
ar
X

iv
:1

00
3.

43
14

v1
 [

cs
.D

S]
 2

3
M

ar
 2

01
0

A New Approach to Population Sizing for
Memetic Algorithms: A Case Study for the

Multidimensional Assignment Problem∗

D. Karapetyan Daniel.Karapetyan@gmail.com
Department of Computer Science, Royal Holloway University of London, Egham,
Surrey, TW20 0EX, UK

G. Gutin G.Gutin@cs.rhul.ac.uk
Department of Computer Science, Royal Holloway University of London, Egham, Sur-
rey, TW20 0EX, UK

Abstract
Memetic Algorithms are known to be a powerful technique in solving hard optimiza-
tion problems. To design a memetic algorithm one needs to make a host of decisions;
selecting a population size is one of the most important among them. Most algorithms
in the literature fix the population size to a certain constant value. This reduces the al-
gorithm’s quality since the optimal population size varies for different instances, local
search procedures and running times. In this paper we propose an adjustable popu-
lation size. It is calculated as a function of the running time of the whole algorithm
and the average running time of the local search for the given instance. Note that in
many applications the running time of a heuristic should be limited and therefore we
use this limit as a parameter of the algorithm. The average running time of the local
search procedure is obtained during the algorithm’s run. Some coefficients which are
independent with respect to the instance or the local search are to be tuned before the
algorithm run; we provide a procedure to find these coefficients.

The proposed approach was used to develop a memetic algorithm for the Multidi-
mensional Assignment Problem (MAP or s-AP in the case of s dimensions) which is
an extension of the well-known assignment problem. MAP is NP-hard and has a host
of applications. We show that using adjustable population size makes the algorithm
flexible to perform well for instances of very different sizes and types and for different
running times and local searches. This allows us to select the most efficient local search
for every instance type. The results of computational experiments for several instance
families and sizes prove that the proposed algorithm performs efficiently for a wide
range of the running times and clearly outperforms the state-of-the art 3-AP memetic
algorithm being given the same time.

Keywords
Memetic Algorithm, Population Sizing, Parameter Tuning, Parameter Control, Meta-
heuristic, Multidimensional Assignment Problem.

1 Introduction

A memetic algorithm is a combination of an evolutionary algorithm with a local search
procedure (Krasnogor and Smith, 2005). The memetic approach is a template for an

∗A preliminary version of this paper was accepted for publication in proceedings of the Stochastic Local
Search Conference 2009 in Lecture Notes in Computer Science (Gutin and Karapetyan, 2009b).

c©200X by the Massachusetts Institute of Technology Evolutionary Computation x(x): xxx-xxx

http://arxiv.org/abs/1003.4314v1

G. Gutin, D. Karapetyan

algorithm rather than a set of rules for designing a powerful heuristic. A typical frame
of a memetic algorithm is presented in Figure 1 (for a formal definition of a memetic
algorithm main loop see, e.g., Krasnogor and Smith (2008)).

1. Produce the first generation, i.e., a set of feasible solutions.

2. Apply a local search procedure to every solution in the first generation.

3. Repeat the following while a termination criterion is not met:

(a) Produce a set of new solutions by applying so-called genetic operators to so-
lutions from the previous generation.

(b) Improve every solution in this set with the local search procedure.

(c) Select several best solutions from this set to the next generation.

Figure 1: A typical memetic algorithm frame.

When implementing a memetic algorithm, one faces a lot of questions. Some of
these questions, like selecting the most appropriate local search or crossover operators,
were widely discussed in the literature while others are still not investigated enough.
In this research we focus our attention on the population sizing.

Population size is the number of solutions (chromosomes) maintained at a time
by a memetic algorithm. Many researchers indicate the importance of selecting proper
population sizes (Glover and Kochenberger, 2003; Harik et al., 1999; Hart et al., 2005).
However, the most usual way to define the population size is to fix it to some constant
at the design time (Cotta, 2008; Grefenstette, 1986; Hart et al., 2005; Huang and Lim,
2006). Several more sophisticated models based on statistical analysis of the prob-
lem or self-adaptive techniques are proposed for genetic, particle swarm optimization
and some other evolutionary algorithms (Cotta, 2008; Eiben et al., 2004; Goldberg et al.,
1991; Harik et al., 1999; Hart et al., 2005; Kaveh and Shahrouzi, 2007; Lee and Takagi,
1993) but they all are not suitable for memetic algorithms because of the totally differ-
ent algorithm dynamics.

It is known (Hart et al., 2005) that in memetic algorithms the population size, the
solution quality and the running time are mutually dependent. Often the population
size is fixed at the design time which, for a given algorithm with a certain termination
criterion, determines the solution quality and the running time. However, in many
applications it is the running time which has to be fixed. This leads to a problem of
finding the most appropriate population size m for a fixed running time τ such that
the solution quality is optimized. However, the population size m depends not only
on the given time τ but also on the instance type and size, on the local search per-
formance and on the computational platform. The fact that the optimal population
size depends on the particular instance, forces researchers to use parameter control
to adapt dynamically the population size for all the factors during the run (see, e.g.,
Coelho and de Oliveira (2008); Eiben et al. (2004); Kaveh and Shahrouzi (2007)). How-
ever, none of these approaches consider the running time of the whole algorithm and,
hence, are poorly suitable for a strict time limitation.

Instead of it, we have found a parameter encapsulating all these factors, i.e, a pa-
rameter which reflects on the relation between the instance, the local search procedure

2 Evolutionary Computation Volume x, Number x

New Approach to Population Sizing: Case Study for MAP

and the computation platform. It is the average running time t of the local search pro-
cedure applied to some solutions of the given instance. Definitely this time depends on
the particular solutions but later we will show that t can be measured at any point of
the memetic algorithm run with a good enough precision.

Now we can find a near-optimal population size mopt as a function of τ and t. In
particular, it can be calculated as

mopt(τ, t) = a ·
τb

tc
,

where a, b and c are some tuned (Eiben et al., 1999) constants which reflect on the
specifics of the other algorithm factors.

Observe that this is not a pure parameter tuning. Indeed, the population size de-
pends on the average local search running time t which is obtained during the algo-
rithm run. Thus, our approach is a combination of the parameter tuning and control.

In our previous attempt to adjust the population size (Gutin and Karapetyan, 2010)
we assumed that it depends on the instance size n only (i.e., m = m(n)) but an obvious
disadvantage of this approach is that it does not differentiate between instance types.

In this paper the proposed approach is applied to the Multidimensional Assign-
ment Problem. We think that the obtained results can be extended to many hard opti-
mization problems. The expression for mopt(τ, t) above follows a natural rule that the
population size should be increased if the algorithm is given more time and decreased
if local search is slower. Even if this formula is not appropriate in some cases, we be-
lieve that the main idea of calculating the population size before the algorithm run as
a function of the given time and the running time of local search should be suitable for
virtually any problem.

The Multidimensional Assignment Problem (MAP) (abbreviated s-AP in the case of s
dimensions, also called (axial) Multi Index Assignment Problem, MIAP, (Bandelt et al.,
2004; Pardalos and Pitsoulis, 2000a)) is a well-known optimization problem. It is
an extension of the Assignment Problem (AP), which is exactly the two dimensional
case of MAP. While AP can be solved in the polynomial time (Kuhn, 1955), s-
AP for every s ≥ 3 is NP-hard (Garey and Johnson, 1979) and inapproximable
(Burkard et al., 1996b)1. The most studied case of MAP is the case of three di-
mensions (Aiex et al., 2005; Andrijich and Caccetta, 2001; Balas and Saltzman, 1991;
Crama and Spieksma, 1992; Huang and Lim, 2006; Spieksma, 2000) though the prob-
lem has a host of applications for higher numbers of dimensions, e.g., in match-
ing information from several sensors (data association problem), which arises in
plane tracking (Murphey et al., 1998; Pardalos and Pitsoulis, 2000b), computer vi-
sion (Veenman et al., 2003) and some other applications (Andrijich and Caccetta, 2001;
Bandelt et al., 2004; Burkard and Çela, 1999), in routing in meshes (Bandelt et al., 2004),
tracking elementary particles (Pusztaszeri et al., 1996), solving systems of polynomial
equations (Bekker et al., 2005), image recognition (Grundel et al., 2004), resource allo-
cation (Grundel et al., 2004), etc.

For a fixed s ≥ 2, the problem s-AP is stated as follows. Let X1 = X2 = . . . =
Xs = {1, 2, . . . , n}; we will consider only vectors that belong to the Cartesian product
X = X1×X2× . . .×Xs. Each vector e ∈ X is assigned a non-negative weight w(e). For
a vector e ∈ X , the component ej denotes its jth coordinate, i.e., ej ∈ Xj . A collection A
of t ≤ n vectors A1, A2, . . . , At is a (feasible) partial assignment if Ai

j 6= Ak
j holds for each

1Burkard et al. show it for a special case of 3-AP and since 3-AP is a special case of s-AP the result can be
extended to the general MAP.

