posture modulation at 676 

the Newman-Keuls’s post-hoc test for the Body Posture by object Category interaction. # indicates 677 

the significance of the same effect at the post-hoc ANOVA on the corresponding difference scores. 678 

† indicates significant different body posture effects as compared to the Tool category.  Error bars 679 

indicate SEM. 680 

Figure 4. Distribution of fixation data for tools. The figure shows the normalized percentage of 681 

fixations (norm% values) as a function of Body Posture (Unconstrained vs. Constrained) and Tool 682 

Part (Functional, NFF; GBVS-Salient, NFSGBVS; and AWS-Salient, NFSAWS) both for each 500 ms-683 

long time bin (A) and for each of the first five fixations (C). Panels B and D show the 684 

corresponding norm% values averaged across time bins and fixations, respectively. * indicates 685 

significant differences at the Newman-Keuls’s post-hoc test for the Tool Part by Body Posture 686 

interaction. 687 


