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We compare type-1 and type-2 self-organizing fuzzy logic controller (SOFLC) using expert initialized and pretrained extracted
rule-bases applied to automatic control of anaesthesia during surgery. We perform experimental simulations using a nonfixed
patient model and signal noise to account for environmental and patient drug interaction uncertainties. The simulations evaluate
the performance of the SOFLCs in their ability to control anesthetic delivery rates for maintaining desired physiological set points
for muscle relaxation and blood pressure during a multistage surgical procedure. The performances of the SOFLCs are evaluated
by measuring the steady state errors and control stabilities which indicate the accuracy and precision of control task. Two sets
of comparisons based on using expert derived and extracted rule-bases are implemented as Wilcoxon signed-rank tests. Results
indicate that type-2 SOFLCs outperform type-1 SOFLC while handling the various sources of uncertainties. SOFLCs using the
extracted rules are also shown to outperform those using expert derived rules in terms of improved control stability.

1. Introduction

Anesthesia is a branch of medical science involved in the
administration of anesthetic agents whose aim is to keep
patients in a state of insensitivity during surgical procedures.
Modern balanced general anesthesia includes muscle relax-
ation, unconsciousness (i.e., depth of anesthesia), and anal-
gesia (blocking response to pain). The first two are regulated
by the anesthetist in the operating theater, while the third
is related to postoperative conditions [1–4]. In the past two
decades, there have been several studies on applying intelli-
gent systems to regulate and control anesthetic delivery [5–
14]. The human body is a highly nonlinear and multivariable
systemwithmany sources of uncertainty thatmake designing
such an automatic controller challenging, specifically:

(i) physiological differences in age, gender, and preoper-
ative health conditions from one person to another
(interpatient variability) can all have an effect on the
concentration and duration of anesthetic drug that is
required to be administered during surgery [1];

(ii) differences in the anesthetic drug concentration
required to be infused due to variability in the phys-
iological effects of drugs on the body (pharmacody-
namics) and variability in the drugsmetabolism in the
body (pharmacokinetics);

(iii) dynamic multivariable changes and interactions in the
patient’s physiological parameters such as heart rate,
respiration, blood pressure (BP), and muscle relax-
ation (EMG) need to be monitored and controlled by
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the anesthetist during surgery (intrapatient variabil-
ity);

(iv) noise and variability in signals are sensed and mon-
itored from the human body such as data collected
from EMG and BP monitors.

The above sources of uncertainties translate into a high
degree of nonlinearity; complex input output relationships;
and encountered uncertainties within the control process.
Fuzzy logic controllers (FLC) provide a methodology for
designing robust controllers that are able to deliver a satisfac-
tory performance while contending with the uncertainty and
imprecision attributed to the real world [15, 16]. FLCs trans-
form numerical information into linguistic values and infer
output control responses by using fuzzy rules that encapsu-
late nonlinear relationships between the system inputs and
controlled outputs without the need for any mathematical
model. FLCs are therefore able to exhibit robustness with
regard to noise and variation of system parameters in com-
plex highly nonlinear problem domains such as biomedi-
cal control systems [17, 18]. There have been a number of
previous applications of FLCs for automated drug infusion
control as described in [10, 19, 20]. These systems have used
FLCs to control the infusion rates of different drugs based
on approximating the outputs of a reference model in a
closed loop design. Previous works [6] on applying FLC in
anesthesia have mainly use type-1 fuzzy sets, whose grades
of membership are crisp and therefore unable to fully handle
the uncertainties affecting parameter variability associated
with biomedical control processes and in particular control-
ling anesthesia delivery during surgical procedures. In order
to solve the drawbacks of type-1 systems, type-2 fuzzy systems
which use type-2 fuzzy sets have been applied to control
anesthesia [2]. Type-2 FLCs have the potential to outperform
type-1 FLCs and have been shown under specific conditions
to produce more accurate and stable control performances in
face of different sources of uncertainties [21–24].

Due to the dynamic changes caused by external stimuli’s
and the effect of different drugs on patients during surgical
operations, the fuzzy logic controller also has to adapt its
control rules to facilitate regulation and adjustment of admin-
istered anesthetic in response to physiological indicators such
as BP and level of paralysis to maintain depth of anesthesia
(DoA). This is especially important during multistage opera-
tion procedures where the DoA is not always kept at the same
level and the maintained set points for parameters such as
muscle relaxation and BP are changed during surgery. The
self-organizing fuzzy logic controller (SOFLC) proposed by
Shieh et al. and Procyk and Mamdani [6, 25] is a successful
approach that uses a learning algorithm which can generate
and modify rules based on the performance of the control
system and is well suited to deal with multivariable adaptive
control of drug delivery during surgical operations [6]. In
an SOFLC, the initial rule-base is an important factor for
determining its control behavior and performance. Tradi-
tional methods to obtain fuzzy rules have been through con-
sultation with experts (e.g., doctors) [8, 26]. In recent years,
there have been some studies on extracting fuzzy rules using
machine learning approaches such as genetic algorithm,

neural network, and from initial pretraining an SOFLC to
determine the most frequently used control rules [27–31].
Extracted rules by SOFLC are proved to have better control
performance than the original expert rules under a single
variable environment [29]. In [30], Liu et al. extracted a mul-
tivariable rule-base for anesthesia control; however, its per-
formance was not fully verified.

In this paper, we propose the use of type-2 SOFLCs for
the automatic control of anesthesia duringmultistage surgical
procedures, where the type-2 fuzzy sets are constructed using
data acquired from real patients during surgical procedures.
We perform unique simulated experiments under signal
noise andmodel uncertainties inwhichwe evaluate the ability
of the type-2 SOFLCs in controlling anesthetic drug delivery
to maintain physiological set points for muscle relaxation
and BP (used in assessing consciousness) based on a non-
fixed multivariable patient model for regulating intravenous
administration of atracurium and inhaled isoflurane. The
control performance of the type-2 SOFLC is evaluated by
comparing the pretrained extracted rule-bases based on
analyzing rule usage, with the expert designed rule-bases for
a simulated multistage surgical procedure. The experiments
show how our type-2 SOFLCs produce a better control per-
formance in the face of uncertainties compared to the type-
1 SOFLC. The type-2 SOFLCs with the pretrained extracted
rules also produce smoother control behavior than that using
the expert derived rules.

The rest of paper is organized as follows. In Section 2, we
describe the patient anestheticmodel used in our simulations.
In Section 3, we present the structure and theory of type-2
SOFLC. In Section 4, we present our experiments and results.
Finally, the conclusions are given in Section 5.

2. Patient Anesthetic Model

Clinically, anesthetists measure the patient’s level of sensa-
tion based on muscle relaxation measured from electromyo-
gram (EMG) signals. To assess unconsciousness, anesthetists
generally use the signal of BP as a reliable source to define
the anesthesia level that relates to the DoA [32, 33]. In this
paper, in order to maintain these two physiological signals,
we use two commondrugs, atracurium for controllingmuscle
relaxation and isoflurane for controlling BP, which follows
previous studies [2, 6, 30].