Evolutionary Computation Volume x, Number x 3

G. Gutin, D. Karapetyan

?>=<89:;1 ?>=<89:;1 ?>=<89:;1

?>=<89:;2

q
q

q
q

q
q

q
q

q
q

q
q

q ?>=<89:;2

&f
&f

&f
&f

&f
&f

&f
&f

?>=<89:;2

?>=<89:;3

8x
8x

8x
8x

8x
8x

8x
8x ?>=<89:;3 ?>=<89:;3

?>=<89:;4 ?>=<89:;4

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
� ?>=<89:;4

X1 X2 X3

Figure 2: An example of an assignment for a problem with s = 3 and n = 4. This
assignment contains the following vectors: (1, 3, 4), (2, 1, 1), (3, 2, 3) and (4, 4, 2).

i 6= k and j ∈ {1, 2, . . . , s}. The weight of a partial assignment A is w(A) =
∑t

i=1 w(A
i).

A partial assignment with n vectors is called assignment. The objective of s-AP is to find
an assignment of minimal weight.

A graph formulation of the problem (see Fig. 2) is as follows. Having an s-partite
graph G with parts X1, X2, . . . , Xs, where |Xi| = n, find a set of n disjoint cliques in G
of the minimal total weight if every clique Q in G is assigned a weight w(Q) (note that
in the general case w(Q) is not simply a function of the edges of Q).

An integer programming formulation of the problem can be found in
(Gutin and Karapetyan, 2009a).

Finally we provide a permutation form of the assignment which is sometimes very
convenient. Let π1, π2, . . . , πs be permutations of X1, X2, . . . , Xs, respectively. Then
π1π2 . . . πs is an assignment of weight

∑n
i=1 w(π1(i)π2(i) . . . πs(i)). It is obvious that

some permutation, say the first one, may be fixed without any loss of generality:
π1 = 1n, where 1n is the identity permutation of n elements. Then the objective of
the problem is as follows:

min
π2,...,πs

n
∑

i=1

w(iπ2(i) . . . πs(i))

and it becomes clear that there exist n!s−1 feasible assignments and the fastest known
algorithm to find an optimal assignment takes O(n!s−2n3) operations. Indeed, without
loss of generality set π1 = 1n and for every combination of π2, π3, . . . , πs−1 find the
optimal πs by solving corresponding AP in O(n3).

Thereby, MAP is very hard; it has ns values in the weight matrix, there are n!s−1

feasible assignments and the best known algorithm takes O(n!s−2n3) operations. Com-
pare it, e.g., with the Travelling Salesman Problem which has only n2 weights, (n− 1)!
possible tours and which can be solved in O(n2 · 2n) time (Held and Karp, 1962).

The problem described above is called balanced (Clemons et al., 2004). Sometimes
MAP is formulated in a more general way if |X1| = n1, |X2| = n2, . . . , |Xs| = ns

and the requirement n1 = n2 = . . . = ns is omitted. However this case can be easily
transformed into the balanced problem by computing n = maxi ni and complementing

4 Evolutionary Computation Volume x, Number x

New Approach to Population Sizing: Case Study for MAP

the weight matrix to an n× n× . . .× n matrix with zeros.
MAP was studied by many researchers. Several special cases of the problem

were intensively studied in the literature (see Kuroki and Matsui (2007) and references
there) but only for a few classes of them polynomial time exact algorithms were found,
see, e.g., Burkard et al. (1996a,b); Isler et al. (2005). In many cases MAP remains hard
to solve (Burkard et al., 1996b; Crama and Spieksma, 1992; Kuroki and Matsui, 2007;
Spieksma and Woeginger, 1996). For example, if there are three sets of points of size
n on a Euclidean plain and the objective is to find n triples, every triple has a point
in each set, such that the total circumference or area of the corresponding triangles is
minimal, the corresponding 3-APs are still NP-hard (Spieksma and Woeginger, 1996).
Apart from proving NP-hardness, researches studied asymptotic properties of some
special instance families (Grundel et al., 2004; Gutin and Karapetyan, 2009c).

As regards the solution methods, there exist exact and approximation al-
gorithms (Balas and Saltzman, 1991; Crama and Spieksma, 1992; Kuroki and Matsui,
2007; Pasiliao et al., 2005; Pierskalla, 1968) and heuristics including construc-
tion heuristics (Balas and Saltzman, 1991; Gutin et al., 2008; Karapetyan et al., 2009;
Oliveira and Pardalos, 2004), greedy randomized adaptive search procedures
(Aiex et al., 2005; Murphey et al., 1998; Oliveira and Pardalos, 2004; Robertson,
2001) (including several concurrent implementations, see, e.g., Aiex et al. (2005);
Oliveira and Pardalos (2004)) and a host of local search procedures (Aiex et al., 2005;
Balas and Saltzman, 1991; Bandelt et al., 2004; Burkard et al., 1996b; Clemons et al.,
2004; Gutin and Karapetyan, 2009a; Huang and Lim, 2006; Oliveira and Pardalos, 2004;
Robertson, 2001).

Construction heuristics give us flexibility to generate a solution with some cer-
tain quality requirements (in case of approximation algorithms one can even get some
quality guarantee). Using a local search algorithm, one is able to further improve the
solution. However, a standard local search can optimize the solution only to a local
minimum and no further improvements are available after that. Variable neighborhood
search (see, e.g., Talbi (2009)) yields more powerful algorithms (Gutin and Karapetyan,
2009a) which, though, still have properties of local search. In order to improve the
solution even more one should use more powerful metaheuristics.

Two metaheuristics were proposed for MAP in the literature, namely a simulated
annealing procedure (Clemons et al., 2004) and a memetic algorithm (Huang and Lim,
2006). The purpose of this research is to develop a new approach in designing memetic
algorithms and to test it in the case of MAP. We show that our approach improves
existing results and the obtained heuristic is suitable for relatively large instances. It is
flexible in choosing ‘solution quality’/‘running time’ balance as well as in selecting the
most appropriate local search for every instance type.

The rest of the paper is organized as follows. The proposed approach to the popu-
lation sizing is described Section 2. The details of the memetic algorithm designed for
MAP are discussed in Section 3. The test bed for our computational experiments is in-
troduced in Section 4. The experiment results are provided and discussed in Section 5.
Apart from the designed memetic algorithm, we evaluate two other MAP metaheuris-
tics known from the literature and compare the results. The main outcomes of the
presented research are summarized in Section 6.

2 Managing Solution Quality and Population Sizing

Having some fixed procedures for production of the first generation (Step 1 in Figure 1),
improving a solution (Steps 2 and 3b) and obtaining the next generation from the previ-

Evolutionary Computation Volume x, Number x 5

G. Gutin, D. Karapetyan

ous one (Steps 3a and 3c), the algorithm designer is able to manage the solution quality
and the running time of the algorithm by varying the termination criterion (Step 3) and
the population size, i.e., the number of maintained solutions in Steps 1 and 3c.

Usually, a termination condition in a memetic algorithm tries to predict the point
after which any further effort is useless or, at least, not efficient. A typical approach is
to count the number Iidle of running generations which did not improve the best result
and to stop the algorithm when this number reaches some predefined value. A slightly
more advanced prediction method is applied in the state-of-the-art algorithm for the
Generalized Traveling Salesman Problem by Gutin and Karapetyan (2010). It stops the
algorithm when Iidle reaches k ·Iprev, where k > 1 is a constant and Iprev is the maximum
Iidle obtained before the current solution was found.

In case of such termination conditions, the running time of the algorithm is un-
predictable and, hence, cannot be adjusted for one’s needs. Observe that many ap-
plications (like real-time systems) in fact have strict time limitations. To satisfy these
limitations, we bound our algorithm within some fixed running time and aim to use
this time with the most possible efficiency. Below we discuss how the parameters of
the algorithm should be adjusted for this purpose.

2.1 Population Size

Population size is the number of solutions maintained by a memetic algorithm at the
same time. This number may vary from generation to generation but we decided to
keep the population size constant during the algorithm run in order to simplify the
research.

Let I be the total number of generations during the algorithm run and m be the
population size. Then the running time of the whole algorithm is proportional to I ·m.
Indeed, the most time consuming part of a memetic algorithm is local search. The
number of times the local search procedure is applied is proportional to I ·m, and we
have shown empirically (see Figure 3) that the average running time of a local search
depends only marginally on the population size. Since we fix the running time of the
whole algorithm, we get:

I ·m ≈ const .

In other words, we claim that inversely proportional change of I and m preserves
the running time of the whole algorithm; our experiments confirm it.

Since I · m = const, we need to find the optimal ratio between I and m. Our
experimental analysis shows that this ratio is crucial for the algorithm performance: for
a wrongly selected ratio between I and m, the relative solution error, i.e., the percentage
above the optimal objective value, may be twice as big as the relative solution error for
a well fitted ratio, see Figure 4.

Observe that the optimal ratio between I and m depends on the following factors:

• Given time τ ;

• Instance type and size;

• Computational platform;

• Local search procedure;

• Genetic operators and selection strategies.

