
General Video Game AI:
Learning from Screen Capture

Kamolwan Kunanusont
University of Essex

Colchester, UK
Email: kkunan@essex.ac.uk

Simon M. Lucas
University of Essex

Colchester, UK
Email: sml@essex.ac.uk

Diego Pérez-Liébana
University of Essex

Colchester, UK
Email: dperez@essex.ac.uk

Abstract—General Video Game Artificial Intelligence is a gen-
eral game playing framework for Artificial General Intelligence
research in the video-games domain. In this paper, we propose for
the first time a screen capture learning agent for General Video
Game AI framework. A Deep Q-Network algorithm was applied
and improved to develop an agent capable of learning to play
different games in the framework. After testing this algorithm
using various games of different categories and difficulty levels,
the results suggest that our proposed screen capture learning
agent has the potential to learn many different games using only
a single learning algorithm.

I. INTRODUCTION: AGI IN GAMES

The main objective of Artificial Intelligence is to develop
automated agents that can solve real world problems at the
same level as humans. These agents can be divided into
two broad types: domain-specific agents and general agents.
Domain-specific agents focus on solving only one problem,
or a few, problems at the same or better level than skilled
or trained humans. For video games, there have been several
competitions that encouraged the development of AI players
for specific games. Examples are the Ms PacMan [1] competi-
tion, which took place between 2008 and 2011, and the Mario
AI competition [2], held between 2009 and 2012.

However, apart from being excellent at performing a single
skilled task, humans are also capable of solving several
different types of problems efficiently. For example, in video
game terms, humans do not restrict their ability to be expert at
only one or a few types of video games, as opposed to domain-
specific AI agents. This inspired researchers to study another
type of AI agent called “general” agents. The word general
in this context means that the intelligence embedded in such
agents should be applicable for many types of problems. This
is not necessarily equivalent to combining different algorithms
from domain-specific agents to create a general agent, but to
develop only one that is general enough to adapt with all tasks,
in an Artificial General Intelligence (AGI) setting [3].

To efficiently evaluate the generality of an AGI agent, AGI
framework tasks should not be finite, but updated frequently to
ensure that developed AGIs are not domain-specific with the
seen problems. General Video Game Artificial Intelligence or
GVG-AI [4] is a General Video Game Playing [5] framework
with this characteristic. Video Game Description Language
was applied [6] to easily design and develop new video games,
increasing the number of games from 30 games (when it was

first started in 2014) to 140 games at the time this paper is
written (January 2017).

Human video game players receive most of their informa-
tion through visual sensors (e.g. eyes), and interact by giving
actions directly via game controllers. This inspired attempts
to develop video game automated players using mainly screen
information as an input, such as the PacMan screen capture
competition [7] and VizDoom [8]. An important breakthrough
of this is the Deep Q-Network, proposed by Mnih et al. [9].
The developed agent was evaluated using the Arcade Learning
Environment (ALE) [10] framework. Since the algorithm
receives screen information as input and produces actions as
output, it is adaptable to many different domains. This paper
presents a work that applies a Deep Q-Network to the GVG-AI
framework, in order to develop a screen capture learning agent
in this framework for the first time, as far as the authors are
aware. As previously suggested, ALE’s game set is finite, but
GVG-AI is not. The purpose of this work is to present another
version of a Deep Q-Network for the GVG-AI framework.

The paper is structured as follows: Section II reviews the
related work that has been done, while the relevant background
details are described in Section III. This is followed by
the proposed learning agent algorithm (Section IV) and the
experiment results (Section V), and finally the conclusions and
possible future works are discussed in Section VI.

II. RELATED WORK

The first attempt to apply AGI within the game domain
is General Game Playing (GGP) [11], which is a platform
for Artificial General Intelligence for games. Later, ALE was
proposed in 2013 by Bellemere et al. [10] as a framework
to evaluate Artificial General Intelligence, using some of
the Atari 2600 video games as tasks to solve. In the same
year, General Video Game Playing (GVGP) was defined
by extending from GGP [5]. Unlike GGP, GVGP focuses
more on general agents for video games, which require more
player-environment real time interactions. Based on GVGP,
game information should be encapsulated and given to the
player during the game play, allowing some (small) time for
the player to determine the next action based on the given
information. The first GVGP competition and framework is
General Video Game Artificial Intelligence or GVG-AI [4].