In practice, anesthetists use a pharmacological model to
describe and understand the drug’s metabolic effects [24].
Modern pharmacological modeling consists of two cate-
gories: pharmacokinetics (PK) and pharmacodynamics (PD).
The former describes the concentration of drugs in tissue
as a function of time and dose schedule, whereas the latter
describes the relationship between drugs concentration in
blood and its effect [34].The pharmacological models of atra-
curium and isoflurane are described as follows.

2.1. The Atracurium Mathematical Model. According to pre-
vious studies [33, 34], the atracurium pharmacokinetics can
be expressed by the following transfer function (1) which
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describes the pharmacokinetics of the muscle relaxation
relating to atracurium:
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The drug’s pharmacodynamics effect can be expressed as the
following transfer function [35]:
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addition, the followingHill equation is used to relate the effect
of a specific drug concentration as described in (3) [36, 37]:
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where 𝑋
𝐸
is the drug concentration, 𝛼 is the power, and

𝑋
𝐸
(50) is the drug concentration at 50% effect with the

following values: 𝐸max = 100%, 𝑋
𝐸
(50) = 0.404 𝜇g/mL, and

𝛼 = 2.98.

2.2. The Isoflurane Unconsciousness Model. Up till now there
is still no direct method to measure DoA since the brain
activity is too complicated to observe. Clinically, BP is one
of the signs that are commonly used to indicate DoA. Based
on previous studies in [6, 38], the responses of BP to inhaled
isoflurane concentration is approximately linear when the
changes in isoflurane concentration are less than 5%. How-
ever, the responses are in general nonlinear and time varying
if the changes become large. Therefore, a first-order linear
model with a dead time of 0.42minutes and a time constant of
2minutes is used. In addition, in order to estimate the steady-
state gain, it is assumed that a relatively sensitive patient needs
2% isoflurane for a 30mmHg reduction in mean arterial
pressure. Therefore, the model describing variations of BP to
inhaled isoflurane concentration can bewritten as follows [6]:
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where MAP is mean arterial pressure, 𝜏
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2.3.The Interactive ComponentModel. According to previous
studies, the interaction of atracurium to BP is so small that
can be ignored [26, 33]. The interaction of isoflurane to mus-
cle relaxation is significant and is expressed by the following
equation [39]:
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2.4. The Multivariable Anesthetic Model. Based on (1)–(5)
described in previous sections, the overallmultivariable anes-
thetic model combining muscle relaxation (based on the
pharmacokinetics and nonlinear pharmacodynamics of atra-
curium) and unconsciousness (based on the effects of isoflu-
rane on BP) can be summarized as follows:
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where 𝑈
1
is the atracurium infusion and 𝑈

2
is the isoflurane

concentration.

2.5. Nonfixed Anesthetic Model. The traditional fixed patient
mathematical model is based on clinical data [33, 34] and
cannot represent the dynamic changes of the patient during
surgical operations (intrapatient uncertainties) and the differ-
ence from one person to another (interpatient uncertainties).
Following on from our previous study [30], we added 1%
white noise where this value was obtained by trial and error
and consultation with experts to approximate the maxi-
mum value of possible parametric uncertainty affecting all
parameters in (1) to (5) used in our multivariable anesthetic
model. By using this nonfixed patient anesthetic model
we can account for the possible patient drug interaction
uncertainties during our simulations and more suitably test
the features of type-2 SOFLCs, in their ability to handle these
encountered uncertainties.

3. Type-2 SOFLC

A type-2 SOFLC has a closed loop hierarchical adaptation
and control structure which consists of a type-2 fuzzy logic
controller (FLC) based on type-2 fuzzy sets and a self-organ-
izing (SO) mechanism as shown in Figure 1. Each of these
components will now be described in the following sections.

3.1. Type-2 Fuzzy Sets. The concept of a type-2 fuzzy set is
an extension of type-1 fuzzy set. Unlike a type-1 fuzzy set
whosemembership grades (ormembership values) are a crisp
number in [0, 1], a type-2 fuzzy set is characterized by a fuzzy
membership function (MF), where the membership values
for each element of the set are themselves a fuzzy set in [0, 1].
Hence for a given input variable 𝑥 to the set, the MF takes on
values wherever the vertical line projected for 𝑥 intersects a
bounded area known as the footprint of uncertainty (FOU) of
a type-2 fuzzy set; see Figure 2.Themembership of the type-2
set at 𝑥 therefore comprises the primary membership values
that intersect the FOU. Each primary membership value
can have a weight associated with it creating an amplitude
distribution projected in the third dimension. This distri-
bution forms what is termed as a secondary MF (shown in
red) which provides an additional design degree of freedom
for modeling higher level uncertainties associated with the
primary membership values. Type-2 fuzzy sets are therefore
useful in simulating uncertain multivariable systems such as
anesthesia control where it is difficult to determine the exact
MF for the fuzzy sets due to inter- and intrapatient, phar-
macodynamic, and pharmacokinetic variability in the effects
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Figure 1: Schematic diagram of a type-2 SOFLC structure.
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Figure 2: An example of anMF for a general type-2 fuzzy set show-
ing the intersection of an input variable 𝑥 over the FOU where
the primary membership values are associated with an amplitude
distribution projected in the third dimension forming a secondary
MF.

of the drugs on the patients bodies. Type-2 FLCs are also
able to realize more complex nonlinear input-output control
relationships than a type-1 FLC [40, 41] which can be suitable
for nonlinear biomedical control processes such as anesthesia
regulation.

Currentlymost practical implementations of type-2 fuzzy
sets have been based on using interval type-2 sets [42–
44] due to their implementation simplicity where the third
dimensional secondary MF is modeled as a fixed interval
(interval type-2) as opposed to a continuous fuzzy set (gen-
eral type-2), whose support is in the interval [0, 1] [45].
Recently a new extension to interval type-2 sets called zSlices
based general type-2 fuzzy sets [46] has allowed the three
dimensional properties of type-2 sets to bemore fully realized
for practical real world applications. zSlice general type-
2 fuzzy sets [46] are formed by slicing a general type-2
fuzzy set into a finite number of interval type-2 fuzzy sets.
Thus, the calculations associated with using general type-
2 fuzzy set are simplified to those of interval type-2 fuzzy

sets [47]. In this paper, type-1, interval type-2, and zSlice
general type-2 SOFLC are compared, in terms of their ability
to control anesthesia delivery and maintain physiological
set points for muscle relaxation and BP while handling the
environmental and patient uncertainties during multistage
operational procedure.

