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Summary 
 
Background: Random forests are successful classifier ensemble methods consisting of 
typically 100 to 1000 classification trees. Ensemble pruning techniques reduce the 
computational cost, especially the memory demand, of random forests by reducing the 
number of trees without relevant loss of performance or even with increased performance of 
the sub-ensemble. The application to the problem of an early detection of glaucoma, a severe 
eye disease with low prevalence, based on topographical measurements of the eye background 
faces specific challenges. 
 
Objectives: We examine the performance of ensemble pruning strategies for glaucoma 
detection in an unbalanced data situation. 
 
Methods: The data set consists of 102 topographical features of the eye background of 254 
healthy controls and 55 glaucoma patients. We compare the area under the receiver operating 
characteristic curve (AUC), and the Brier score on the total data set, in the majority class, and 
in the minority class  of pruned random forest ensembles obtained with strategies based on the 
prediction accuracy of greedily grown sub-ensembles, the uncertainty weighted accuracy,  and 
the similarity between single trees. To validate the findings and to examine the influence of 
the prevalence of glaucoma in the data set, we additionally perform a simulation study with 
lower prevalences of glaucoma.  
 
Results: In glaucoma classification all three pruning strategies  lead to improved AUC and 
smaller Brier scores on the total data set with sub-ensembles as small as   30 to 80 trees 
compared to the classification results obtained with the full ensemble consisting of 1000 trees. 
In the simulation study, we were able to show that the prevalence of glaucoma is a critical 
factor and lower prevalence decreases the performance of our pruning strategies.  
 
Conclusion: The memory demand for glaucoma classification in an unbalanced data situation 
based on random forests could effectively be reduced by the application of  pruning strategies 
without loss of performance in a population with increased risk of glaucoma. 
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1. Introduction 
Ensemble learning is a well-known strategy to deal with classification or regression problems 
[1, 2]. In the classification case, several classifiers are trained on the data and the ensemble 
decision, for example obtained by majority voting, often outperforms the best single classifier 
[3]. The success of ensemble strategies is based on the fact that the classification error of an 
ensemble can be explained by the average error of the single classifiers minus the diversity of 
the ensemble [4], i.e. a classification ensemble performs better when the single classifiers 
constituting the ensemble are not too similar to each other.  One approach to create an 
ensemble is called bagging [5]. Here, several bootstrap samples are drawn from the learning 
data and a new classifier is trained on each sample. A random forest (RF) is a technique that 
utilizes bagging with classification trees [6]. An RF consists of classification trees where in 
each split node of the single trees only a random sample of all available variables is 
considered to reduce the similarity between the trees. The trees constituting the ensemble are 
created considering different subsets of variables in their split nodes and thus are less 
correlated, leading to a better performance of the total ensemble. 
 
Typically, an RF consists of 100 to 1000 trees. Oshiro et al. [7] examined RF with a varying 
number of trees on 29 data sets and found that prediction accuracy was not significantly 
improved when they added more than 128 trees. Nevertheless, often several hundred or 1000 
trees are used in an RF because increasing the number of trees in a random forest does not 
necessarily lead to overfitting of the data while too few trees tend to decrease the 
classification performance. By default, trees in RF are fully grown, i.e. an RF tree consists of 
as many splits as are necessary to be able to classify each single observation in the training 
data set correctly. Thus, the memory demand of an RF can be high when a large number of 
trees is used and the training data set is large. 
 
Ensemble pruning, i.e. the reduction of classifiers in ensembles, has been analysed 
extensively in the literature [8-10]. The exact determination of the optimal sub-ensemble with 
the highest classification performance is computationally prohibitive for moderate ensemble 
sizes because of the high number of possible combinations. The selection of a near-optimal 
solution can be based on optimization techniques like genetic algorithms or semi-definite 
programming [11-14]. Stepwise forward selection, where a  sub-ensemble is created by 
starting with a single-tree and adding one tree after the other, is a much faster way to search 
for well performing sub-ensembles, although the optimality of created sub-ensembles is not 
necessarily guaranteed and the global optimum almost certainly is not obtained. However, this 
strategy can lead to sub-ensembles performing well enough to justify this computationally 
less expensive approach. The selection of single classifiers can be based on the dissimilarity 
of the classifiers to each other to increase the diversity of the ensemble. The problem, how 
diversity in an ensemble or distances between classifiers can best be measured, is discussed 
extensively [15-19]. As the connection between several proposed diversity measures and the 
performance of the ensemble is not as straightforward as might be hoped [16, 19] and not 
always higher diversity leads to an improved ensemble [20], the classification performance of 
single classifiers also was considered for ensemble pruning [21-23]. Another criterion 
discussed for ensemble pruning is the classification margin [24].  
 