978-1-5090-4601-0/17/$31.00 ©2017 IEEE

ar
X

iv
:1

70
4.

06
94

5v
1

 [
cs

.A
I]

 2
3

A
pr

 2
01

7

Since the GVG-AI competition first started in 2014, there
have been several works aimed at developing GVGP agents,
although most of them are based on planning algorithm due to
framework restrictions (i.e. no replay and timing constraints).
The most popular algorithm applied was Monte Carlo Tree
Search (MCTS) [12]. There have been attempts to modify
MCTS to work more efficiently with GVG-AI, such as using
evolutionary algorithm with knowledge-based fitness function
to guide rollouts [13], or storing statistical information in tree
nodes instead of pure state details [14].

There was a claim that GVG-AI will operate a new track
called learning track to encourage learning agent development
in near future [15]. Only one learning agent has been proposed
so far, based on neuro-evolution [16]. The framework was
adjusted so the agent could replay games, and the forward
model was made inaccessible. Based on this, the learning agent
was obliged to rely only on its own gameplay state observation
and experience. We employed similar framework adjustments
in this work, where only the level map dimension, block size
and screen information are accessible to our learning agent.

Learning from visual information has been taken into ac-
count for years, and some video game research frameworks
such as the Ms. PacMan screen capture competition [7] and
ALE, have screen capture tools embedded. Image recognition
algorithms can be used to obtain user-specified features. Also,
recently flourish attention in Deep learning [17], especially a
spatial-based deep neural network called Convolutional Neural
Network (CNN) [18], encouraged more adaptations of CNN
usages in auto image feature extraction. After the features are
extracted from asynchronous series of screens captured during
gameplay, Reinforcement learning [19] is usually applied as
the learning algorithm. The first framework idea that combines
deep learning and reinforcement learning in a visual learning
task was proposed by Lange and Riedmiller [20]. Later, Mnih
et. al. [9] proposed a breakthrough learning general agent for
ALE. The algorithm they proposed is called Deep Q-Network,
which is a combination of a Deep convolution neural network
and Q-learning in reinforcement learning.

To the best of our knowledge, there is no GVG-AI learning
agent that uses visual information as an input. A Master thesis
done by B. Ross [21] applies sprite location information in
grid observation to guide MCTS towards a new sprite type
that never explored , although it is still a planning agent. Our
paper is the first attempt to develop a screen capture learning
agent for GVG-AI.

III. BACKGROUND

A. Convolutional neural network

Convolutional neural networks are a type of neural network
that was designed for image-like data feature extraction. The
concept was first introduced in 1998 [22], but gained more
interest after being successfully applied as a part of classifier
algorithm for ImageNet [23]. For each convolution layer, each
neuron is responsible for one value of input data (i.e. a pixel
of RGB value for image input). The idea is that images in
the same category often share the same features in certain

Figure 1: An example of convolution layer

local areas: for example, the pictures of dogs are most likely
to contain dog ears at some location. The image pixels that
represent dog ears share the same or similar features, even
though they are not located at the same locations in the images.
Convolution layers extract this by passing data from the same
neighborhood areas into the same neurons, as illustrated in
Figure 1. Each area block dimension is called ’kernel size’
and the gap between two blocks is called stride size. in Figure
1, kernel size = 2×2 and stride size = 1×1. In each convolution
layer, each output neuron is embedded with a non-linear
rectifier function, which in this work is f(x) = max(0, x)

B. Q-learning

Q-learning is an off-policy temporal difference learning
algorithm in Reinforcement Learning [19] (RL), which is a
Machine Learning paradigm that aims to find the best policy to
react in the problem it is solving. This is done by maximising
reward signals given from the environment for each available
action in a given situation. Q-learning is a model-free RL
technique that allows online learning, and it updates the current
state values according to maximum return values of all states
after providing available actions.

A main challenge in Reinforcement Learning is to balance
exploitation and exploration. Exploitation chooses the best ac-
tion found so far, whilst exploration selects another alternative
option to improve the current policy. A simple solution for
this is to apply an ε-greedy policy, which selects an action
at random with probability ε. In our implementation, ε was
initialised at 1 and decreased by 0.1 in every time step until
it stabilizes at 0.1.