The FOUs of the SOFLC’s input type-2 fuzzy sets are
generated using data acquired frommonitoring physiological
parameters of real anesthetized patients, in order to account
for the uncertain parameter variability during DoA con-
trol. Average percentage of muscle relaxation and standard
deviations and the average BP and standard deviations were
collected from 15 anesthetized patients while undergoing
ear, nose, and throat (ENT) surgical procedures [7]. The
standard deviation from the average of these values sampled
for a given patient represents the intrapatient uncertainties
over the duration of the surgical procedure. A heuristic
process was then applied to generate the FOUs for the
interval type-2 fuzzy sets for the type-2 SOFLC parameters.
In the case of the zSlices based general type-2 fuzzy sets,
this process was extended to then identify similar patients
from the data and group them into five groups based on
similar values for muscle relaxation and BP. These groups
were used to construct five sliced FOUs for representing the
uneven interpatient uncertainties over the third dimension
to build the zSlices based general type-2 fuzzy sets. The
SOFLCs output type-2 fuzzy sets were constructed based on
determining the best drug infusion and concentration range
to induce patients into anesthesia and then calculating the
uncertainty ranges for creating the type-2 FOUs.

3.2. Type-2 Fuzzy Logic Controller. The type-2 FLC consisted
of a fuzzifier, inference engine, rule-base, type reducer, and
defuzzifier as shown in Figure 1 [48]. The input signals from
the patient anesthetic model to the controller are taken at
each sampling instant in the form of four inputs: the error
of muscle relaxation, integration error of muscle relaxation,
error of BP, and integration error of BP, which is the same
as that in our previous study [30]. The fuzzier transforms
crisp data into type-2 fuzzy sets. The inference engine uses
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Table 1: SOFLC performance index matrix [6, 50].

Error of muscle relaxation
or blood pressure

Integration error of muscle relaxation or blood pressure
NB NM NS ZE PS PM PB

NB NB NB NB NM NM NS ZE
NM NB NB NM NM NS ZE NS
NS NB NB NS NS ZE PS PM
ZE NB NM ZE ZE PS PM PB
PS NM NS ZE PS PS PB PB
PM NS ZE PS PM PM PB PB
PB ZE PS PM PM PB PB PB
Note: PB: Positive big; PM: Positive middle; PS: Positive small; ZE: Zero; NS: Negative small; NM: Negative middle; NB: Negative big.

rules activated according to input type-2 fuzzy sets to infer
the output type-2 fuzzy sets. The type reducer then combines
the output type-2 fuzzy sets to form a type-1 fuzzy set which
is known as the type reduced set [49]. The defuzzifier is
the same as that used in traditional type-1 FLCs, which can
defuzzify the type-reduced sets to produce the crisp control
outputs [47]. There are two output control signals corre-
sponding to the change of atracurium infusion rate and the
change of isoflurane concentration which are based on the
integration of these output values in order to facilitate real-
time adjustment of anesthetic dosage. The crisp outputs are
sent to the patient anestheticmodel whose responses are then
fed back to the type-2 SOFLC and compared with the set
points to calculate the error and integration error of the input
control signals.

3.3. Self-Organizing Mechanism. The SO mechanism has the
ability to generate and modify the control rules to output
the desired control responses [6]. It includes three func-
tional blocks: the previous rule-base generation, performance
index, and rule-base modification as shown in Figure 1. The
previous rule-base generation block uses an initial rule-
base at the first sample point that is generated from human
expert experience (i.e., anesthesiologist knowledge). During
the control process, the rule-base in the previous rule-base
generation blockwill bemodified by the SOmechanism itself.
The performance index measures the deviation from the
desired response and calculates the appropriate changes that
are required in the output of the controller. The generation
and modification of the control rules are achieved by assign-
ing a credit or reward value (i.e., performance index) to the
individual rule combinations defined in a multidimensional
performance index matrix, part of which is shown in Table 1
[6, 50]. Rule combinations that will contribute to an improved
performance will be added as new rules to the Type-2 FLC
rule-base in order to modify the output of the controller in
the next control step.The new generated rules at each control
step are comparedwith the existing rules. If the rule is already
present, it is ignored. However, if it is a new rule, it will be
added into the rule-base. The linguistic performance rules
shown partially in Table 1 are based on a qualitative “feel”
for the patient and are intended to provide fast convergence
around the equilibrium state to achieve a high accuracy. For

this reason, they are not specific to the type of patient being
controlled andmay be similarly defined for different patients.
Since it is difficult to handle performance index and control
rule-base undermultidimensional space, almost all studies of
multivariable SOFLC use a method for decomposing an 𝑛-
input/𝑚-output system into a set of 2-input/1-output systems
[6, 30, 51]. In our simulations, the 4-input/2-output system is
also therefore decomposed intomore interpretable 2-input/1-
output systems. Further details on the SO mechanism can be
found in [6, 50].

3.4. Rule-Base. The fuzzy rules form part of the type-2 FLC
and are manipulated by the SO mechanism as described in
Section 2.3.The rule-base contains a set of fuzzy rules used in
the fuzzy inference process to infer output control response.
In the 2-input/1-output system used in our simulations, the
fuzzy rules can be represented as

IF 𝑥 is 𝐹, 𝑦 is 𝐹, THEN 𝑧 is 𝐺, (7)

where 𝑥 and 𝑦 are inputs, 𝐹 are the input fuzzy sets, 𝑧
is output, and 𝐺 is the output fuzzy set. The input fuzzy
sets correspond to a series of linguistic labels: negative big
(NB), negative middle (NM), negative small (NS), zero (ZE),
positive small (PS), positive middle (PM), and positive big
(PB), over the ranges of the input variables. The output fuzzy
sets correspond to the labels: zero (ZE), positive small (PS),
positive middle (PM), and positive big (PB) over the two the
output variable ranges.

The SOFLC rule-bases encapsulate the control behavior
for regulating anesthesia and our experiments will test the
performance of two differently derived rule-bases. One is
the traditional rule-base derived from expert experience and
is shown in Table 2. The other is an extracted rule-base
based on pretraining the SOFLC as described in our previous
study [30]. The extracted rule-base is extracted from the
SOFLC based on the rule usage analysis and is shown in
Table 3. The rule usage analysis analyses the rules based on
their firing percentage to decide whether a rule is important
or not during the control process. Comparison of the two
rule-bases in Tables 2 and 3 shows that the extracted rule-
base has a reduced number of rules for describing extreme
input conditions such as NB and PB for the error of muscle
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Table 2: Expert rule-base for type-2 SOFLC.