6 Evolutionary Computation Volume x, Number x

New Approach to Population Sizing: Case Study for MAP

2 4 8 16 32 64 128
0.1

1

10
Lo

ca
l s

ea
rc

h
av

er
ag

e
ru

nn
in

g
tim

e,
 m

s

Population size

 3 s, 1DV, 3cq100
 30 s, sDVv, 5r15
 10 s, sDV, 4sr30

Figure 3: The average time required for one local search run depends only marginally
on the proportion between the population size and the number of generations. These
three lines correspond to three runs of our memetic algorithm. In every run we used
different local search procedures (1DV, sDV and sDVv, for details see Section 3.6) and
different given times τ (3 s, 10 s and 30 s).

Note that all factors but the first one are hard to formalize. Next we will discuss rela-
tions between these factors.

Since we assume that almost only the local search consumes the processor time
(see above), the computational platform affects only the local search procedure. An-
other parameter which greatly influences the local search performance is the problem
instance; it is incorrect to discuss a local search performance without considering a
particular instance.

Let t be the average running time of the local search procedure applied to some so-
lution of the given instance being run on the given computational platform. (Recall that
this time stays almost constant during the algorithm run, see Figure 3.) Our idea is to
use t as the value which encapsulates the specifics of the instance, of the computational
platform and of the local search procedure.

Definitely the local search and the instance are also related to the genetic operators
and selection strategies, but we assume that this relation is not that important; our
computational experience confirms this.

Hence, we can calculate the near-optimal population size mopt = f(t, τ), and the
rest of the factors are indirectly included into the function f definition. Obviously mopt

grows with the growth of τ and reduces with the growth of t. Let us use the following

Evolutionary Computation Volume x, Number x 7

G. Gutin, D. Karapetyan

1 10 100

0.25

0.5

1

2

4

So
lu

tio
n

er
ro

r,
%

Population size

 CQ large, 10s
 SR small, 1s
 R moderate, 3s

Figure 4: The solution quality significantly depends on the population size. For every
instance, local search and given time, there exists some optimal population size. On
this plot we show how the relative solution error depends on the population size for
different types and sizes of instances (for detailed descriptions of the particular instance
types, see Section 4).

flexible function for mopt:

mopt(τ, t) = a ·
τb

tc
. (1)

The constants a, b and c are intended to reflect on the specifics of genetic operators and
selection strategies. Observe that variation of a, b and c may significantly change the
behavior of mopt.

Since a, b and c are only related to the fixed parts of the algorithm, they should be
adjusted before the algorithm’s run, i.e., these parameters should be tuned (Eiben et al.,
1999). However, the whole approach should be considered as a combination of param-
eter tuning and control since the time t is obtained during the algorithm’s run.

2.2 Choosing Constants a, b and c

Our approach has two stages: tuning the constants a, b and c according to the algorithm
structure, and finding the average running time t of the local search procedure. Having
all these values, we can calculate the near-optimal population size mopt according to (1)
and run the algorithm.

This section discusses the first stage of our approach, i.e., tuning the constants a, b

8 Evolutionary Computation Volume x, Number x

New Approach to Population Sizing: Case Study for MAP

and c. The next section discusses finding the value t.
The constants a, b and c in (1) should be selected to minimize the solution error

for all combinations of local searches λ, instances φ and given times τ which are of
interest. In practice this means that one should select a representative instance set Φ,
assign the most appropriate local search λ = λ(φ) for every instance φ ∈ Φ and define
several given times τ ∈ T which will be used in practice. Note that if |T | = 1, i.e.,
only one given time is required, then the number of constants in (1) can be reduced:
mopt(t) = a/tc.

Let AMA(m,λ, φ, τ) be a solution obtained by the memetic algorithm for the pop-
ulation size m, local search λ, instance φ and given time τ . Let w(A) be the objective
value of a solution A.

We need some measure of the memetic algorithm quality which reflects on the suc-
cess of choosing a particular population size. This measure should not depend on the
rest of the algorithm parameters, i.e., it should have similar values for all the solutions
obtained for the best chosen population sizes whatever is the instance, the local search
or the given time. Clearly one cannot use the relative solution error since its value
hugely depends on the given time and other factors.

We propose using scaled2 solution errors as follows. Let wmin(λ, φ, τ) and
wmax(λ, φ, τ) be the minimum and the maximum objective values obtained for the given
λ, φ and τ :

wmin(λ, φ, τ) = min
m

w(AMA(m,λ, φ, τ)) and

wmax(λ, φ, τ) = max
m

w(AMA(m,λ, φ, τ)) .

Then the scaled error ǫ(m,λ, φ, τ) of the solution AMA(m,λ, φ, τ) is calculated as fol-
lows:

ǫ(m,λ, φ, τ) =
w(AMA(m,λ, φ, τ)) − wmin(λ, φ, τ)

wmax(λ, φ, τ) − wmin(λ, φ, τ)
· 100% .

In other words, the scaled solution error shows the position of the solution obtained for
the given population size between the solutions obtained for the best and for the worst
values of m. The scaled solution error is varied in [0%, 100%]; the smaller ǫ, the better
the solution. Note that this scaled error has some useful theoretical properties (Zemel,
1981).

Since all the scaled solution errors have comparable values, we can use the average
for every combination of τ ∈ T and φ ∈ Φ as an indicator of mopt function success:

γ = ǫ
(

mopt(τ, t(λ, φ)), λ, φ, τ
)

. (2)

(Note that we use t(λ, φ) because the average local search running time t depends on
the local search procedure λ and the instance φ; recall λ = λ(φ).) Obviously, 0% ≤ γ ≤
100%, and the smaller γ, the better mopt.

The number of runs of the memetic algorithm required to find the best values of a,
b and c can be huge3 which makes the approach proposed in this paper unaffordable.
For the purpose of decreasing the computation time we suggest the following dynamic
programming technique.

1. Let Φ be the test bed and T be the set of the given times we are going to use for our
algorithm.

2Sometimes in the literature it is also called differential.
3Note that since memetic algorithms are stochastic, one should run every experiment several times in

order to get a better precision.

Evolutionary Computation Volume x, Number x 9

G. Gutin, D. Karapetyan

2. For every instance φ ∈ Φ set the most appropriate local search λ = λ(φ).

3. Let M be the set of reasonable population sizes. One can even reduce it by re-
moving, e.g., all odd values from M , or leaving only certain values, e.g., M =
{2, 4, 8, 16, . . .}.

4. Calculate and save e(m,λ(φ), φ, τ) for every m ∈ M , φ ∈ Φ and τ ∈ T .

5. Measure and save t(λ(φ), φ) for every φ. For this purpose run the local search λ(φ)
after a construction heuristic.

6. Now for every combination of a, b and c compute γ according to (2); every time the
relative solution error e(m,λ(φ), φ, τ) is required, find m′ ∈ M which is the closest
one to m and use the corresponding precalculated value. The discretization of a, b
and c should be chosen according to available resources.

7. Fix the combination of a, b and c which minimizes γ. This finishes the tuning
process.

2.3 Finding Local Search Average Running Time t

In order to calculate the near-optimal population size mopt according to (1), we need to
find t at the beginning of the memetic algorithm run. Recall that the value t is the aver-
age running time of the local search procedure applied to some solutions of the given
instance. Definitely this value significantly depends on the particular solutions. How-
ever, the solutions in a memetic algorithm are permanently perturbed and, thus, they
are always moved out from the local minima before the local search is applied. This
guaranties some uniformity in the improvement process during the whole algorithm.
Hence, we are able to measure the time t at any point.

Our algorithm produces and immediately improves the solutions for the first gen-
eration until m1 ≤ mopt(τ, tcur/m1), where m1 is the number of already produced solu-
tions, τ is the time given to the whole memetic algorithm, tcur is the time already spent
to generate solutions for the first generation and mopt(τ, t) is the population size calcu-
lated according to (1). When the first generation is produced, the size of the population
for all further generations is set to m = mopt(τ, tcur/m1).

3 Case Study: Algorithm for Multidimensional Assignment Problem

As a case study for the population sizing proposed in Section 2 we decided to use the
Multidimensional Assignment Problem (MAP); for the problem review see Section 1.

3.1 Main Algorithm Scheme

While the general scheme of a typical memetic algorithm (see Figure 1) is quite common
for all memetic algorithms, the set of genetic operators and the way they are applied can
vary significantly. In this paper we use quite a typical (see, e.g., Krasnogor and Smith
(2008)) procedure to obtain the next generation:

gi+1 = selection
(

{gi1} ∪mutation
(

gi \ {gi1}
)

∪ crossover
(

gi
)

)

, (3)

where gk is the kth generation and gk1 is the best assignment in the kth generation.
For a set of assignments G the function selection(G) simply returns mi+1 best distinct
assignments among them, where mk is the size of the kth generation (if the number of
distinct assignments in G is less than mi+1, selection returns all the distinct assignments

10 Evolutionary Computation Volume x, Number x

New Approach to Population Sizing: Case Study for MAP

and updates the value of mi+1 accordingly). Note that the assignment gi1 avoids the
mutation thus preserving the currently best result. The function mutation(G) is defined
as follows:

mutation(G) =
⋃

g∈G

{

LocalSearch(perturb(g, µm)) if r < pm
g otherwise

(4)

where r ∈ [0, 1] is chosen randomly every time and the constants pm = 0.5 and µm = 0.1
define the probability and the strength of mutation operator respectively. The function
crossover(G) is calculated as follows:

crossover (G) =

(l·mi+1−mi)/2
⋃

j=1

LocalSearch(crossover (uj , vj)) (5)

where uj and vj are assignments from G randomly selected for every j = 1, 2, . . . , (l ·
mi+1 − mi)/2 and l = 3 defines ratio between the produced and selected for the next
generation solutions. The functions crossover (x, y), perturb(x, µ) and LocalSearch(x)
are discussed below.