C. Deep Q-Network

Deep Q-Network consists of two components: a deep con-
volution neural network and Q-learning. A CNN is responsible
for extracting features for the images and determining the best
action to take. The Q-learning component takes these extracted
features and evaluates state-action values of each frame.

1) Network structure: The Deep CNN proposed by Mnih
et. al. [9] consists of 6 layers: 1 input layer, 4 hidden layers and
1 output layer, connected sequentially. The input layer receives
pre-processed screenshots and passes them to the first hidden

layer. The first three hidden layers are convolutional layers
and the last one is a fully-connected dense layer. The output
layer has the same number of neurons as the number of ALE
possible actions.

2) Method: The method has two main units: pre-processing
and training. Pre-processing transforms a 210 × 160 pixel
screen captured image into an 84 × 84 pixel of Y-channel
value in RGB. This means the input sizes are fixed for all
ALE games tested, unlike GVG-AI games that have different
screen sizes. Training is done by passing 4 pre-processed
recent frames into the network, giving an action returned by
the network to the game and observing the next screen and
the reward signal. Input screens, actions performed, result
screen and reward (clipped to either -1, 0, 1, based on either
positive, unchanged or negative score) are all packed together
into an object called “experience”, which will be stored into
the experience pool. Then, some experiences in this pool are
sampled to calculate action-value outputs of these four recent
frames (of the selected experience). After that, the output is
used to update the network connection weights using gradient
descent. To randomly select stored experiences and updates,
the network based on them is called “experience replay” which
is the core component of this learning algorithm. Also, to
achieve a more stable training, the network is cloned and the
clone is updated from Q-learning while the original is used
to play games. After a while, the original network is reset to
the updated clone. In our GVG-AI agent we used experience
replay but not double network learning, as the memory usage
was not affordable.

D. GVG-AI

1) GVG-AI framework: The GVG-AI framework contains
140 games in total, 100 of which are single player games and
the rest, 2-player games. In this paper the developed agent
was tested with some of the single player games alone. Video
games in this framework were all implemented using a java
port of Py-vgdl, which is developed by T. Schaul [6]. All
game components, including avatars and physical objects, are
located within 2 dimensional rectangular frames.

The 2014-2016 GVG-AI competition featured only the
‘planning track’, which is subdivided into single player and
2-player settings. Submitted agents are not allowed to replay
games, instead a forward model is given for future state
simulation. All state information is encapsulated into this
model and the agent can select an action, observing results
before performing the action in the game. However, since a
game state space is very large and the agent is allowed up to
40 ms to return an action, exhaustive search is not practical. In
this paper, only screen information, screen block size, and level
dimension were used as inputs, and all time limit restrictions
were disabled.

2) Games tested: There are 6 single player games used
in the experiments described in this paper. These can be
categorised into two groups: simple exit-finding games and
stochastic shooting games. Grid-world, Escape and Labyrinth
are exit-finding games, while Aliens, Sheriff and Eggomania

Algorithm 1 Visualize pre-processing (RealPrep)
1: Input: Game block size bSize
2: Output: preprocessed image in 2D array of double format
3: BEGIN
4: Im ← capture the current screenshot
5: shrunkIm ← Shrink(Im, bSize)
6: normShrunk ← Normalize(shrunkIm)
7: smallestAllowed ← smallest size allowed
8: extendedIm ← Extend(normShrunk, smallestAllowed)
9: RETURN extendedIm

10: END

are shooting games. We selected these games specifically
because of their similar nature and varying levels of difficulty.
For example, Labyrinth is more difficult to solve than Escape,
which is in turn harder than Grid-world. Similarly, Sheriff is
harder than Aliens but less difficult than Eggomania. Unfortu-
nately, the long time needed to train the networks prevented
us from testing on more games. Details of each game can be
seen in Table I.

3) MCTS: Monte Carlo Tree Search (MCTS; [12]) is a tree
search technique that builds an asymmetric tree in memory, bi-
ased towards the most promising parts of the search space, via
sampling available actions. This is the best sample controller
provided with the GVG-AI framework (SampleOLMCTS) and,
despite being a planning algorithm, has been chosen in this
study to compare with the performance of our proposed
learning agent (in the absence of an actual learning algorithm
to compare it with).