In this work, we apply ensemble pruning techniques to a two-class classification problem in 
medical research [25-27], the identification of glaucomatous observations based on 
topographical measurements of the eye background. Because of the low prevalence of 
glaucoma on the population level, unbalanced data sets are an issue in glaucoma screening 
programs. We call a data set unbalanced, if the distribution over the two classes deviates 
strongly from a uniform distribution. Unmodified application of classification techniques that 



are trained to minimize the classification error in this case will lead to classifiers with a high 
specificity and low sensitivity, as the classification error is dominated by the misclassification 
of the majority class (the class with more observations, i.e. normal) and less affected by 
misclassifications in the minority class (the class with fewer observations, i.e. glaucoma). We 
deal with this situation by applying the SMOTE strategy [28] and setting the class weight 
parameter of the RF. The class membership probability predicted by the random forests is 
evaluated rather than the class.The prediction performances in both classes thus can be 
reported with class-specific Brier scores[29]. In our clinical glaucoma data set, the prevalence 
of glaucoma is 18%, which is substantially higher than on the population level. To examine 
the influence of the prevalence on the performance of the pruning strategies, we additionally 
perform a simulation study with lower prevalences. 
  
The remaining paper is organized as follows: in subsection 2.1 we describe the pruning 
strategies, and in subsections 2.3 and 2.4 we introduce the glaucoma data set and give a 
description of our simulation study, respectively. The results are presented in section 3 and a 
discussion is given in section 4.  
 
 
2. Methods 
 
The pruning strategies and experiments described in this section were implemented using the 
statistical programming language R [30]. We used the implementation given in the package 
randomForest to build RF style classification trees. The tree predictions were stored in a list 
structure for further processing by pruning strategies implemented following the respective 
descriptions in the literature (see Online Appendix A – RF Framework for an overview).  
 
2.1. Ensemble Pruning 
In a first step, we train a standard random forest consisting of 1000 trees. To diminish the 
problem of an unbalanced data set the synthetic minority over-sampling technique (SMOTE) 
proposed by Chawla et al. [28] is applied and the a priori probabilities of the classes are 
specified by the RF class weight parameter (see Online Appendix B – Unbalanced Data). 
Then, we aim to reduce the number of trees in the RF. Not only does this reduce the memory 
demand of the classifier (see Online Appendix C – Computational Cost) but a more 
parsimonious ensemble may also lead to an improved performance. 
 Tsoumakis et al. have identified conceptually different main strategies of ensemble pruning  
[10]. One approach  is to tackle the pruning problem by optimization-based methods. These 
computationally expensive methods formulate the problem of identifying a near-optimal sub-
ensemble as optimization problem. Commonly known approaches are genetic algorithms or 
semi-definite programming [11, 12]. A different way to reduce the number of trees is covered 
by clustering-based methods. Here, similar trees are identified using clustering-techniques and 
the trees constituting the final sub-ensemble are chosen from these clusters [31].  
Our focus lies on a third strategy, the greedy stepwise growth of ensembles based on the 
evaluation of sub-ensembles or single trees. One characteristic of this approach is that the size 
of the new sub-ensemble is not automatically determined but the performances of all sub-
ensembles of an increasing number of trees can be evaluated. The size of the ensemble finally 
used can be specified either taking memory restrictions into account or focusing on the 
performance of the sub-ensemble. In the next subsections we provide a detailed description of 
those pruning strategies considered further in our evaluation. Our selection of pruning 
methods is by no means comprehensive. Several modifications and variants of these strategies 
as well as related pruning methods have been considered in previous work [9, 11, 12, 24, 32, 
33]. 