3.2 Coding

Coding is a way of representing a solution as a sequence of atom values such as boolean
values or numbers; genetic operators are applied to such sequences. Good coding
should meet the following requirements:

• Coding code(x) should be invertible, i.e., there should exist a decoding procedure
decode such that decode(code(x)) = x for any feasible solution x.

• Evaluation of the quality (fitness function) of a coded solution should be fast.

• Every fragment of the coded solution should refer to just a part of the whole so-
lution, so that a small change in the coded sequence should not change the whole
solution.

• It should be relatively easy to design algorithms for random modification of a so-
lution (mutation) and for combination of two solutions (crossover) which produce
feasible solutions.

Huang and Lim (2006) use a local search procedure which, given first two dimen-
sions of an assignment, determines the third dimension (recall that the algorithm by
Huang and Lim (2006) is designed only for 3-AP). Since the first dimension can always
be fixed without any loss of generality (see Section 1), one needs to store only the sec-
ond dimension of an assignment. Unfortunately, this coding requires a specific local
search and is robust for 3-AP only. We use a different coding; a vector of an assignment
is considered as an atom in our algorithm and, thus, a coded assignment is just a list of
its vectors. The vectors are always stored in the first coordinate ascending order, e.g.,
an assignment consisting of vectors (2, 1, 1), (4, 4, 2), (3, 2, 3) and (1, 3, 4) (see Fig. 2)
would be represented as

(1, 3, 4), (2, 1, 1), (3, 2, 3), (4, 4, 2) .

Two assignments are considered equal if they have equal codes.

Evolutionary Computation Volume x, Number x 11

G. Gutin, D. Karapetyan

3.3 First Generation

As it was shown by Gutin and Karapetyan (2009a) (and we also confirmed it em-
pirically by testing our memetic algorithm with construction heuristics described in
(Karapetyan et al., 2009)), it is beneficial to start any MAP local search or metaheuristic
from a Greedy construction heuristic. Thus, we start from running Greedy (we use the
same implementation as in (Gutin and Karapetyan, 2009a)) and then perturb it using
our perturb procedure (see Section 3.5) to obtain every item of the first generation:

g1j = LocalSearch(perturb(greedy , µf)),

where greedy is an assignment constructed by Greedy and µf = 0.2 is the perturbation
strength coefficient. Since perturb performs a random modification, it guarantees some
diversity in the first generation.

The number of assignments to be produced for the first generation is discussed in
Section 2.3.

3.4 Crossover

A typical crossover operator combines two solutions, parents, to produce two new so-
lutions, children. Crossover is the main genetic operator, i.e., it is the source of a genetic
algorithm strength. Due to the selection operator, solutions consisting of ‘successful’
fragments are spread wider than others and that is why, if both parents have some sim-
ilar fragments, these fragments are assumed to be ‘successful’ and should be copied
without any change to the children solutions. Other parts of the solution can be ran-
domly mixed and modified though they should not be totally destroyed.

The one-point crossover is the simplest example of a crossover; it produces two
children x′ and y′ from two parents x and y as follows: x′

i = xi and y′i = yi for every
i = 1, 2, . . . , k, and x′

i = yi and y′i = xi for every i = k + 1, k + 2, . . . , n, where k ∈
{1, 2, . . . , n − 1} is chosen randomly. One can see that if xi = yi for some i, then the
corresponding values in the children sequences will be preserved: x′

i = y′i = xi = yi.
However, the one-point and some other standard crossovers do not preserve fea-

sibility of MAP assignments since not every sequence of vectors can be decoded into a
feasible assignment. We propose a special crossover operator. Let x and y be the parent
assignments and x′ and y′ be the child assignments. First, we retrieve equal vectors in
the parent assignments and initialize both children with this set of vectors:

x′ = y′ = x ∩ y .

Let k = |x ∩ y|, i.e., the number of equal vectors in the parent assignments, p = x \ x′

and q = y \ y′, where p and q are ordered sets. Let π and ω be random permutations of
size n− k. Let r be an ordered set of random values uniformly distributed in [0, 1]. For
every j = 1, 2, . . . , n− k the crossover sets

x′ = x′ ∪

{

pπ(j) if rj < 0.8
qω(j) otherwise

and y′ = y′ ∪

{

qω(j) if rj < 0.8
pπ(j) otherwise

.

Since this procedure can yield infeasible assignments, it requires additional cor-
rection of the child solutions. For this purpose, the following is performed for ev-
ery dimension d = 1, 2, . . . , s and for every child assignment c. For every i such that

∃j < i : cjd = cid set cid = r where r ∈ {1, 2, . . . , n} \ {c1d, c
2
d, . . . , c

n
d} is chosen randomly.

In the end of the correction procedure, sort the assignment vectors in the ascending
order of the first coordinates (see Section 3.2).

12 Evolutionary Computation Volume x, Number x

New Approach to Population Sizing: Case Study for MAP

In other words, our crossover copies all equal vectors from the parent assignments
to the child ones. Then it copies the rest of the vectors; every time it chooses randomly
a pair of vectors, one from the first parent and one from the second one. Then it adds
this pair of vectors either to the first and to the second child respectively (probability
80%) or to the second and to the first child respectively (probability 20%). Since the
obtained child assignments can be infeasible, the crossover corrects each one; for every
dimension of every child it replaces all duplicate coordinates with randomly chosen
correct ones, i.e., with the coordinates which are not currently used for that dimension.

Note that (5) requires l · mi+1 − mi to be even. If mi+1 = mi = mo(τ, t) then
l · mi+1 −mi is always even (recall that l = 3). However, the size of the population is
not guaranteed and, hence, l ·mi+1 −mi = (l − 1) ·m may take odd values. To resolve
this issue, we remove the worst solution from the ith generation if l ·mi+1−mi appears
to be odd.

We also tried the crossover operator used in (Huang and Lim, 2006) but it appeared
to be less efficient than the one proposed here.

3.5 Perturbation Algorithm

The perturbation procedure perturb(x, µ) is intended to modify randomly an assign-
ment x, where the parameter µ defines how strong is the perturbation. In our memetic
algorithm, perturbation is used to produce the first generation and to mutate assign-
ments from the previous generation when producing the next generation.

Our perturbation procedure perturb(x, µ) performs ⌈nµ/2⌉ random swaps. In
particular, each swap randomly selects two vectors and some dimension and then
swaps the corresponding coordinates: swap xd

u and xd
v , where u, v ∈ {1, 2, . . . , n} and

d ∈ {1, 2, . . . , s} are chosen randomly; repeat the procedure ⌈nµ/2⌉ times. For example,
if µ = 1, our perturbation procedure modifies up to n vectors in the given assignment.

3.6 Local Search Procedure

An extensive study of a number of local search heuristics for MAP can be found in
(Gutin and Karapetyan, 2009a); the paper includes both fast and slow algorithms. It
also shows that a combination of two heuristics can yield a heuristic superior to the
original ones.

The following heuristics were considered as candidates for the local search proce-
dure for our memetic algorithm (we provide only a brief description of every heuristic
here; full descriptions can be found in (Gutin and Karapetyan, 2009a)):

• 1DV, 2DV and sDV are dimensionwise (Gutin and Karapetyan, 2009a) local searches.
On every iteration, they fix some dimensions while the other dimensions are
grouped together. The problem of optimal matching the fixed and unfixed parts of
the assignment vectors can be represented as 2-AP which is solvable in the polyno-
mial time. 1DV, 2DV and sDV fix up to one, two and s dimensions on every iteration,
respectively.

• 2-opt (3-opt) is a simple heuristic that selects the best of all possible recombinations
for every pair (triple) of vectors in the assignment. 2-opt is known as a very fast but
poor quality heuristic. 3-opt is a high quality but slow local search which has no
application as a stand-alone heuristic but is useful in a combination with dimen-
sionwise heuristics (Gutin and Karapetyan, 2009a).

• v-opt is an extension of the Variable Depth Interchange heuristic which was ini-
tially proposed in (Balas and Saltzman, 1991) for 3-AP. Like 2-opt, v-opt considers

Evolutionary Computation Volume x, Number x 13

G. Gutin, D. Karapetyan

recombinations of vector pairs, however the objective and the enumeration order
in v-opt are totally different.