(a) Atracurium rule-base

ATR NB NM NS ZE PS PM PB

NB PB PB PB PS PM PS ZE ZE ZE ZE ZE ZE
PB PB ZE PM PS ZE ZE ZE ZE ZE ZE ZE

NM PM PM PM ZE ZE ZE ZE ZE ZE
PM PM ZE ZE ZE ZE ZE ZE ZE

NS PB PM PB PS PS PS ZE ZE ZE ZE ZE ZE
PB PB ZE PM PS ZE ZE ZE ZE ZE ZE ZE

ZE PM PM PM ZE ZE ZE ZE ZE ZE
PM PM ZE ZE ZE ZE ZE ZE ZE

PS PM PS PB ZE PS PS ZE ZE ZE ZE ZE ZE
PB PM ZE PS ZE ZE ZE ZE ZE ZE ZE ZE

PM PM PS PM ZE ZE ZE ZE ZE ZE
PS PM ZE ZE ZE ZE ZE ZE ZE

PB PM PS PB ZE PS PS ZE ZE ZE ZE ZE ZE
PB PM ZE PS ZE ZE ZE ZE ZE ZE ZE ZE

(b) Isoflurane rule-base [30]

ISO NB NM NS ZE PS PM PB

NB ZE PB ZE ZE PM ZE ZE ZE ZE ZE ZE ZE
ZE ZE ZE ZE ZE ZE ZE ZE ZE ZE ZE PS

NM ZE PM ZE ZE ZE ZE ZE ZE ZE
ZE ZE ZE ZE ZE ZE ZE ZE PS

NS ZE PS ZE ZE PS ZE ZE ZE ZE ZE ZE ZE
ZE ZE ZE ZE ZE ZE ZE ZE PS ZE ZE PM

ZE ZE ZE ZE ZE ZE ZE ZE ZE ZE
ZE ZE ZE ZE ZE ZE ZE ZE PM

PS PM ZE PM PS ZE PS PS ZE ZE ZE ZE ZE
PM PM ZE PS PS PS PS PS PS ZE ZE PB

PM PM ZE PM PS ZE ZE ZE ZE ZE
PM PM PS PS PS PM ZE ZE PB

PB PB ZE PB PM ZE PM PS ZE ZE PS ZE ZE
PB PB PS PM PM PM PS PS PB PS PS PB

relaxation and BP; however, there are more rules generated
for describing middle level input conditions like NS, ZE, and
PS. Such a distribution will have the ability to give more
precise control nearer to the set points to be maintained and
avoid accidental large or variable dosage injections caused by
noise or other operational interference.

4. Experiments and Results

We present unique simulations in which we evaluate the
type-1, interval and zSlices based general type-2 SOFLC
using both the expert derived and pretrained extracted rule-
bases. The simulations compared the performance of each
controller in their abilities to effectively control the infusion
and concentration rates for atracurium and isoflurane to
regulate set points for muscle relaxation and BP in the face of
noisy signals. A nonfixed multivariable anesthetic model of

the pharmacokinetic and pharmacodynamics effects of these
drugs, accounting for possible uncertainty variability in these
effects, was used as the patient reference model as described
in Section 2.

4.1. Simulation Methods. Clinically, anesthetists are usually
required to apply a different level of DoA and muscle relax-
ation at different stages of a surgical operation, which is
especially true for complex procedures such as neurosurgical
and spinal procedures. These kinds of surgeries normally
require the patient to be under deep anesthesia during more
invasive preliminary stages, while requiring them to be in
a shallower anesthetized state when verifying cortical and
nervous stimulation. Hence, the surgical anesthesia simula-
tions were designed to run for a duration of 300 minutes
(simulating a five-hour procedure) divided into two stages in
order to evaluate the controllers’ ability to adaptively control
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Table 3: Extracted rule-base for type-2 SOFLC.

(a) Atracurium rule-base

ATR NB NM NS ZE PS PM PB

NB

NM

NS PS PS PS PS PS ZE ZE ZE
PM PS ZE ZE ZE

ZE ZE PS ZE ZE ZE
PS PS ZE PS PS ZE ZE ZE

PS
PS ZE PS

PM
PS PS ZE ZE

PB
PS ZE ZE

(b) Isoflurane rule-base [30]

ISO NB NM NS ZE PS PM PB

NB

NM

NS ZE PS ZE ZE ZE ZE ZE ZE
ZE ZE ZE ZE PS

ZE PS ZE PS ZE ZE
PS PS PS PS PS PS PS PS

PS
PS PS PS

PM
PS PS PS PM

PB
PM PM PS

the infusion and concentration rates for atracurium and
isoflurane to handle set point changes of muscle relaxation
and BP.

The set points to be maintained for muscle relaxation
were set at 0.8 and 0.9 normalized units at the two stages,
respectively, and the set points for BP were set at 100 and
90mmHg at the two stages, respectively. From the point of
view of clinical measurements, in order to measure muscle
relaxation, we can place stimulating electrodes for a Datex
Relaxograph over the ulnar nerve of the noninfused hand,
while sensing electrodes placed over the hypothenar area.
The ulnar nerve is stimulated supramaximally with repeated
Train-Of-Four (TOF) via surface electrodes at intervals of
0.5 seconds (2Hz). The TOF stimulus is repeated every 10
seconds to produce the expected degree of neuromuscular
block [52]. In our previous work, the initial default values
of EMG set points used were 10% and 20% of the baseline
for stages 1 and 2, respectively, based on different surgical

needs for adequate muscle relaxation [8]. Hence, the same
values were used for our simulation of muscle relaxation
which corresponded to normalized output values of 0.9 and
0.8, respectively. For measuring BP, previous studies used
an MP60 critical care patient monitor to measure patients’
MAP at one-minute interval [53]. Hence,mmHgwas used for
representing BP in our simulations. Normally, MAP during
anesthesia will reduce 10∼15% in comparison with conscious
state of patients. Hence, we simulated the set points of MAP
at 100 and 90mmHg in this study.

In this work, the SOFLC outputs control responses
that simulate anesthesia infusion and inhalational rates of
atracurium and isoflurane, respectively. However, for con-
trolling infused drugs such as atracurium or cisatracurium,
normal clinical practice has been to use a syringe pump,
like an Ohmeda 9000 or Graseby 3500, via a computer to
control the infusion rate [8]. With inhalational drugs such
as isoflurane or desflurane, a stepping motor can be used via
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a computer to control the inhalational gas concentration [32].
The simulations were run usingMATLAB on a laptopwith an
Intel(R) Core(R) i5-2450M Processor, running MSWindows
7. Each simulation was run for 30,000 intervals where 100
intervals represented 1 minute of time.

In modern surgical procedures, it is usual practice to
administer an initial bolus of anesthetic to patients in order to
raise its concentration in blood to an effective level in order
to reach rapid anesthesia and unconsciousness [54]. In our
simulations, an initial bolus is modeled based on atracurium,
which is administered to patients to reach the saturation of
muscle relaxation. The amount of atracurium injected to the
patients is about 5 normalized units for the first 5 minutes.
During 5 to 15 minutes, the muscle relaxation which reaches
almost saturation settles down to be near to the desired
set point for 10 minutes. Because atracurium affects muscle
relaxation and has virtually no effect on consciousness (i.e.,
BP), the patient’s BP is maintained constant at 120mmHg for
the first 15 minutes via only the effect of isoflurane. In clinical
operations, it is usual to give intravenous administration of
propofol as an initial bolus to quickly bring patient into an
unconscious state and then use isoflurane to maintain the
anesthesia level. However, in these simulations we do not
include a model of the effects of propofol on BP, which we
consider to be a possibility for future work. Following the
initial bolus effect, the SOFLC controller is turned on to
control multivariable anesthesia system.