  
 
 
2.1.1 Pruning by Prediction Accuracy: Brier Score 
The Brier score is a measure that can be used to calculate the quality of probabilistic 
predictions as those obtained by RFs, where the fraction of trees voting for a specific class 
membership can be interpreted as a probability. Assuming we estimate the probability for a 
truly non-glaucomatous observation to belong to the class “glaucoma”, the optimal 
probability 𝑜𝑜𝑖𝑖 of this observation 𝑖𝑖 is zero; conversely, for a glaucomatous observation the 
optimal probability is 1. The Brier score then is simply calculated as the mean squared 
difference between the predicted probabilities and the optimal probabilities over all 
observations.  
As each single tree in an RF is trained only on a subset of the training data, for each tree there 
are so-called out-of-bag observations, i.e. observations that were not used in the training 
process and that can be used to estimate the predictive performance of the tree “for free”, i.e. 
without having to rely on additional test data not in the training set. This allows for the out-of-
bag estimation of the Brier score 𝐵𝐵𝐵𝐵�𝑜𝑜𝑜𝑜𝑜𝑜: 

𝐵𝐵𝐵𝐵�𝑜𝑜𝑜𝑜𝑜𝑜 =
1
𝑁𝑁
�(𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜,𝑖𝑖 − 𝑜𝑜𝑖𝑖)
𝑖𝑖

2
, 𝑖𝑖 = 1, … ,𝑁𝑁 

 
Here 𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜,𝑖𝑖 is the out-of-bag probability for observation 𝑖𝑖, i.e.the fraction of the trees voting 
for the class “glaucoma” among all trees generated without observation 𝑖𝑖. 𝑁𝑁 denotes the size 
of the learning set. 
Pruning based on the Brier score is performed in the following way: first, the tree with lowest 
out-of-bag error is selected as “seed” for the ensemble. The out-of-bag error of a tree is the 
fraction of false predictions among observations in the out-of-bag set of the respective tree. 
 
Then, Brier scores for all sub-ensembles of size two consisting of this “seed” and one of the 
remaining trees of the original ensemble are calculated. That sub-ensemble leading to the 
smallest Brier score replaces the “seed” and the process of growing the sub-ensemble is 
iterated until a fixed size is reached or until all trees are in the ensemble. 
In the course of our work, we not only examined pruning based on the Brier score with the 
total data set but also analysed pruning based on the Brier score in the minority class to 
improve the accuracy in the minority class. However, although the Brier score in the minority 
class was substantially improved, the performance on the total data set as measured by AUC 
and Brier score was worsened dramatically. Therefore, we skipped the results following this 
strategy. 
 
 
 
 
2.1.2 Pruning by Uncertainty Weighted Accuracy: UWA 
Partalas et al.[23] introduced a promising measure to direct ensemble pruning. In addition to 
the prediction performance of a classification tree, this measure is based on the prediction 
uncertainty of the hitherto existing sub-ensemble when evaluating trees that should be added 
to the sub-ensemble. This uncertainty simply is estimated by the non-uniformity of decisions 
of trees constituting the (sub-)ensemble. Therefore, we define 𝑁𝑁𝑁𝑁𝑖𝑖 as the proportion of trees in 
ensemble 𝐸𝐸 that classify observation 𝑖𝑖 correctly and 𝑁𝑁𝑁𝑁𝑖𝑖 as the proportion of trees that 
classify this observation incorrectly. The trees in question to be added to the sub-ensemble 
then are weighted in following way: Trees gain positive weight or a reward for each 
observation they classify correctly and negative weight or a penalty for each observation they 



classify incorrectly. The height of the reward (or the penalty) for an observation is determined 
by the uncertainty of the ensemble 𝐸𝐸 classifying this observation: if 𝐸𝐸 classifies the 
observation correctly, the reward (or penalty) is given by (−)𝑁𝑁𝑁𝑁𝑖𝑖 and if 𝐸𝐸classifies the 
observation incorrectly, the reward (or penalty) is determined by (−)𝑁𝑁𝑁𝑁𝑖𝑖. The uncertainty 
weighted accuracy UWA of the tree is the average reward/penalty over all observations. For 
an out-of-bag estimation of the UWA, 𝑁𝑁𝑁𝑁𝑖𝑖 and 𝑁𝑁𝑁𝑁𝑖𝑖 are replaced by the respective fractions of 
trees producing out-of-bag predictions for observation 𝑖𝑖  and the UWA is averaged over those 
observations, for which the tree and the ensemble produce out-of-bag predictions. 
 