IV. PROPOSED METHOD

We present a GVG-AI screen capture learning agent based
on a Deep Q-Network. We modified the framework to allow
replaying for any created agents, and another alteration made
was to disable all timing limits, which include 1 second for
constructing an agent and up to 40 ms action determination
for each time step. Therefore, our agent is allowed unlimited
time in initialisation and learning steps.

A. Deep Q-Network for GVG-AI

Similar to the original Deep Q-Network, our proposed
learning method consists of a pre-processing and a learning
unit.

1) Pre-processing unit: Since GVG-AI framework supports
both visualise and non-visualise game running, we proposed
two pre-processing algorithms to support both representations.
The visualise algorithm directly captures the screen image,
shrinking each block down into one pixel, normalising the
RGB value and expanding into the smallest size allowed. The
reason behind this size-modifying algorithm is that the same
network structure was applied for every game tested, each of
which differ in screen widths and heights. It is possible that
the screen is too small for the network, therefore it must be
extended into a specific size to prevent errors. Large images
do not trigger this problem. Lines 4-7 of Algorithm 1 show
screen capture, image shrinking and normalising respectively,
while image extension steps are shown in lines 8 and 9.

Table I: Descriptions of Games Tested

Game type Score system Game name
Winning/Losing

condition
Number of different

sprite type

Exit-finding Once at the end
Grid-world

Win: exit reached
Lose: timeout or falling into traps

4
Escape 5

Labyrinth 4
Exit-finding with
collectable items

Accumulative
during gameplay

Modified
Labyrinth

5

Shooting
Aliens

Win: All enemies shot
Lose: Hit by a bomb, touched by an enemy

6

Sheriff
Win: All enemies shot

Lose: Shot by an enemy, timeout
7

Eggomania
Win: Enemy shot

Lose: Failed to collect one item, timeout
8

Algorithm 2 Non-visualize pre-processing (GenPrep)
1: Input: Grid observation grid, color mapper Mapper
2: Output: pre-processed image in 2D array of double format
3: BEGIN
4: newImage ← empty array of same dimension as grid
5: For each sprite type t ← grid[i j]
6: IF t was found before
7: Color ← Mapper[t]
8: ELSE
9: Color ← random a new color

10: Mapper[t] ← Color
11: newImage[i, j] ← Color
12: normShrunk ← Normalize(newImage)
13: smallestAllowed ← smallest size allowed
14: extendedIm ← Extend(normShrunk, smallestAllowed)
15: RETURN extendedIm
16: END

Non-visualisation pre-processing generates screen informa-
tion from a framework-provided object called gridObserva-
tion, which contains all sprite location information at that
state. Each sprite type is mapped into a random RGB colour
first, then an image is generated based on the gridObservation
information. After that, this image is normalised and expanded
if necessary. Algorithm 2 shows how to generate an input
image from a grid observation. It begins with an empty 2D
array creation, then fills each cell with a stored colour (if the
same sprite type in that position was found before (lines 6
and 7)), otherwise another color is randomly generated and
filled into that cell (lines 8 to 10). After that, the 2D array is
normalised and expanded, as in lines 12 to 14.

2) Learning unit: A Java deep learning library called
DeepLearning4j1 was applied to create and train the previously
designed CNN. Two network structures, as shown in Figure 2,
were implemented. An input layer consists of w × h neurons
while w and h are width and height of the pre-processed game
screen respectively. Convolution layer kernel sizes are either
5× 5 or 3× 3, depending on which network parameter set is
chosen. There are 32 and 64 neurons in the first and second
convolution layers respectively. Stride size is always equal to
1 × 1 to capture the most information. Subsampling layers

1https://deeplearning4j.org/

(a) 4-layer network

(b) 6-layer network

Figure 2: Network structure.

kernel size is 3 × 3. Dense layers consist of 512 neurons
fully-connected. Output layer has the same neuron number
as available actions of the game. Notice that input and output
layer neuron numbers are different for each game but the rest
of the network are the same.