The strength of physiological signals like muscle relax-
ation and BP is so small that it is susceptible to interference
when measuring. In most cases, the amplitude of noise is
up to 20% of standard deviation of the signal strength in
measuring instruments [55]. In our simulations, we added
10% and 20%white noise to themeasured signals (i.e., muscle
relaxation and BP values), in order to test the robustness of
SOFLCs under real environmental uncertainty.

4.2. Comparative Methods. In order to compare the perfor-
mance of different rule-bases and different types of SOFLC,
we measured steady state errors for muscle relaxation and
BP (absolute error calculated from the difference between
the actual and set point values to be maintained, based on
the average values over the last 50 minutes of simulation)
and control stabilities (standard deviation of atracurium
injection and isoflurane concentration calculated over the
entire simulation duration). Since we added white noise
to affect physiological signal measurements, which has a
random influence on the results, we repeated each simulation
10 times to account for these effects in our analysis. We
applied Kruskal-Wallis test to find whether there is difference
between type-1, interval type-2, and zSlice general type-2
SOFLCs. In addition, in order to rank the three SOFLCs and
compare the expert derived rule-base with the extracted rule-
base, we applied Wilcoxon signed rank test. The Kruskal-
Wallis test is a nonparametric test that can test whether the
mean values of the different groups of data being tested
are equal, whereas the Wilcoxon signed-rank test is used
for the comparison of two paired samples [56, 57]. In our
simulations, we set the significance level 𝛼 = 0.05. Our

testing hypothesis for evaluating the SOFLCs was based on
the notion that the zSlice general type-2 SOFLC would rank
as performing better than interval type-2 SOFLC followed by
the type-1 SOFLC according to their uncertainty modeling
capabilities. Similarly, we hypothesized that SOFLCs using
the extracted rule-bases would perform better than those
using expert derived rule-bases. Hence, we applied one-tailed
tests to compare these SOFLCs.

4.3. Comparison of Type-1, Interval and zSlice General Type-
2 SOFLCs. Although the data results of each of the repeated
simulations were different due to the added white noise, the
simulated drug induced muscle relaxation and BP values
of each SOFLC converged to similar values among the 10
repeated simulations. Therefore, we chose typical values
corresponding to the 10% and 20% noise that was added
to each controller from the 10 simulations to construct our
simulation plots for analysis.

Figures 3(a), 4(a), 5(a), and 6(a) show simulation results
of SOFLCs using expert derived rule-base under 10% noise
in terms of muscle relaxation, BP, atracurium infusion, and
isoflurane concentration, respectively, where the achieved
steady state errors and control stabilities are shown in Table 4.
In Figure 3(a), we can see that, for type-1 SOFLC, muscle
relaxation is close to the desired set point at stage-1, but it
has an offset at stage-2, while interval and zSlice general type-
2 SOFLC remain steady at the desired set points over both
of the two stages. In Figure 4(a), the two type-2 SOFLCs
perform better compared to the type-1 SOFLC since they can
converge at set points for BP, whereas type-1 SOFLC has an
obvious offset. In addition, we can see that in Figure 6(a) the
isoflurane concentration of type-1 SOFLC fluctuates much
more wildly than type-2 SOFLCs, which is dangerous during
a surgical procedure. When we take a look at Figures 7(a),
8(a), 9(a), and 10(a) showing the results for 20% noise
cases in terms of muscle relaxation, BP, atracurium infusion,
and isoflurane concentration, respectively, the type-1 SOFLC
still produces larger control errors than type-2 SOFLCs and
also has a significant oscillation in isoflurane concentration.
When comparing interval and zSlice general type-2 SOFLC,
the results show that the two type-2 SOFLCs produce a
comparable steady state control performance.

Table 4 shows the steady state errors and controls stabili-
ties of each SOFLC controller inmaintaining two different set
points for muscle relaxation and BP while operating under
10% and 20% signal noise. We ran 16 test cases, where each
case evaluated the comparative performance difference for
each of the three SOFLCs. By applying Kruskal-Wallis test,
we found that there existed differences in all the 16 test
cases.Thenwe usedWilcoxon signed-rank test to do pairwise
comparison of the three controllers for all the 16 test cases.
Three groups of one-tailed Wilcoxon signed-rank tests were
applied to test the following hypotheses: (a), (b), and (c)
which were interval type-2 being better than type-1, zSlice
general type-2 being better than type-1, and zSlice general
type-2 being better than interval type-2, respectively; see
footnotes belowTable 4. Based on the result shown inTable 4,
we can see that, when compared with the type-1 SOFLC,
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Figure 3: The simulation result of muscle relaxation under 10% noise: (a) expert derived rule-base; (b) extracted rule-base.
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Figure 4: The simulation result of BP under 10% noise: (a) expert derived rule-base; (b) extracted rule-base.

both the two type-2 SOFLCs outperform type-1 SOFLC and
hence these results accept the first two hypotheses (i.e.,
interval type-2 is better than type-1 and zSlice general type-2
is better than type-1) in all the 16 test cases. However, when
comparing interval and zSlice general type-2 SOFLCs, only 3
of the 16 tests that were carried out gave results supporting the
hypothesis, while the other 13 tests rejected the hypotheses.
Therefore, these results show that under these specific simu-
lation conditions there was no significant difference between
interval and zSlice general type-2 SOFLCs.

4.4. Comparison of Expert Derived and Extracted Rule-Base.
In order to compare the performances of expert derived
and extracted rule-bases, we conducted a second set of
simulation studies on the different SOFLCs. The SOFLCs
were initializedwith the reduced extracted rule-bases derived
from the previous simulations in Section 4.3 based on rule
usage analysis. Part (b) of Figures 3, 4, 5, 6, 7, 8, 9, and 10
show simulation results of SOFLCs using extracted rule-base
under the different added noise values. Comparing (a) and
(b) of Figures 3, 4, 7, and 8, we find that the BP offsets of
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Figure 5: The simulation result of atracurium infusion under 10% noise: (a) expert derived rule-base; (b) extracted rule-base.
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Figure 6: The simulation result of isoflurane concentration under 10% noise: (a) expert derived rule-base; (b) extracted rule-base.

the type-1 SOFLC at stage-1 under both 10% and 20% noise
are eliminated. However, other control reactions of muscle
relaxation and BP of the extracted rule-bases are comparable
to those of the expert derived rule-bases. Comparing (a) and
(b) of Figures 5, 6, 9, and 10, the plots of atracurium injection
and isoflurane concentration of the extracted rule-base seem
to have less fluctuation than the expert derived rule-base.