2.1.3 Pruning by diversity: the Double-Fault measure (DF) 
The Double-Fault (DF) similarity can be calculated to measure the similarity between two 
classifiers [16]. It can be understood as a pairwise similarity between two trees based on their 
predictions of observations. The trees are defined to be more similar, if they both more 
frequently misclassify the same observations. To be able to calculate the DF measure, one 
needs to know the true classes of the observations. The comparison of the predicted classes 
with the true classes can be done using so-called oracle predictions [16]. An oracle prediction 
is defined to be 1, if the predicted class is true and 0, if the predicted class is false. Comparing 
two classification trees 𝑡𝑡1 and 𝑡𝑡2, we can define  𝑛𝑛𝑖𝑖,𝑗𝑗 as the number of observations, for which 
the oracle predictions of  𝑡𝑡1 are 𝑖𝑖 and of 𝑡𝑡2 are 𝑗𝑗, respectively (𝑖𝑖, 𝑗𝑗 ∈ {0,1}). In particular, 𝑛𝑛0,0 
can be defined as the number of observations, for which both trees predict the false class. The 
estimated DF similarity 𝐷𝐷𝑁𝑁� (𝑡𝑡1, 𝑡𝑡2) between two trees 𝑡𝑡1 and 𝑡𝑡2 then is: 

𝐷𝐷𝑁𝑁� (𝑡𝑡1, 𝑡𝑡2) =
𝑛𝑛0,0

𝑛𝑛0,0 + 𝑛𝑛0,1 + 𝑛𝑛1,0 + 𝑛𝑛1,1 
 
This is the fraction of the number of false predictions of two trees among the total number of 
predictions. The DF similarity is defined only for two classifiers, the mean DF similarity 
𝐵𝐵𝑆𝑆𝑆𝑆� 𝐷𝐷𝐷𝐷(𝑡𝑡𝑖𝑖) of any tree 𝑡𝑡𝑖𝑖 to all other 𝑛𝑛𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛 − 1 trees can be calculates as: 

𝐵𝐵𝑆𝑆𝑆𝑆� 𝐷𝐷𝐷𝐷(𝑡𝑡𝑖𝑖) =
1
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Because a diverse RF ensemble consists of trees that are as distant to the other trees as 
possible, this mean similarity 𝐵𝐵𝑆𝑆𝑆𝑆� 𝐷𝐷𝐷𝐷(𝑡𝑡𝑖𝑖) then may be used as a measure to assess the quality 
of a single tree (the smaller the similarity, the better the tree). We are aware that simple 
aggregation of trees based on this measure does not necessarily lead to the selection of the n 
most distant trees when we choose the n trees with smallest 𝐵𝐵𝑆𝑆𝑆𝑆� 𝐷𝐷𝐷𝐷(𝑡𝑡𝑖𝑖) but we point out the 
attractiveness of this approach because of its simplicity. As with the Brier score, we use the 
out-of-bag data to assess the DF similarity between all classification trees. Thus, we do not 
need additional tuning data. The similarity between two trees then is determined by the 
intersection of the out-of-bag observations of both trees and instead of using all observations 
𝑛𝑛𝑖𝑖,𝑗𝑗 only observations in this intersection set are used, denoted as 𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡1,𝑡𝑡2)

𝑖𝑖,𝑗𝑗: 

𝐷𝐷𝑁𝑁�𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡1, 𝑡𝑡2) =
𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡1,𝑡𝑡2)

0,0

𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡1,𝑡𝑡2)
0,0 + 𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡1,𝑡𝑡2)

0,1 + 𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡1,𝑡𝑡2)
1,0 + 𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡1,𝑡𝑡2)

1,1 

 
 
 
2.1.4 Random Selection 
To be able to assess the performance gain of the pruning strategies we created a random 
ordering of all trees and then use it to construct random reference sub-ensembles. 
 
 



2.2 Clinical Data Set: Glaucoma Classification with HRT measurements 
The data set consists of 254 observations of healthy controls and of 55 observations from 
patients with open-angle glaucoma. The set of variables comprises 102 features from the 
Heidelberg Retina Tomograph which produces three dimensional laser scanning images of the 
eye background and then calculates topographical features of these images. The data set is a 
combination of two case-control studies performed at the Erlangen University Eye Hospital 
described in more detail in Horn et al. [26] to examine the predictive power for glaucoma 
detection. In contrast to Horn et al. we used only those glaucomatous observations that were 
part of the test data in [26]. Thus, the glaucoma prevalence in our data set was reduced, 
motivated by the low prevalence of glaucoma which is a problem in population based 
glaucoma screening [34]. We calculated the area under the receiver operating characteristic 
curve (AUC) and the Brier score as measures of the overall classification performance. Due to 
the imbalanced classes, we also investigated the Brier score in the majority class and in the 
minority class, respectively, to analyse the class-specific performances. The performances 
were estimated by a ten times repeated ten-fold cross-validation. 
 