Learning procedures for each timestep are summarized in
Algorithm 3. Lines 4 and 5 are executed only in visualise
mode when the screenshot is taken and pre-processed, while
lines 6 to 8 are for the non-visualisation mode where the screen
input is generated from the grid observation. For the first time
step, there are no experiences in the pool, therefore a random
action is selected and stored in a newly created experience,
along with the current screenshot. Then the action is performed
into the game; lines 12 to 16 represent these steps. From the
second time step onwards, the current screenshot is stored as
the result of the previously-created experience, along with the
reward signal, as stated in lines 18 and 19. This experience

Algorithm 3 Learning procedures for each timestep
1: Input: Game block size blockSize, Initial grid observation grid
2: Output: Action for this game step
3: BEGIN
4: IF graphical user interface allow
5: Image ← RealPrep(blockSize)
6: ELSE
7: mapper ← Agent color mapper
8: Image ← GenPrep(grid, mapper)
9: expPool ← experience pool

10: exp ← current experience
11: Q ← current state-action value
12: IF first time step
13: exp[previous] ← Image
14: act ← a random action
15: exp[action] ← act
16: RETURN act
17: ELSE
18: exp[result] ← Image
19: exp[reward] ← reward of this state
20: QLearningUpdate(exp, Q)
21: Add exp to expPool
22: exp ← ∅
23: model ← Agent network model
24: exp[previous] ← Image
25: trainData ← ∅
26: REPEAT
27: randExp ← pick one experience from expPool
28: QLearningUpdate(randExp, Q)
29: toTrain ← create training data from randExp and Q
30: Add toTrain to trainData
31: UNTIL batch size reaches
32: Fit trainData to model
33: With probability 1 - ε
34: act ← feed Image to model and get the output action
35: ELSE
36: act ← randomly select an action
37: exp[action] ← act
38: Set current experience to exp
39: RETURN act
40: END

is then updated using Q-learning (line 20) before being added
into the pool (line 21). Then a new experience is created to
store the current screenshot. After that, some experiences are
picked from the pool, updated using Q-learning and passed
into the network to train. The experience sample and network
training steps are given in lines 26 to 32. ε-Greedy policy is
applied to select an action from the network, giving the current
screenshot as input. The action is then stored in the experience
and given to the network. All of these steps are repeated until
the game terminates.

Our agent performs a Q-learning update in three occasions
during gameplay, in addition to the original DQN that is done
only once during experience replay. These include one at
the experience creation, one during sampling (as the original
DQN) and one more at the end of the episode. This prioritizes
the experiences that related to the game results. Also, apart
from performing the normal Q-learning equation using a pure
score, we added a −5 penalty reward to the actions which
previous and result screens are the same. This is based on the

Table II: Tuned Parameters

Parameter name Value applied Meaning

batch size 200, 400
Number of experiences passed

in experience replay
First kernel size (5×5), (3×3) First convolution layer kernel size

Second kernel size (3×3) Second convolution layer kernel size
Dropout 0, 0.15, 0.3 Network dropout value

Subsampling True, False With / without subsampling layer

assumption that the action does not change anything in the
game, preventing the agent from getting stuck at the wall and
encouraging more movements.

V. EXPERIMENT RESULTS

A. Parameter tuning

A pre-experimental phase was carried out to select a high
quality parameter set. All tuned parameters are described
in Table II. Escape level 0 was selected to do parameter
tuning as the nature of the game is simple, the game screen
size is not large, and it requires only 16 moves to win the
game optimally. Three criteria were applied in each set for
performance measurement. This includes the number of steps
taken to win, win percentage at each episode number, and win
percentage calculated since the first training. For each criteria,
the average, best value and optimal (if applicable) value were
measured and compared. We found that, among the selected
values, batch size = 400, kernel size = 5 × 5 connected by
3 × 3, dropout = 0 and no subsampling layer gave the best
performance in this game. Next, we applied this parameter set
to create a CNN, which was embedded into the game player
agent to play 6 selected games. The experiment was done 5
times for each game and all results were averaged.

B. Testing with games

We trained our agent, embedded with a network created with
previously tuned parameters, separately for each game. Only
the non-visualized pre-processing mode was used because
for faster execution. Each experiment was done 5 times for
each game and the results were averaged and compared with
the result from MCTS planning-agent, which were averaged
from 100 runs in the original competition-setting framework
(with timing constraints and no replay allowed). With different
framework settings, the comparison between our learning
algorithm and MCTS is not totally ’fair’ since MCTS was
allowed limited time to think. However, the purpose of this
comparison is to measure how well our learning agent played
each game compared to the best sample controller.