• 1DV2, 2DV2, sDVv and sDV3 are combinations of 1DV, 2DV or sDV with 2-opt, 3-opt or
v-opt. A variable local search is exploited here; the first and the second heuristics
are applied sequentially to the given assignment until no further improvement can
be obtained.

Results for 3-opt and v-opt as a local search for our memetic algorithm are not pro-
vided in this paper since they did not show any promising results in our experiments;
Gutin and Karapetyan (2009a) also indicate them to be inefficient heuristics.

Gutin and Karapetyan (2009a) propose a division of instances into two groups:
instances with independent weights and instances with decomposable weights. The
weight matrices of the instances with independent weights have no structure, i.e., there
is no correlation between weights w(u) and w(v) even if the vectors u and v are differ-
ent in only one coordinate. In contrast, the weights of the instances with decomposable
weights are defined using the graph formulation of MAP (see Section 1) and have the
following structure:

w(e) = f
(

d1,2e1,e2 , d
1,3
e1,e3 , . . . , d

s−1,s
es−1,es

)

, (6)

where matrix di,j define weights of the edges between sets Xi and Xj , and f is some
function. Most of the instances which have some practical interest and which do not be-
long to the group of independent weight instances can be represented as instances with
decomposable weights, see, e.g., Clique and SquareRoot instance families in Section 4.

It is known that even for a fixed optimization problem there is no local search pro-
cedure which would be the best choice for all types of instances (Krasnogor and Smith,
2001, 2005). Splitting all the MAP instances into two groups, namely instances with
independent and decomposable weights, gives us a formal way to use appropriate lo-
cal searches for every instance. In particular, it was shown by Gutin and Karapetyan
(2009a) that the instances with independent weights are better solvable by sDVv while
the dimensionwise heuristics are the best choice for the instances with decomposable
weights.

Table 1 presents a comparison of the results of our memetic algorithm based on
the local search procedures discussed above. The time given for every run of the algo-
rithm is 3 seconds. The table reports the relative solution error for every instance and
every considered algorithm. The column ‘best’ shows the best known solution for each
instance.

One can see that the outcomes of (Gutin and Karapetyan, 2009a) are repeated here,
i.e., for the Random instances (see Section 4) sDVv provides clearly the best performance;
for the instances with decomposable weights, i.e., for the Clique and SquareRoot in-
stances, the fast heuristics 1DV, 2DV, sDV, 1DV2 and 2DV2 perform better than others in
almost every experiment, and sDV shows the best average result among them (though
in Table 1 2DV slightly outperforms it, for other given times sDV shows the best results).

Thereby, in what follows we use sDVv as a local search for the instances with inde-
pendent weights and sDV for the instances with decomposable weights.

3.7 Population Size Adjustment

The constants a, b and c were selected to minimize γ (see Section 2.1);
as an instance set Φ we used the full test bed (see Section 4), the given

14 Evolutionary Computation Volume x, Number x

New Approach to Population Sizing: Case Study for MAP

times were T = {1s, 3s, 10s, 30s, 100s}, the generation sizes were M =
{2, 3, 5, 8, 12, 18, 27, 40, 60, 90, 135} and local search λ(φ) was selected according to Sec-
tion 3.6. The best value of γ = 13% was obtained for a = 0.08, b = 0.35 and c = 0.85
(see (1)). Note that these values are not a compromize and present minima for every
separate instance set and given time. Observe also that fixing m to some value leads to
γ > 19% for the same set of instances, local searches and given times.

Slight variations of the constants a, b and c do not influence the performance of the
algorithm significantly. Moreover, there exist some other values for these parameters
which also yield good results. The values of the constants should not be adjusted for
every computational platform.

4 Test Bed

In this section we discuss instance families used for experimental evaluation of our
memetic algorithm. As it was mentioned above, we use two types of instances: in-
stances with independent weights (Random) and instances with decomposable weights
(Clique, SquareRoot, Geometric and Product).

The Random instances simply assign a uniformly distributed random weight to
every vector e ∈ X . The weight was chosen from {1, 2, . . . , 100} in our experiments.
We believe that Random instances are of a small practical interest and we included them
in the test bed because they are widely used in the literature and also because of their
theoretical properties (Grundel et al., 2004; Gutin and Karapetyan, 2009c).

Initially we have also considered pseudo-random instances with predefined opti-
mal solutions (Grundel and Pardalos, 2005). However, the generator of these instances
has the exponential time complexity and the time required to generate the instances of
this type of appropriate size for our test bed is beyond any reasonable value.

The Clique and SquareRoot instance families have decomposable weights (see (6))
and, thus, they are defined for weighted s-partite graphs G = (X1 ∪X2 ∪ . . . ∪Xs, E).
Weight w(e) of every edge e ∈ E was initialized independently and randomly in our
experiments; w(e) was chosen uniformly from {1, 2, . . . , 100}. Let C be a clique in G
and let EC be the set of edges induced by this clique. Then the weight of a vector
corresponding to the clique C is calculated as follows for the Clique and SquareRoot
instances respectively:

wCQ(EC) =
∑

e∈EC

w(e) and

wSR(EC) =

√

∑

e∈EC

w(e)2 ,

i.e., in the case of SquareRoot, the objective is not only to minimize the considered
weights, like it is for Clique, but also to keep all the weights not too large.

A special case of Clique is Geometric instance family. In Geometric, the sets X1, X2,
. . . , Xs (see Section 1) correspond to s sets of points in a Euclidean space, and the
distance between two points u ∈ Xi and v ∈ Xj is defined as the Euclidean distance;
we consider two dimensional Euclidean space:

dg(u, v) =
√

(ux − vx)2 + (uy − vy)2 .

It is proven (Spieksma and Woeginger, 1996) that the Geometric instances are NP-hard
to solve for s = 3 and, thus, Geometric is NP-hard for every s ≥ 3.

Evolutionary Computation Volume x, Number x 15

G. Gutin, D. Karapetyan

Product is another NP-hard (Burkard et al., 1996b) instance family with decompos-
able weights. A weight of a vector e in Product is defined as follows:

wP(e) =
s
∏

j=1

ajej ,

where aj is an array of n values, each randomly selected from {1, 2, . . . , 100}.

Our test bed includes instances of 3-AP, 4-AP, 5-AP and 6-AP; for every number of
dimensions three sizes n are used which correspond to small, moderate and large in-
stances. For every combination of s and n 50 instances (10 Random, 10 Clique, 10 Square-
Root, 10 Geometric and 10 Product instances) are included into the test bed. Thereby, we
produced 10 different instances for every combination of s, n and instance family and,
thus, every number reported in the tables in Section 5 is average among 10 runs. We
use standard Miscrosoft .NET random generator (Microsoft, 2008) which is based on
the Donald E. Knuth’s subtractive random number generator algorithm (Knuth, 1981).
As a seed of the random number sequences for all the instance types we use the follow-
ing number: seed = s+ n+ i, where i ∈ {1, 2, . . . , 10} is the index of the instance.

5 Experimental Evaluation

Three metaheuristics were compared in our experiments:

• An extended version of the memetic algorithm by Huang and Lim (2006) (HL).

• An extended version of the simulated annealing algorithm by Clemons et al. (2004)
(SA).

• Our memetic algorithm (GK).

All the heuristics are implemented in Visual C++ and evaluated on a platform
based on AMD Athlon 64 X2 3.0 GHz processor. The implementations as well as the test
bed generator and the best known assignments are available on the web (Karapetyan,
2009).

5.1 HL Heuristic

For the purpose of comparison, the Huang and Lim’s memetic algorithm was extended
as follows:

• The coded assignment contains not only the second dimension but it stores se-
quentially all the dimensions except the first and the last ones, i.e., an assignment
{e1, e2, . . . , es} is represented as e12, e22, . . . , en2 , e13, e23, . . . , en3 , . . . , e1s−1, e2s−1, . . . , ens−1

(ei1 = i for each i and eis can be chosen in an optimal way by solving an AP, see
Section 3.2).

• The local search heuristic, that was initially designed for 3-AP, is extended to 1DV
as described in (Gutin and Karapetyan, 2009a).

• The crossover, proposed in (Huang and Lim, 2006), is applied separately to every
dimension (except the first and the last ones) since it was designed for one dimen-
sion only (recall that the memetic algorithm from (Huang and Lim, 2006) stores
only the second dimension of an assignment, see Section 3.2).

16 Evolutionary Computation Volume x, Number x

New Approach to Population Sizing: Case Study for MAP

• The termination criterion is replaced with a time check; the algorithm terminates
when the given time is elapsed.

Our computational experience show that the solution quality of our imple-
mentation of the Huang and Lim’s heuristic is similar to the results reported in
(Huang and Lim, 2006) and the running time is reasonably larger because of the ex-
tension for s > 3.

5.2 SA Heuristic

The Simulated Annealing heuristic by Clemons et al. (2004) was initially proposed for
arbitrary number of dimensions. We reimplemented it and our computational ex-
perience show that both the solution quality and the running times4 of our imple-
mentation of the Simulated Annealing heuristic are similar to the results reported in
(Clemons et al., 2004).