In order to make a precise analysis, we again applied
a one-tailed Wilcoxon signed-rank test on the hypothesis
that SOFLCs using the extracted rule-base would perform

better than those using the expert derived rule-base. We
therefore had 24 different test cases based on considering
the steady state errors and 24 different test cases based
on considering control stabilities of each rule-base (expert
derived or extracted) specific controller in maintaining two
different set points for muscle relaxation and BP while
operating under 10% and 20% signal noise. Note that the
48 test cases (24 for steady state errors and 24 for control
stabilities) used for the expert derived rule-base are shown
in Table 4 and were used in the previous comparative study
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Figure 7: The simulation result of muscle relaxation under 20% noise: (a) expert derived rule-base; (b) extracted rule-base.
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Figure 8: The simulation result of BP under 20% noise: (a) expert derived rule-base; (b) extracted rule-base.

of the different SOFLCs described in Section 4.3. The results
of the test in Table 5 show that, in terms of steady state errors,
14 of the 24 test cases rejected this hypothesis, which does not
give a conclusive result. However, when considering control
stabilities, it was found that only 3 of the 24 test results
rejected the hypothesis and in all these cases a type-1 SOFLC
was used. These results imply that the extracted rule-base
can give a smoother control performance which may also be
further enhanced by using type-2 fuzzy sets. Following our

previous study [30], we recorded firing percentage of rule
usage (calculated as the number of times in which a rule
was fired divided by total number of inference operations)
so as to analyze the importance and contribution of each
rule.Thefiring percentage of the expert derived and extracted
rule-bases for the zSlice general type-2 SOFLC running
under 20% noise shown in Figures 11 and 12, respectively.
The 𝑥-𝑦 plane of Figures 11(a) and 11(b) correspond to (a)
and (b) of Table 2, respectively, and the height of each bar
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Figure 9: The simulation result of atracurium infusion under 20% noise: (a) expert derived rule-base; (b) extracted rule-base.
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Figure 10: The simulation result of isoflurane concentration under 20% noise: (a) expert derived rule-base; (b) extracted rule-base.

shows the firing percentage of corresponding rules. Similarly,
Figure 12 corresponds to Table 3. The first column on the left
and top row in Tables 2 and 3 represent the linguistic labels
for the error and integration error, respectively, of each input
parameter (muscle relaxation and BP). The intersection of
each identical set of these linguistic labels forms a block of six
cells which represent the output linguistic label correspond-
ing to the six decomposed 2-input combinations (i.e., error of
muscle relaxation and integration error of muscle relaxation,

error of muscle relaxation and error of BP, error of muscle
relaxation and integration error of BP, integration error of
muscle relaxation and error of BP, integration error of muscle
relaxation and integration error of BP, and error of BP and
integration error of BP), as shown in Tables 2 and 3. Each of
the cells in Tables 2 and 3 therefore represents a decomposed
2-input/1-output rule whose firing percentage is shown in
Figures 11 and 12, respectively, as described above. Since
those rules that were fired less than 1% of the total number
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Table 4: Mean and standard deviation of steady state errors and control stabilities of type-1/interval type-2/zSlice general type-2 SOFLC with
results of Wilcoxon signed-rank test.

Controller performance Noise strength Type Stage-1 MR Stage-1 BP Stage-2 MR Stage-2 BP

Steady state errors

0.1
1 0.0152 (±) 0.0095 1.3083 (±) 1.3780 0.0622 (±) 0.0229 3.2880 (±) 2.2323

Interval 0.0057 (±) 0.0013a 0.1003 (±) 0.0083a 0.0058 (±) 0.0010a 0.1160 (±) 0.0085a

General 0.0022 (±) 0.0007bc 0.1517 (±) 0.1277b 0.0062 (±) 0.0006b 0.0309 (±) 0.0206bc

0.2
1 0.0177 (±) 0.0096 2.4974 (±) 1.3428 0.0697 (±) 0.0143 4.1290 (±) 1.6087

Interval 0.0049 (±) 0.0019a 0.1673 (±) 0.0406a 0.0036 (±) 0.0014a 0.0559 (±) 0.0115a

General 0.0065 (±) 0.0017b 0.0253 (±) 0.0189bc 0.0098 (±) 0.0011b 0.0778 (±) 0.0180b

Control stabilities

0.1
1 0.0287 (±) 0.0094 0.6072 (±) 0.3510 0.0159 (±) 0.0005 0.6397 (±) 0.1502

Interval 0.0096 (±) 0.0009a 0.0055 (±) 0.0009a 0.0092 (±) 0.0009a 0.0052 (±) 0.0006a

General 0.0141 (±) 0.0077b 0.0221 (±) 0.0390b 0.0110 (±) 0.0012b 0.0071 (±) 0.0017b

0.2
1 0.0251 (±) 0.0089 0.8879 (±) 0.3405 0.0194 (±) 0.0036 1.1542 (±) 0.3877

Interval 0.0145 (±) 0.0019a 0.0104 (±) 0.0018a 0.0149 (±) 0.0018a 0.0115 (±) 0.0026a

General 0.0183 (±) 0.0021b 0.0190 (±) 0.0047b 0.0170 (±) 0.0013b 0.0167 (±) 0.0035b
aAccept hypothesis: interval type-2 SOFLC is better than type-1 SOFLC.
bAccept hypothesis: zSlice general type-2 SOFLC is better than type-1 SOFLC.
cAccept hypothesis: zSlice general type-2 SOFLC is better than interval type-2 SOFLC.

Table 5:Mean and standard deviation of steady state errors and control stabilities of type-1/interval type-2/zSlice general type-2 SOFLC using
extracted rule-base with results of Wilcoxon signed-rank test.

Controller performance Noise strength Type Stage-1 MR Stage-1 BP Stage-2 MR Stage-2 BP

Steady state errors

0.1
1 0.0181 (±) 0.0092∗ 1.6288 (±) 1.5593∗ 0.0515 (±) 0.0296 2.5869 (±) 2.5605∗

Interval 0.0069 (±) 0.0012∗ 0.0919 (±) 0.0087 0.0066 (±) 0.0005∗ 0.1292 (±) 0.0045∗

General 0.0018 (±) 0.0008 0.1268 (±) 0.0106∗ 0.0056 (±) 0.0007 0.0416 (±) 0.0062∗

0.2
1 0.0154 (±) 0.0122 2.1513 (±) 1.4063∗ 0.0730 (±) 0.0032∗ 4.5476 (±) 0.2598∗

Interval 0.0052 (±) 0.0022 0.1452 (±) 0.0146 0.0044 (±) 0.0009∗ 0.0839 (±) 0.0100∗