2.3 Simulation Experiment 
 
The influence of a reduced prevalence of glaucoma in the data set was examined further in a 
simulation experiment. The simulation study is based on the glaucoma data set described in 
the previous section. We assumed a multivariate normal distribution of the HRT variables 
with different location and scale parameters in the normal and glaucoma class. These 
parameters were estimated from the clinical data set by the class-specific means and standard 
deviations, respectively. New observations are simulated by drawing randomly from these 
distributions. Such a simulation experiment allows for the extensive examination of the 
influence of unbalanced classes in data sets with lower prevalences. 
Our simulation study consists of three settings where always a total of 200 observations is 
generated, but the number of observations belonging to the glaucoma class is varied from 30 
(=15%, setting A) to 20 (=10%, setting B) to 10 (=5%, setting C). Each simulation setting 
consists of 100 simulation runs, where in each run one training set and one equally structured 
test set are simulated. 
 
3. Results 
 
The comparison between pruning strategies and a full RF consisting of 1000 trees should not 
only focus on performance differences, but also assess differences in computational costs, i.e. 
memory demand  and runtime. When performance measures of a full RF and of some pruning 
methods are similar, the latter criteria play an important role when deciding whether RFs 
should be pruned or not. In our case, however, a comprehensive evaluation of differences in 
computational costs is currently not possible due to the lack of a computationally efficient 
implementation allowing a fair comparison of pruned RFs with full RFs. As a first step, we 
performed a conceptual comparison of different RFs of varying sizes to address the 
computational aspect (see Online Appendix C – Computational Cost). The results reported in 
this section, however, refer only to the performances of the pruning strategies.  
 
3.1 Glaucoma Classification 
 
Figure 1 shows the AUC, and the Brier score with the total data set and in both classes 
separately of ensembles consisting of up to 200 trees built following the strategies described 
in the previous section. Three of four measures (AUC, Brier Score, Brier Score (Majority 
Class)) can very clearly be improved with our pruning strategies. With DF and UWA pruning, 



the AUC of the full RF consisting of 1000 trees is already achieved with ensembles consisting 
of about 50 trees, and with Brier pruning, ensembles with about 80 trees yield a comparable 
AUC. The Brier scores are very similar for all three pruning strategies. On the total data set 
the Brier score of the full RF is obtained with about 30 trees, while the Brier score in the 
majority class already can be improved with an ensemble size larger than 20 trees. Moreover, 
the AUC plot and the Brier Score estimated from the total data set  show that the 
improvement obtained by our  pruning strategies in the majority class overcompensates the 
weaker Brier score in the minority class compared to the full RF. 
 
 
 
 

Figure 1: Classification results obtained with the glaucoma data set: AUC, Brier score on the 
total data set (top row, from left to right), Brier score in the majority class, and Brier score in 
the minority class (bottom row, from left to right) for ensembles consisting of 1 to 200 trees 
where the trees are selected based on the three examined strategies DF pruning, Brier pruning, 
and UWA pruning and performing random selection.  
 
 
3.2 Simulation Experiment 
 
A detailed report of the results in the simulation experiments, together with tables showing the 
AUC, and Brier scores for the total data set, for the majority class, and for the minority class 