For the purpose of comparison to other heuristics we needed to fit SA for using a
predefined running time. We tried two strategies:

• An adaptive cooling ratio R (see Clemons et al. (2004)). The value R is updated
before each change of the temperature as follows:

R =
m

√

0.1

T
and f = (τ − te) ·

i

te
,

where T is the current temperature (see Clemons et al. (2004)), te is the elapsed
time, τ is the given time and f is the expected number of further iterations which
is calculated according to the number i of already finished iterations.

• An adaptive number of local search iterations NUMmax (see Clemons et al. (2004)).
The value NUMmax is updated before each change of the temperature as follows:

NUMmax = (τ − te) ·
c

te
·

1

I − i
,

where te is the elapsed time, τ is the given time, c is the total number of local
search iterations already performed, i is the number of the algorithm iterations
already performed and I is the number of algorithm iterations to be performed.
Since the cooling ratio R as well as the initial and the final temperatures Tstart and
Tfinal are fixed, the number I of iterations of the algorithm is also fixed:

I = logR
Tfinal

Tinitial
.

For both adaptations the algorithm terminates if the given time is elapsed: t ≥ τ .
Both adaptations yielded competitive algorithms though according to our experi-

mental evaluation the second adaption which varies the number of local search itera-
tions appears to be more efficient. One can assume that the best adaptation should vary
both the cooling ratio and the number of local search iterations but this is a subject for
another research. Hence, in what follows the SA algorithm refers to the extension with
the adaptive number of local search iterations.

4In our experiments, the running times of the heuristic were always approximately 20 times smaller than
the results reported in (Clemons et al., 2004) which can be explained by a difference in the computational
platforms.

Evolutionary Computation Volume x, Number x 17

G. Gutin, D. Karapetyan

5.3 Experiment Results

The main results are reported in Tables 2 and 3; in these tables, we compare our algo-
rithm (GK) to the Simulated Annealing heuristic (SA) and the memetic algorithm by
Huang and Lim (HL). The comparison is performed for the following given times τ :
0.3 s, 1 s, 3 s, 10 s, 30 s, 100 s and 300 s. Every entry of these tables contains the rela-
tive solution error averaged for 10 instances of some fixed type and size but of different
seed values (see Section 4 for details); we did not repeat every experiment several times
which is typical for stochastic algorithms. The value of the relative solution error e(A)
is calculated as follows

e(A) =

(

w(A)

w(Abest)
− 1

)

· 100% . (7)

where A is the obtained solution and Abest is the best known solution5.
The name of an instance consists of three parts: the number of dimensions s, the

type of the instance (‘r’ for Random, ‘cq’ for Clique and ‘sr’ for SquareRoot) and the size
n of the instance. The results for Product and Geometric instances were excluded from
Tables 1, 2 and 3 because even stand alone local searches used in our memetic algorithm
are able to solve Geometric instances to optimality and Product instances to less than
0.04% over optimality6. Similar result were reported in (Gutin and Karapetyan, 2009a).

The average values for different instance families, numbers of dimensions and in-
stance sizes are provided at the bottom of each table. The best among HL, SA and GK
results are underlined in every row for every particular given time.

One can see that GK clearly outperforms both SA and HL for all the given times.
Moreover, GK is not worse than the other heuristics in every experiment which proves
its flexibility and robustness. A two-sided paired t-test confirms statistical difference
even between GK with τ = 1 s and HL with τ = 100 s because the p-value in this case
was less than 0.0001 for both instances with independent and decomposable weights.
This shows that HL is not able to use large time efficiently.

The solution quality of GK significantly depends on the given time: for the in-
stances with both independent and decomposable weights a three times increase of the
running time improves the solution quality approximately 1.2 to 2 times for the large
and small τ , respectively. Recall that the approach proposed in this paper to select the
most appropriate population size reduces γ more than 1.5 times (see Section 2.1) and,
hence, it would take roughly 1.5 to 10 times more time to get the same solution quality
for a memetic algorithm with a fixed population size7.

It is worth noting that we experimented with different values of the GK algorithm
parameters such as µf , µm, pm, l, etc. and concluded that small variations of these
values do not significantly influence the algorithm performance.

For the instances with independent weights all the algorithms perform better for
the large instances rather than for the small ones. One can explain it by showing that

5The best known solutions were obtained during our experiments with different heuristics and the corre-
sponding weights can be found in Table 1. For the Random instances we actually know the optimal objective
values; it is proven for large values of n that a Random instance has a solution of the minimal possible weight
(Gutin and Karapetyan, 2009c); since we obtained the minimal possible solutions for every Random instance
in our experiments, we can extend the results of Gutin and Karapetyan (2009c) to all the Random instances in
our test bed.

6We believe that the best known solutions for both Geometric and Product instances are optimal but we are
not able to verify it.

7Note that γ is not just the average for the solution errors and, thus, these calculations are very approxi-
mate.

18 Evolutionary Computation Volume x, Number x

New Approach to Population Sizing: Case Study for MAP

the number of vectors of the minimal weight in Random is proportional to ns while
the number of vectors in an assignment is n and, thus, the number of global minima
increases with the increase of n (Grundel et al., 2004; Gutin and Karapetyan, 2009a). In
contrast, the instances with decomposable weights become harder with the growth of
n.

Since the HL heuristic uses 1DV local search, it performs quite well for the instances
with decomposable weights and yields solutions of poor quality for the instances with
independent weights. Due to the fixed population size, it does not manage to solve
some large instances in short times which results in huge solution errors reported in
Table 2 for the instances 3cq70, 3sr70, 3cq100 and 3sr100. HL was initially designed
for 3-AP and tested on small instances (Huang and Lim, 2006) and, hence, it performs
better for the instances with small s and n.

The SA heuristic is less successful than the others; for both instances with inde-
pendent and decomposable weights it is worse than both HL and GK in almost every
experiment. The solution quality of SA improves quite slowly with the increase of the
running time; it seems that SA would not be able to significantly improve the solution
quality even if it is given much larger time.

6 Conclusion

In this paper, we propose a new approach to population sizing in memetic algorithms.
As a case study, we designed and evaluated a memetic algorithm for the Multidimen-
sional Assignment Problem. Our experiments have confirmed that the proposed pop-
ulation sizing leads to an outstanding flexibility of the algorithm. Indeed, it was able to
perform efficiently for a wide range of instances, being given from 0.3 to 300 seconds of
the running time and with totally different local search procedures. As an evidence of
its efficiency, we compared it with two other metaheuristics proposed in the literature
and concluded that our algorithm clearly outperforms the other heuristics with no ex-
ception. Moreover, the difference in the solution quality of our memetic algorithm (GK)
and the previous state-of-the-art memetic algorithm (HL) continuously grows with the
increase of the given time which confirms that GK is much more flexible than HL.

The main factors influencing the performance of a memetic algorithm are running
time, computational platform, problem instance, local search procedure, population
size and genetic operators. We did not focus on the genetic operators investigation in
this research; however we believe that the operators used in our algorithm are well
fitted since our attempts to improve the algorithm results by changing the operators
have failed. The local search procedure and the population size are varied according to
the problem instance; after an extensive study of the local searches, we show that there
are two totally different cases of MAP, and for these cases one should use different
local search procedures. Since these local searches have very different running times,
the memetic algorithm should adapt for them. This is done by using the adjustable
population size which is a function of the average running time of the local search.
Thereby, the average running time of the local search encapsulates not only the local
search specifics but also the specifics of the instance and the computational platform
performance. Since the algorithm is self-adjustable, the running time can be used as a
parameter responsible for the ‘solution quality’/‘running time’ balance and, thus, the
population size should also depend on the given time.

The adjustable population size requires several constants to be tuned prior to using
the algorithm; we proposed a procedure to find the optimal values of these constants.

In conclusion we note that choosing the most appropriate population size is crucial

Evolutionary Computation Volume x, Number x 19

G. Gutin, D. Karapetyan

for the performance of a memetic algorithm. Our approach to calculate the population
size according to the average running time of the local search and the time given to the
whole algorithm, used to perform well for a large variation of the instances and given
times and for two totally different local searches. Observe, however, that the whole
discussion of the population sizing does not involve any MAP specifics and, hence,
we can conclude that the obtained results can be extended to any hard optimization
problem.

Further research is required to evaluate the proposed approach in application to
other hard combinatorial optimization problems. It is also an interesting question if
changing the population size during the algorithm’s run can further improve the re-
sults.

References

Aiex, R. M., Resende, M. G. C., Pardalos, P. M., and Toraldo, G. (2005). Grasp with path relinking
for three-index assignment. INFORMS J. on Computing, 17(2):224–247.

Andrijich, S. M. and Caccetta, L. (2001). Solving the multisensor data association problem. Non-
linear Analysis, 47(8):5525–5536.

Balas, E. and Saltzman, M. J. (1991). An algorithm for the three-index assignment problem. Oper.
Res., 39(1):150–161.

Bandelt, H. J., Maas, A., and Spieksma, F. C. R. (2004). Local search heuristics for multi-index
assignment problems with decomposable costs. Journal of the Operational Research Society,
55(7):694–704.