General 0.0045 (±) 0.0013 0.0677 (±) 0.0842∗ 0.0079 (±) 0.0012 0.0433 (±) 0.0159

Control stabilities

0.1
1 0.0239 (±) 0.0077 0.6005 (±) 0.3110∗ 0.0147 (±) 0.0014 0.5133 (±) 0.0462

Interval 0.0083 (±) 0.0007 0.0046 (±) 0.0004 0.0078 (±) 0.0006 0.0043 (±) 0.0003
General 0.0099 (±) 0.0011 0.0052 (±) 0.0009 0.0099 (±) 0.0005 0.0059 (±) 0.0006

0.2
1 0.0237 (±) 0.0079∗ 0.9731 (±) 0.5516∗ 0.0171 (±) 0.0009 1.0247 (±) 0.0833

Interval 0.0134 (±) 0.0012 0.0094 (±) 0.0013 0.0126 (±) 0.0011 0.0083 (±) 0.0011
General 0.0170 (±) 0.0042 0.0187 (±) 0.0183 0.0148 (±) 0.0011 0.0130 (±) 0.0020

∗Reject hypothesis: extracted rule-base is better than expert derived rule-base.

of inference operations were mainly fired due to noise, we
considered them to be trivial rules and set them to be white
in Figures 11 and 12. By comparing Figures 11 and 12, we can
see that the rules in Figure 12 have a deeper color than those
in Figure 11, which indicates that the extracted rule-base rules
contribute more frequently to the inference operations than
expert derived rule-base. The complete list of rules’ firing
percentage of the expert derived rule-base and extracted rule-
base (corresponding to each of the decomposed 2 input 1
output systems) can be found in Tables 6 and 7, respectively,
in which trivial rules are not included so as to save space.

5. Conclusions

In this paper, we have proposed a system for automatically
controlling anesthesia during multistage surgical procedures

based on type-2 SOFLCs. SOFLCs provide a qualitative adap-
tive controlmechanism for adjusting the controller’s behavior
through the adaptation of initial expert derived rules that
are trained to approximate a desired control behavior. In
this case, the type-2 SOFLC simulated control of anesthetic
drug delivery to maintain physiological set points for muscle
relaxation and BP based on a nonfixed multivariable patient
model for regulating intravenous administration atracurium
and inhaled isoflurane, in the presence of signal noise.
Type-2 fuzzy sets derived from variable patient data were
used for modeling the system parameters as they have been
credited with producing more accurate and stable control
performances in face of different sources of uncertainties [21–
24].

The performance of type-1, interval type-2, and zSlice
type-2 SOFLC using both the expert derived and pretrained
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Figure 11: Firing percentage of expert derived rule-base running in zSlice general type-2 SOFLC: (a) atracurium rule-base; (b) isoflurane
rule-base.

NB
NM

NS
ZE

PS
PM

PB

NB
NM

NSZEPS
PMPB

0

5

10

Pr
op

or
tio

n 
(%

)

1

2

3

4

5

6

7

8

9

10

(a)

NB
NM

NS
ZE

PS
PM

PB

NB
NM

NSZEPSPM
PB

0

5

10

Pr
op

or
tio

n 
(%

)

1

2

3

4

5

6

7

8

9

10

(b)

Figure 12: Firing percentage of extracted rule-base running in zSlice general type-2 SOFLC: (a) atracurium rule-base; (b) isoflurane rule-base.

extracted rule-bases for controlling anaesthesiawas evaluated
based on steady state errors and control stabilities during the
simulations. Since we used the nonfixed patient model and
added environment noise to our simulations, we repeated
each simulation 10 times and applied Wilcoxon signed-rank
test to make a precise comparison of their performances.
Two groups of comparison were carried out on the different
SOFLCs, the first using the expert derived rules and the
second using rules extracted from a pretrained SOFLC based
on analyzing rule usage and eliminating unused rules. In
the first group, the results showed that both the two type-2
SOFLCs produced better performances than type-1 SOFLC.
There was however no significant difference between interval
and zSlice general type-2 SOFLC in steady state errors and
control stabilities, but zSlice general type-2 SOFLC spent less
time reaching the set points. In the second group, the SOFLCs
with extracted rule-bases produced a smoother control than
those with expert derived rule-bases, but from the aspect
of steady state error, their performance superiority was not
conclusive enough.

Theoretical and practical evidence suggests that zSlice
general type-2 fuzzy sets should produce a better control
performance than interval type-2 fuzzy sets in situations of
high uncertainty paired with a drastic change in inputs and
the requirement for a responsive performance [58]. zSlice
general type-2 fuzzy sets provide a more accurate model of
the uncertainty in the third dimension that should allow
for more responsive control while maintaining a smooth
control response. However, the results show that zSlices
based general type-2 SOFLC does not produce a significant
performance difference in simulations compared to using an
interval type-2 SOFLC. We consider that this phenomenon
is due to following two reasons. Firstly, the performance
of interval type-2 SOFLC is already very good indicating
that in the context of these simulations there may not be
the need to model significantly higher levels of uncertainty
using zSlices based type-2 fuzzy sets. Secondly the reso-
lution of the zSlice general type-2 fuzzy sets in terms of
the number of slices being used was quite course. In this
paper, the zSlice general type-2 fuzzy sets we used were
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Table 6: Firing percentage of firing rules of the expert derived rule-base.

(a) Atracurium rule-base

Input 1 Linguistic term of input 1 Input 2 Linguistic term of input 2 Output linguistic term Firing percentage (%)
E MR NS E BP NS PS 1.59
E MR NS IE BP NS PS 1.60
E MR NS E BP PS ZE 1.59
E MR NS IE BP PS ZE 1.60
E BP NS IE BP NS ZE 1.59
E BP NS IE BP PS ZE 1.60
IE MR NS E BP PB ZE 2.92
IE MR NS IE BP PB ZE 2.91
E MR ZE IE BP ZE ZE 6.39
E BP ZE IE BP ZE ZE 5.92
IE MR ZE E BP PM ZE 2.89
IE MR ZE IE BP PM ZE 3.07
E MR PS E BP NS PS 1.60
E MR PS IE BP NS PS 1.60
E MR PS E BP PS ZE 1.60
E MR PS IE BP PS ZE 1.60
E BP PS IE BP NS ZE 1.59
E BP PS IE BP PS ZE 1.60
IE MR PS E BP PB ZE 2.90
IE MR PS IE BP PB ZE 2.91
E MR PB IE MR NS ZE 2.91
E MR PB IE MR PS ZE 2.91
E MR NS E BP ZE PS 3.18
E MR ZE E BP ZE PS 5.92
E BP ZE IE BP NS ZE 3.18
E BP ZE IE BP PS ZE 3.21
IE MR ZE E BP PB ZE 5.41
IE MR ZE IE BP PB ZE 5.78
E MR PS E BP ZE PS 3.21
E MR PM IE MR ZE PS 2.11
E MR PB IE MR ZE PS 5.52

(b) Isoflurane rule-base corresponding to each of the decomposed 2-input/1-output systems

Input 1 Linguistic term of input 1 Input 2 Linguistic term of input 2 Output linguistic term Firing percentage (%)
E MR NS E BP NS PS 1.59
E MR NS IE BP NS ZE 1.60
E MR NS E BP PS ZE 1.59
E MR NS IE BP PS ZE 1.60
E BP NS IE BP NS ZE 1.59
E BP NS IE BP PS PS 1.60
IE MR NS IE BP PB PS 2.91
E MR ZE E BP ZE ZE 5.92
E MR PS E BP NS ZE 1.60
E MR PS IE BP NS PS 1.60
E MR PS E BP PS ZE 1.60
E MR PS IE BP PS ZE 1.60
E BP PS IE BP NS PS 1.59
E BP PS IE BP PS PS 1.60
IE MR PS IE BP PB ZE 2.91
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(b) Continued.