1) Grid-world: Original and trapped grid-world were ap-
plied in this experiment. Figure 3 shows their differences and
heat maps of the agent during training. Heat maps indicate how
frequently the agent visited each position during gameplay. In
this paper, the number of times the agent visited each cell
was stored in order to create a heat map. It can be seen that
the optimal paths are highlighted with the darkest blue shade,
indicating a higher presence of the agent in such paths.

(a) Original Grid-world (b) Trapped Grid-world

Figure 3: Grid-world maps and heat maps.

Figure 4: Classic Grid-world steps taken.

Figure 4 shows the steps taken to win for each gameplay
for classic Grid-world. It is obvious that the agent took fewer
turns to win as it played more, and found the optimal (16) steps
within 60 turns. For trapped Grid-world an accumulative win
percentage is measured since the agent will lose if the it falls
into a hole. The results, as given in Figure 5, show that the
agent performance is better when it plays more. This confirms
that our agent is capable of learning Grid-world, both original
and trapped versions. MCTS agent easily solved Grid-world
as it managed to win 79%, although it never found the optimal
solution as the minimum steps it reached was 23 (optimal: 16).
Traps seemed to significantly affect MCTS performance since
it never won any in the trapped Grid-world. This suggests that
a sequence of actions for trap avoidance could be found from
our learning agent but not the MCTS planning agent.

2) Escape: In addition to parameter tuning, Escape level
3 was selected to test our proposed method. The level 3
game is more challenging than level 0 as it contains two
sequences of necessary moves, shown by the red arrows in
Figure 6(a). Figure 7 shows cumulative winning percentage
for Escape level 3. The necessary moves significantly affected
the agent performance as it won at most 3 out of 5 games after
playing 350 episodes. However, the trend line of cumulative
win percentage increases with more turns played. The heat
map in Figure 6(b) shows the darker blue shade trace that
leads to the winning position. This suggests that our agent
was learning, gradually, to play this game. MCTS agent could
not manage to win any single game in Escape at both level
0 and level 3. Again, a sequence of certain actions could be
found from learning agent but not planning.

(a) Steps taken

(b) Cumulative win percentage

Figure 5: Trapped Grid-world results

(a) necessary moves (b) Agent’s heat map

Figure 6: Escape level 3 necessary moves and heat map

Figure 7: Escape level 3 cumulative win percentage

3) Labyrinth: Labyrinth map is much larger than Escape
and Grid-world, and contains long corridors in most areas.
This means the agent could move only two directions at a

(a) Original (b) Modified

Figure 8: Original and Modified Labyrinth heat map

Figure 9: Modified Labyrinth average accumulative %win

time even though four move actions are available, and most of
the time the correct moves are sequences of the same actions.
Mnih et. at. [24] mentioned an idea of using immediate reward
as a guidance of Reinforcement Learning, which inspired us to
add collectible items to Labyrinth. Figure 8 shows differences
between the original and modified Labyrinth, along with the
agent’s heat maps. It can be clearly seen that the agent moved
into correct directions more with the collectible items that
provide reward signals.

The learning agent never won any single original Labyrinth
game, but it did in the modified version. The cumulative win-
ning percentage for this game, given in Figure 9, shows that the
agent won more games in later turns, showing that our agent
is capable of learning how to play Labyrinth with immediate
rewards. It is worth to notice that, even with considerably
low percentage (15%), the MCTS agent won some original
Labyrinth games. It might be beneficial using macro actions
(repeatedly applying the same action in a sequence) for this
type of games. In addition, the winning percentage of the
MCTS agent increased significantly to 57% with collectible
items. This suggests that immediate reward signals could assist
AI agents to solve games.

4) Aliens: Aliens is a stochastic shooting game in which the
enemies move in one direction (above the agent). We measured
the agent’s cumulative win percentage and plotted the results
in Figure 10. The trend line shows that winning percentage in-
creases with more episodes played, suggesting that the learning
algorithm was also successful in this game. The MCTS agent
outperformed our learning agent in this game with winning
percentage 72% and average score of approximately 77.5.