Bekker, H., Braad, E. P., and Goldengorin, B. (2005). Using bipartite and multidimensional match-
ing to select the roots of a system of polynomial equations. In Computational Science and Its
Applications — ICCSA 2005, volume 3483 of Lecture Notes Comp. Sci., pages 397–406. Springer.

Burkard, R. E. and Çela, E. (1999). Linear assignment problems and extensions. In Du, Z. and
Pardalos, P., editors, Handbook of Combinatorial Optimization, pages 75–149. Dordrecht.

Burkard, R. E., Klinz, B., and Rudolf, R. (1996a). Perspectives of monge properties in optimiza-
tion. Discrete Applied Mathematics, 70(2):95–161.

Burkard, R. E., Rudolf, R., and Woeginger, G. J. (1996b). Three-dimensional axial assignment
problems with decomposable cost coefficients. Technical Report 238, Graz.

Clemons, W. K., Grundel, D. A., and Jeffcoat, D. E. (2004). Theory and algorithms for cooperative
systems, chapter Applying simulated annealing to the multidimensional assignment problem,
pages 45–61. World Scientific.

Coelho, A. L. V. and de Oliveira, D. G. (2008). Dynamically tuning the population size in particle
swarm optimization. In SAC ’08: Proceedings of the 2008 ACM symposium on Applied computing,
pages 1782–1787, New York, NY, USA. ACM.

Cotta, C. (2008). Adaptive and Multilevel Metaheuristics, volume 136 of Studies in Computational
Intelligence. Springer.

Crama, Y. and Spieksma, F. C. R. (1992). Approximation algorithms for three-dimensional assign-
ment problems with triangle inequalities. European Journal of Operational Research, 60(3):273–
279.

Eiben, A., Marchiori, E., and Valkó, V. (2004). Evolutionary algorithms with on-the-fly population
size adjustment. Lecture Notes in Computer Science, 3242:41–50.

Eiben, A. E., Hinterding, R., and Michalewicz, Z. (1999). Parameter control in evolutionary algo-
rithms. IEEE Transactions on Evolutionary Computation, 3:124–141.

20 Evolutionary Computation Volume x, Number x

New Approach to Population Sizing: Case Study for MAP

Garey, M. R. and Johnson, D. S. (1979). Computers and Intractability: A Guide to the Theory of NP-
Completeness (Series of Books in the Mathematical Sciences). W. H. Freeman.

Glover, F. W. and Kochenberger, G. A., editors (2003). Handbook of Metaheuristics. Springer.

Goldberg, D. E., Deb, K., and Clark, J. H. (1991). Genetic algorithms, noise, and the sizing of
populations. Complex Systems, 6:333–362.

Grefenstette, J. (1986). Optimization of control parameters for genetic algorithms. IEEE Trans.
Syst. Man Cybern., 16(1):122–128.

Grundel, D., Oliveira, C., and Pardalos, P. (2004). Asymptotic properties of random multidimen-
sional assignment problems. Journal of Optimization Theory and Applications, 122(3):33–46.

Grundel, D. A. and Pardalos, P. M. (2005). Test problem generator for the multidimensional
assignment problem. Comput. Optim. Appl., 30(2):133–146.

Gutin, G., Goldengorin, B., and Huang, J. (2008). Worst case analysis of max-regret, greedy and
other heuristics for multidimensional assignment and traveling salesman problems. Journal of
Heuristics, 14(2):169–181.

Gutin, G. and Karapetyan, D. (2009a). Local search heuristics for the multidimensional assign-
ment problem. Preprint in arXiv, http://arxiv.org/abs/0806.3258. A preliminary ver-
sion is published in volume 5420 of Lecture Notes Comp. Sci., pages 100–115, 2009.

Gutin, G. and Karapetyan, D. (2009b). A memetic algorithm for the multidimensional assignment
problem. Lecture Notes Comp. Sci., 5752:125–129.

Gutin, G. and Karapetyan, D. (2009c). A selection of useful theoretical tools for the design and
analysis of optimization heuristics. Memetic Computing, 1(1):25–34.

Gutin, G. and Karapetyan, D. (2010). A memetic algorithm for the generalized traveling salesman
problem. Natural Computing, 9(1):47–60.

Harik, G., Cantu-Paz, E., Goldberg, D. E., and Miller, B. L. (1999). The gambler’s ruin problem,
genetic algorithms, and the sizing of populations. Evolutionary Computation, 7(3):231–253.

Hart, W. E., Krasnogor, N., and Smith, J., editors (2005). Recent Advances in Memetic Algorithms,
volume 166 of Studies in Fuzziness and Soft Computing. Springer.

Held, M. and Karp, R. M. (1962). A dynamic programming approach to sequencing problems.
Journal of the Society for Industrial and Applied Mathematics, 10(1):196–210.

Huang, G. and Lim, A. (2006). A hybrid genetic algorithm for the three-index assignment prob-
lem. European Journal of Operational Research, 172(1):249–257.

Isler, V., Khanna, S., Spletzer, J., and Taylor, C. J. (2005). Target tracking with distributed sensors:
The focus of attention problem. Computer Vision and Image Understanding Journal, (1-2):225–247.
Special Issue on Attention and Performance in Computer Vision.

Karapetyan, D. (2009). http://www.cs.rhul.ac.uk/Research/ToC/publications/Karapetyan/.

Karapetyan, D., Gutin, G., and Goldengorin, B. (2009). Empirical evaluation of construction
heuristics for the multidimensional assignment problem. In Chan, J., Daykin, J. W., and Rah-
man, M. S., editors, London Algorithmics 2008: Theory and Practice, Texts in Algorithmics, pages
107–122. College Publications.

Kaveh, A. and Shahrouzi, M. (2007). A hybrid ant strategy and genetic algorithm to tune the
population size for efficient structural optimization. Engineering Computations, 24(3):237–254.

Knuth, D. E. (1981). Seminumerical Algorithms, volume 2 of The Art of Computer Programming.
Addison-Wesley, Reading, Massachusetts, second edition.

Evolutionary Computation Volume x, Number x 21

http://arxiv.org/abs/0806.3258
http://www.cs.rhul.ac.uk/Research/ToC/publications/Karapetyan/

G. Gutin, D. Karapetyan

Krasnogor, N. and Smith, J. E. (2001). Emergence of profitable search strategies based on a simple
inheritance mechanism. In Proceedings of the 2001 Genetic and Evolutionary Computation Confer-
ence, pages 432–439.

Krasnogor, N. and Smith, J. E. (2005). A tutorial for competent memetic algorithms: model,
taxonomy and design issues. IEEE Transactions on Evolutionary Computation, 9(5):474– 488.

Krasnogor, N. and Smith, J. E. (2008). Memetic algorithms: The polynomial local search com-
plexity theory perspective. Journal of Mathematical Modelling and Algorithms, 7:3–24.

Kuhn, H. W. (1955). The hungarian method for the assignment problem. Naval Research Logistic
Quarterly, 2:83–97.

Kuroki, Y. and Matsui, T. (2007). An approximation algorithm for multidimensional assignment
problems minimizing the sum of squared errors. Discrete Applied Mathematics, 157(9):2124–
2135.

Lee, M. A. and Takagi, H. (1993). Dynamic control of genetic algorithms using fuzzy logic tech-
niques. In Proceedings of the Fifth International Conference on Genetic Algorithms, pages 76–83.
Morgan Kaufmann.

Microsoft (2008). MSDN, chapter Random Class. Microsoft.
http://msdn2.microsoft.com/en-us/library/system.random.aspx.

Murphey, R., Pardalos, P., and Pitsoulis, L. (1998). A grasp for the multitarget multisensor track-
ing problem. Networks, Discrete Mathematics and Theoretical Computer Science Series, 40:277–302.

Oliveira, C. A. S. and Pardalos, P. M. (2004). Randomized parallel algorithms for the multidi-
mensional assignment problem. Appl. Numer. Math., 49:117–133.

Pardalos, P. M. and Pitsoulis, L. S. (2000a). Nonlinear assignment problems. Springer.

Pardalos, P. M. and Pitsoulis, L. S. (2000b). Nonlinear Optimization and Applications 2, chapter
Quadratic and Multidimensional Assignment Problems, pages 235–276. Kluwer Academic
Publishers.

Pasiliao, E. L., Pardalos, P. M., and Pitsoulis, L. S. (2005). Branch and bound algorithms for the
multidimensional assignment problem. Optimization Methods and Software, 20(1):127–143.

Pierskalla, W. P. (1968). The multidimensional assignment problem. Operations Research, 16:422–
431.

Pusztaszeri, J., Rensing, P., and Liebling, T. M. (1996). Tracking elementary particles near their
primary vertex: a combinatorial approach. Journal of Global Optimization, 9:41–64.

Robertson, A. J. (2001). A set of greedy randomized adaptive local search procedure (grasp) im-
plementations for the multidimensional assignment problem. Comput. Optim. Appl., 19(2):145–
164.