Input 1 Linguistic term of input 1 Input 2 Linguistic term of input 2 Output linguistic term Firing percentage (%)
E MR PM IE MR ZE PS 3.07
E MR PB IE MR NS PM 2.91
E MR PB IE MR PS PS 2.91
E MR NS E BP ZE ZE 3.18
IE MR NS E BP PB PS 2.75
E MR ZE IE BP ZE PS 6.39
E BP ZE IE BP NS PS 3.18
E BP ZE IE BP ZE PS 5.92
E BP ZE IE BP PS PS 3.21
IE MR ZE E BP PM PS 2.79
IE MR ZE IE BP PM PS 2.98
IE MR ZE E BP PB PS 5.41
IE MR ZE IE BP PB PS 5.78
E MR PS E BP ZE ZE 3.21
IE MR PS E BP PB PS 2.65
E MR PB IE MR ZE PS 5.78

Note: E MR: error of muscle relaxation; IE MR: integration error of muscle relaxation; E BP: error of BP; IE BP: integration error of BP.

sliced into 5 slices based on the interpatient variability that
was encountered from the patient data used to construct
them. As suggested in [58], zSlices can be used to model
these complex general type-2 sets and associated levels
of uncertainty to an arbitrary degree of accuracy that is
dependent on the numbers of zSlices [58]. Hence, more
accumulated patient data would allow us to construct less
granular zSlices based general type-2 fuzzy sets containing
a higher number of zSlices as well as more representative
shaped FOUs corresponding to the true uncertainty distri-
bution in the data. Future studies may consider whether
having more or an optimum number of zSlices will produce
a better control performance in the face of higher levels of
uncertainty.

The performance difference between the expert derived
and extracted SOFLC rule-bases was mainly evident in
control stabilities rather than the steady state errors. The
extracted rule-base was shown to produce better precision
in controlling anesthesia, which produced better control
stabilities especially in combination with using the type-
2 SOFLCs. This is because at the very beginning of the
simulations the extracted rule-base can reach the set point
over a steady state more quickly and stably than the expert
derived rule-base. However, the similar performance of the
two rule-bases in terms of steady state errors can be explained
due to the characteristic of the SOFLC to modify the rule-
base before reaching a steady state control. However, the
extracted rule-base is still able to use fewer rules to reach
the same kind of steady state error performance as the
expert derived rule-base.This can be an important advantage
in terms of reduced real-time computational processing
overheads and future deployment of the system on embedded
hardware microcontrollers which may have limited memory

capabilities. During our experiments, we also recorded rules’
firing percentage and the result showed that the extracted
rule-base used a subset of fewer more concentrated rules
that contributed more frequently and consistently over the
inference operations, resulting in better control stability than
the expert derived rule-base. In our simulations, we did not
use the rules’ firing percentage values as additional inputs
into our SO mechanism. Further research can use these
values to assign a weight to each rule in order to improve
the rule modification process. During the simulations we
occasionally found that the type-1 SOFLC using the extracted
rule-basewas less stable compared to using the expert derived
rules. As the extracted rule-base has a reduced number of
rules, it would indicate that the type-1 SOFLC is not well
suited for operating with a highly reduced rule-base. This
is due to type-1 fuzzy sets not being able to encapsulate the
parametric uncertainty about the membership function as
can be achieved using type-2 fuzzy sets due to their FOUs.
Therefore, upon the occurrence of extreme conditions, the
type-1 SOFLC has to spend time learning how to deal with
the condition by generating new rules, whereas type-2 fuzzy
sets can continue to operate in these boundary situations even
though there are no rules defined for them.

Although we constructed a verisimilar simulation envi-
ronment, which includes a nonfixed patient model and signal
noise, there are still many unknown factors making real
surgical environments different from simulations. Presently
the type-2 SOFLC can provide a framework for preoperative
simulation of anesthesia regulation based on specific surgical
conditions and pharmacokinetic and pharmacodynamics
effects of the drugs on patient specific physiological char-
acteristics. This can help the anesthetists’ preplan dosage
and duration variability during surgery. Further research will
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Table 7: Firing percentage of firing rules of the extracted rule-base.

(a) Atracurium rule-base

Input 1 Linguistic term of input 1 Input 2 Linguistic term of input 2 Output linguistic term Firing percentage (%)
E MR NS E BP NS PS 2.37
E MR NS E BP ZE PS 4.74
E MR NS E BP PS ZE 2.37
E MR NS IE BP NS PS 2.39
E BP NS IE BP NS ZE 2.37
E MR ZE E BP ZE PS 9.19
E MR ZE IE BP ZE ZE 9.56
E BP ZE IE BP NS ZE 4.74
E BP ZE IE BP ZE ZE 9.19
IE MR NS E BP PB PS 4.44
IE MR ZE E BP PM PS 4.41
IE MR ZE E BP PB PS 8.59
IE MR PS E BP PB PS 4.44
E MR PM IE MR ZE PS 4.57
E MR PB IE MR ZE ZE 8.93

(b) Isoflurane rule-base corresponding to each of the decomposed 2-input/1-output systems

Input 1 Input linguistic term 1 Input 2 Input linguistic term 2 Output linguistic term Firing percentage (%)
E MR NS E BP NS PS 2.37
E MR NS IE BP NS ZE 2.39
E MR NS E BP ZE ZE 4.74
E MR NS E BP PS ZE 2.37
IE MR NS E BP PB PS 4.49
E MR ZE E BP ZE ZE 9.19
E MR ZE IE BP ZE PS 9.56
E BP ZE IE BP NS PS 4.74
E BP ZE IE BP ZE PS 9.19
IE MR ZE E BP PM PS 4.46
IE MR ZE E BP PB PS 8.65
IE MR PS E BP PB PS 4.44
E MR PB IE MR ZE PS 8.93
E MR PM IE MR ZE PS 4.50
Note: E MR: error of muscle relaxation; IE MR: integration error of muscle relaxation; E BP: error of BP; IE BP: integration error of BP.

apply type-2 SOFLCs in clinical settings to evaluate their real
world performance.
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