Figure 10: Aliens average accumulative win percentage

Figure 11: Sheriff average accumulative score

This might suggest that the planning algorithm suits stochastic
games better than our learning method, in which the network
might not be converged due to uncertainty in the game.

5) Sheriff: Sheriff is another stochastic shooting game that
is more complicated than Aliens. Specifically, enemies sur-
round the player from all directions. The average cumulative
score (since no victories were observed) was measured and
presented in Figure 11. The trend line of the data shows that
the agent achieved a higher average score in later plays. That
is, our agent was capable of learning to score more in this
game. Similar to Aliens, the MCTS agent easily overcame
our agent with a 94% winning rate and almost perfect score
on average (7.96 out of 8). This confirms that uncertainty
highly affected the learning agent performance more than the
planning agent. Also, since the MCTS agent is able to guess
the immediate future in crucial situations (such as almost being
hit by the bullet), it was most likely to avoid it. This is in
contrast to our agent, which required longer to actually ’learn’
the connections between bullets in one and another position.

6) Eggomania: Eggomania is different to Aliens and Sher-
iff as the agent has to collect the objects dropped from the
enemy instead of avoiding them. Failing to collect once will
immediately cause it to lose the game. This is difficult since
the agent might lose many times before an item is collected.
Moreover, in order to win this game the agent must shoot the
enemy after collecting items for a certain time, which is also
challenging because the agent might incorrectly learn that the
’shoot’ action was useless. Figure 12 shows that the agent was

Figure 12: Eggomania average accumulative score

gradually learning to achieve a higher score during training.
Even though the MCTS agent suffered from this game nature
(it won only 1 game out of 100), it managed to collect more
items (about 5 in average) than our learning agent.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, a screen capture learning agent for General
Video Game Artificial Intelligence (GVG-AI) framework is
presented for the first time. A Deep Q-Network algorithm
was applied to develop such agent. Some improvements have
been made to extend the original algorithm to work within
the GVG-AI framework, such as supporting any screen size
and non-visualise gameplay mode. The convolution neural
network parameters were tuned as pre-experiment before being
implemented as a part of the game agent in the real exper-
iment. Results suggest that our learning agent was capable
of learning to solve both static and stochastic games, as
the accumulative wining percentage in static games and the
accumulative average score in stochastic games increased with
more games played. This suggests that the agent applied
knowledge acquired during the earlier plays, to adapt to later
repetitions in the same game.

Several future works are possible in the agent’s improve-
ments. At the moment, the same CNN structure has been
applied with every game experimented. However, it might be
more efficient if the network can be scaled based on the game
it is learning, since complicated games require larger networks.
Another possible work involves transfer learning, as proposed
by Braylan et. al. [25], where an agent trained to play one
game could apply the knowledge learned when playing other
similar games faster than learning from scratch. There was
an attempt to use this same idea in GVG-AI framework to
improve the accuracy of the forward model [26]. This proves
that the object knowledge in GVG-AI framework is transfer-
able between games. This would be closer to the concept of
human level intelligence or Artificial General Intelligence, as
humans are capable of reusing their experiences from similar
problems they have previously encountered.

REFERENCES

[1] S. M. Lucas, “Ms Pac-man Competition,” ACM SIGEVOlution, vol. 2,
no. 4, pp. 37–38, 2007.

[2] J. Togelius, S. Karakovskiy, and R. Baumgarten, “The 2009 Mario AI
Competition,” in IEEE Congress on Evolutionary Computation, pp. 1–8,
IEEE, 2010.

[3] B. Goertzel and C. Pennachin, Artificial General Intelligence, vol. 2.
Springer, 2007.

[4] D. Perez, S. Samothrakis, J. Togelius, T. Schaul, S. Lucas, A. Couëtoux,
J. Lee, C.-U. Lim, and T. Thompson, “The 2014 General Video Game
Playing Competition,” 2015.

[5] J. Levine, C. B. Congdon, M. Ebner, G. Kendall, S. M. Lucas, R. Mi-
ikkulainen, T. Schaul, and T. Thompson, “General Video Game Playing,”
Dagstuhl Follow-Ups, vol. 6, 2013.

[6] T. Schaul, “A Video Game Description Language for Model-based or
Interactive Learning,” in Computational Intelligence in Games (CIG),
2013 IEEE Conference on, pp. 1–8, IEEE, 2013.