for random forests of sizes 50, 75, 100, 150, and 200 trees produced by pruning and the full 
RF consisting of 1000 trees are given in Online Appendix D – Simulation Results. 
Overall, the performance of all three pruning strategies is very similar and a performance 
deterioration of these strategies can be observed as the prevalence is reduced. 
In simulation setting A with a prevalence of 15%, all three pruning strategies are able to 
achieve the AUC, and the Brier score obtained with the full RF consisting of 1000 trees 
already with ensembles of size 50 and are even able to improve the overall performance and 
the performance in the majority class with ensembles sizes larger than 75 trees. A ranking in 
the performances of the different pruning strategies shows that – although results are very 
similar and absolute differences are negligible - in 15 cases (three measures: AUC, Brier 
score, Brier score in the majority class; five ensemble sizes) DF pruning produces best results, 
followed by Brier pruning, and finally by UWA pruning. The fact that none of the pruning 
strategies can improve random selection in the minority class highlights the importance of the 
performance in the majority class, even though the unbalanced data set was considered in 
training by applying SMOTE and by weighting the classes in the RF. 
In setting B, the AUC of the full RF cannot be obtained with pruning strategies and an 
ensemble size of 50 trees. From 75 trees on, however, this AUC (0.982) is reached by DF 
pruning and by Brier pruning. UWA pruning still is a bit worse. With larger ensembles from 
100 trees on, all three pruning strategies obtain the AUC of the full RF and even are able to 
improve it slightly. The Brier score estimated from the total data set and that in the majority 
class obtained by the full RF is improved with all three pruning strategies and all ensemble 
sizes by up to 26% (from 0.027 to 0.020), surprisingly even more pronounced in the smaller 
ensembles. The Brier score in the minority class of the full RF, however, is lower than that of 
all pruning strategies: 0.11 (full RF) compared to 0.127, 0.131, 0.133 (50 trees, UWA 
pruning, Brier pruning, DF pruning, respectively), or 0.123 (all three strategies, 200 trees). 
In setting C with 5% prevalence, all three pruning strategies can improve the overall Brier 
score and the Brier score in the majority class compared to the full RF. As in setting A and B, 
however, the Brier score in the minority class obtained with the full RF is lower than that 
obtained by all three pruning strategies. The AUC of the full RF is obtained by DF pruning 
from 75 trees on and from UWA pruning and Brier pruning from 150 trees on. 
 
4. Discussion 
 
Random forests have already demonstrated their ability to yield good results for glaucoma 
classification based on topography information of the eye background [25, 26]. In this work, 
we were interested in the reduction of the computational cost of these classifiers by the 
application of pruning strategies. The performance of pruned RFs in unbalanced data sets with 
a low glaucoma prevalence was of special interest because of the need to improve classifier 
performance for population-based glaucoma screening programs [35]. 
 
One pruning strategy evaluated in our work is based on the similarity of trees to increase the 
ensemble diversity, as this is known to play a major part in the success of ensemble learning 
[4, 20]. The similarity of classifiers can be measured in many ways [16, 19]. However, we 
found very promising results using the DF similarity. It has been shown that classification 
performance of individual classifiers can play an important role in ensemble pruning [21, 22]. 
Partalas et al. [23] examined a more refined measure that is not only based on the tree 
accuracy but also weighted with the ensemble uncertainty. This measure, UWA, showed also 
very competitive results in our glaucoma data set as well as in the simulation study. Our third 
measure is based on the accuracy of the probabilistic prediction, as measured by the Brier 
score. Although in some way simpler than DF or UWA, as no two predictions have to be 



compared, but only the probabilistic outcome and the optimal probability, the Brier score also 
leads to very good pruning results.   
In the simulation study, the performance of these pruning strategies was better at higher 
prevalences (10% and 15%). In setting C with a low prevalence of 5%, pruning reduces the 
computational cost, i.e. the memory demand, but cannot improve the performance of the full 
ensemble. On the other hand, the classification performance is still not jeopardised by pruning 
in this setting. However, a higher benefit of the application of pruning strategies can be 
expected when applied to glaucoma data from high risk populations where the prevalence of 
glaucoma is higher than in setting C. Then, the classification performance of a fully grown RF 
consisting of 1000 trees can even be improved. 
 
Although the complexity in the final ensembles once they are pruned is reduced, the higher 
effort that is necessary for training the ensembles has to be taken into account. In real world 
applications, however, training a classifier in most cases is a one time job and the trained 
classifier is then applied very often and has to prove its usefulness. Thus, reduced complexity 
in the classification step outweighs higher complexity in the training step by far. Therefore, 
our work can be seen as a preliminary examination of the feasibility of pruning strategies for 
RF. For practical applications, however, an efficient implementation of pruning strategies to 
RF is required, e.g. by providing an interface to an existing RF implementation. 
A very interesting approach to reduce the computational cost in the classification step is given 
by Schwing et al. [36]. Based on statistical reasoning, they suggest an early termination of the 
classification process, when the class membership is reasonably sure.  
 
Krawczyk et al.[37] also incorporated the DF measure to direct the pruning strategy in 
unbalanced data. In later work [38], they proposed an evolutionary algorithm based approach 
and achieved good performance. Bhowan et al. [11] implemented genetic programming to 
obtain optimal sub-ensembles with unbalanced data. It might be interesting to examine the 
difference between the pruning approaches considered here and these more complex 
optimization based proposals. 
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