[7] S. M. Lucas, “Ms. Pac-man Competition: Screen Capture Version.”
http://cswww.essex.ac.uk/staff/sml/pacman/PacManContest.html, 2007.
Accessed: 2016-12-31.

[8] M. Kempka, M. Wydmuch, G. Runc, J. Toczek, and W. Jaśkowski, “ViZ-
Doom: A Doom-based AI Research Platform for Visual Reinforcement
Learning,” arXiv preprint arXiv:1605.02097, 2016.

[9] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
et al., “Human-level Control through Deep Reinforcement Learning,”
Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[10] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling, “The Arcade
Learning Environment: An Evaluation Platform for General Agents,”
Journal of Artificial Intelligence Research, 2012.

[11] M. Genesereth and M. Thielscher, “General Game Playing,” Synthesis
Lectures on Artificial Intelligence and Machine Learning, vol. 8, no. 2,
pp. 1–229, 2014.

[12] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling,
P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton,
“A Survey of Monte Carlo Tree Search Methods,” IEEE Trans. on
Computational Intelligence and AI in Games, vol. 4, no. 1, pp. 1–43,
2012.

[13] D. Perez, S. Samothrakis, and S. Lucas, “Knowledge-based Fast Evo-
lutionary MCTS for General Video Game Playing,” in 2014 IEEE
Conference on Computational Intelligence and Games, pp. 1–8, 2014.

[14] D. Perez Liebana, J. Dieskau, M. Hunermund, S. Mostaghim, and
S. Lucas, “Open Loop Search for General Video Game Playing,” in
Proceedings of the 2015 Annual Conference on Genetic and Evolution-
ary Computation, pp. 337–344, ACM, 2015.

[15] D. Perez-Liebana, S. Samothrakis, J. Togelius, S. M. Lucas, and
T. Schaul, “General Video Game AI: Competition, Challenges and
Opportunities,” in 30 AAAI Conference on Artificial Intelligence, 2016.

[16] S. Samothrakis, D. Perez-Liebana, S. M. Lucas, and M. Fasli, “Neu-
roevolution for General Video Game Playing,” in 2015 IEEE Conference
on Computational Intelligence and Games (CIG), pp. 200–207, 2015.

[17] Y. LeCun, Y. Bengio, and G. Hinton, “Deep Learning,” Nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[18] M. A. Nielsen, “Neural Networks and Deep Learning,” 2016.
[19] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,

vol. 1. MIT press Cambridge, 1998.
[20] S. Lange and M. Riedmiller, “Deep Auto-encoder Neural Networks in

Reinforcement Learning,” in The 2010 International Joint Conference
on Neural Networks (IJCNN), pp. 1–8, IEEE, 2010.

[21] B. Ross, General Video Game Playing with Goal Orientation. PhD
thesis, Master’s thesis, University of Strathclyde, 2014.

[22] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[23] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, pp. 1097–1105, 2012.

[24] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous Methods for Deep
Reinforcement Learning,” arXiv preprint arXiv:1602.01783, 2016.

[25] A. Braylan, M. Hollenbeck, E. Meyerson, and R. Miikkulainen, “Reuse
of neural modules for general video game playing,” arXiv preprint
arXiv:1512.01537, 2015.

[26] A. Braylan and R. Miikkulainen, “Object-model transfer in the general
video game domain,” in Twelfth Artificial Intelligence and Interactive
Digital Entertainment Conference, 2016.

	I Introduction: AGI in Games
	II Related Work
	III Background
	III-A Convolutional neural network
	III-B Q-learning
	III-C Deep Q-Network
	III-C1 Network structure
	III-C2 Method

	III-D GVG-AI
	III-D1 GVG-AI framework
	III-D2 Games tested
	III-D3 MCTS

	IV Proposed Method
	IV-A Deep Q-Network for GVG-AI
	IV-A1 Pre-processing unit
	IV-A2 Learning unit

	V Experiment Results
	V-A Parameter tuning
	V-B Testing with games
	V-B1 Grid-world
	V-B2 Escape
	V-B3 Labyrinth
	V-B4 Aliens
	V-B5 Sheriff
	V-B6 Eggomania

	VI Conclusions and Future Work
	References