Spieksma, F. and Woeginger, G. (1996). Geometric three-dimensional assignment problems. Eu-
ropean Journal of Operational Research, 91:611–618.

Spieksma, F. C. R. (2000). Nonlinear Assignment Problems, Algorithms and Application, chapter Multi
Index Assignment Problems: Complexity, Approximation, Applications, pages 1–12. Kluwer.

Talbi, E.-G. (2009). Metaheuristics: From Disign to Implementation. John Wiley & Sons.

Veenman, C. J., Reinders, M. J. T., and Backer, E. (2003). Establishing motion correspondence
using extended temporal scope. Artificial Intelligence, 145(1-2):227–243.

Zemel, E. (1981). Measuring the quality of approximate solutions to zero-one programming
problems. Math. Oper. Res., 6:319–332.

22 Evolutionary Computation Volume x, Number x

http://msdn2.microsoft.com/en-us/library/system.random.aspx

New Approach to Population Sizing: Case Study for MAP

Table 1: Memetic algorithms based on different local search comparison. The given
time is 3 s.

Relative solution error, %

Inst. Best 2-opt 1DV 2DV sDV 1DV2 2DV2 sDV3 sDVv

3r40 40.0 122.00 26.75 30.00 27.25 32.25 32.50 32.00 6.25
3r70 70.0 102.71 11.43 11.14 11.57 11.71 11.57 15.00 0.71
3r100 100.0 83.90 3.00 3.20 3.10 3.30 3.10 5.80 0.00
4r20 20.0 68.00 46.00 28.00 29.50 39.50 32.00 17.50 0.00
4r30 30.0 73.00 31.00 23.67 23.67 27.00 21.67 14.33 0.00
4r40 40.0 73.50 24.00 15.25 15.00 23.00 15.75 11.25 0.00
5r15 15.0 36.67 39.33 19.33 16.67 22.00 21.33 8.00 0.00
5r18 18.0 40.56 37.78 20.56 19.44 26.11 18.89 2.78 0.00
5r25 25.0 40.40 34.00 16.80 16.80 25.60 18.40 3.60 0.00
6r12 12.0 10.00 39.17 15.83 10.00 14.17 13.33 0.83 0.00
6r15 15.0 22.00 45.33 16.67 11.33 18.67 13.33 0.00 0.00
6r18 18.0 23.89 37.22 18.33 10.00 17.22 12.78 0.00 0.00

All avg. 58.05 31.25 18.23 16.19 21.71 17.89 9.26 0.58

3-AP avg. 102.87 13.73 14.78 13.97 15.75 15.72 17.60 2.32
4-AP avg. 71.50 33.67 22.31 22.72 29.83 23.14 14.36 0.00
5-AP avg. 39.21 37.04 18.90 17.64 24.57 19.54 4.79 0.00
6-AP avg. 18.63 40.57 16.94 10.44 16.69 13.15 0.28 0.00

Small avg. 59.17 37.81 23.29 20.85 26.98 24.79 14.58 1.56
Moderate avg. 59.57 31.38 18.01 16.50 20.87 16.37 8.03 0.18
Large avg. 55.42 24.56 13.40 11.23 17.28 12.51 5.16 0.00

3cq40 939.9 12.45 0.05 0.01 0.10 0.04 0.11 2.60 0.31
3sr40 610.6 15.39 0.05 0.23 0.07 0.23 0.25 2.46 0.23
3cq70 1158.4 37.92 3.84 3.98 3.43 4.72 4.63 10.50 5.94
3sr70 737.1 44.15 4.79 5.28 5.70 4.94 5.06 14.30 6.46
3cq100 1368.1 47.09 8.19 7.92 8.29 8.61 8.82 15.04 10.55
3sr100 866.3 46.02 7.92 7.77 7.61 8.50 8.48 14.71 11.06
4cq20 1901.8 0.27 0.01 0.02 0.03 0.08 0.06 1.16 0.27
4sr20 929.3 0.40 0.01 0.12 0.03 0.14 0.03 0.85 0.36
4cq30 2281.9 5.53 0.41 0.69 0.69 0.67 0.73 5.26 1.77
4sr30 535.1 20.15 5.05 2.15 2.32 4.20 2.39 9.81 5.12
4cq40 2606.3 14.53 2.98 1.96 2.47 2.90 3.49 9.04 6.85
4sr40 1271.4 19.85 5.86 5.15 4.41 5.33 4.62 13.43 9.32
5cq15 3110.7 0.01 0.00 0.00 0.00 0.00 0.00 1.53 0.01
5sr15 1203.9 0.24 0.02 0.00 0.02 0.04 0.00 2.22 0.10
5cq18 3458.6 0.30 0.00 0.04 0.04 0.02 0.00 2.90 0.30
5sr18 504.9 3.72 1.47 0.04 0.00 0.28 0.24 4.12 0.61
5cq25 4192.7 4.03 0.25 0.54 0.54 0.86 0.87 6.82 2.71
5sr25 1627.5 4.68 0.44 1.04 1.14 0.58 1.27 8.31 3.90
6cq12 4505.6 0.08 0.00 0.00 0.00 0.00 0.00 2.49 0.08
6sr12 502.9 0.18 0.12 0.00 0.00 0.00 0.00 2.62 0.08
6cq15 5133.4 0.58 0.00 0.09 0.08 0.06 0.13 4.98 0.23
6sr15 1654.6 1.12 0.24 0.42 0.19 0.24 0.43 4.93 1.21
6cq18 5765.5 1.57 0.42 0.50 0.51 0.22 0.42 6.55 1.87
6sr18 1856.3 2.33 0.39 0.68 1.07 0.77 0.85 6.62 1.93

All avg. 11.77 1.77 1.61 1.61 1.81 1.79 6.39 2.97

Clique avg. 10.36 1.35 1.31 1.35 1.52 1.60 5.74 2.58
SR avg. 13.19 2.20 1.91 1.88 2.10 1.97 7.03 3.37

3-AP avg. 33.84 4.14 4.20 4.20 4.51 4.56 9.93 5.76
4-AP avg. 10.12 2.39 1.68 1.66 2.22 1.89 6.59 3.95
5-AP avg. 2.16 0.36 0.28 0.29 0.30 0.40 4.32 1.27
6-AP avg. 0.98 0.19 0.28 0.31 0.21 0.30 4.70 0.90

Small avg. 3.63 0.03 0.05 0.03 0.07 0.06 1.99 0.18
Moderate avg. 14.18 1.97 1.59 1.56 1.89 1.70 7.10 2.71
Large avg. 17.51 3.31 3.20 3.25 3.47 3.60 10.07 6.03

Evolutionary Computation Volume x, Number x 23

G. Gutin, D. Karapetyan

Table 2: Metaheuristics comparison.

Relative solution error, %

0.3 sec. 1 sec. 3 sec.

Inst. HL SA GK HL SA GK HL SA GK

3r40 49.75 120.00 10.75 44.25 99.00 9.75 41.50 84.50 6.25
3r70 512.86 102.86 3.29 18.14 82.86 1.71 16.86 72.71 0.71
3r100 5051.50 100.30 1.10 15.40 70.10 0.20 4.90 59.20 0.00
4r20 73.50 153.50 6.00 71.00 133.00 0.50 59.00 100.50 0.00
4r30 56.67 126.33 2.00 50.33 114.00 0.00 45.00 94.00 0.00
4r40 38.00 121.75 0.75 33.00 110.75 0.00 28.75 91.50 0.00
5r15 75.33 163.33 0.67 63.33 126.67 0.00 52.00 124.00 0.00
5r18 72.22 158.33 0.56 62.78 139.44 0.00 53.89 107.78 0.00
5r25 60.40 164.00 0.40 51.20 118.80 0.00 44.80 103.60 0.00
6r12 76.67 184.17 0.00 62.50 115.00 0.00 48.33 110.83 0.00
6r15 72.00 154.00 0.00 50.67 130.67 0.00 45.33 105.33 0.00
6r18 62.22 176.67 0.00 55.00 126.11 0.00 45.00 107.22 0.00

All avg. 516.76 143.77 2.13 48.13 113.87 1.01 40.45 96.77 0.58

3-AP avg. 1871.37 107.72 5.05 25.93 83.99 3.89 21.09 72.14 2.32
4-AP avg. 56.06 133.86 2.92 51.44 119.25 0.17 44.25 95.33 0.00
5-AP avg. 69.32 161.89 0.54 59.10 128.30 0.00 50.23 111.79 0.00
6-AP avg. 70.30 171.61 0.00 56.06 123.93 0.00 46.22 107.80 0.00

Small avg. 68.81 155.25 4.35 60.27 118.42 2.56 50.21 104.96 1.56
Moderate avg. 178.44 135.38 1.46 45.48 116.74 0.43 40.27 94.96 0.18
Large avg. 1303.03 140.68 0.56 38.65 106.44 0.05 30.86 90.38 0.00

3cq40 6.60 22.69 1.23 5.19 16.95 0.52 3.14 9.68 0.10
3sr40 6.55 27.10 1.87 5.11 18.18 0.74 4.44 15.92 0.07
3cq70 585.22 53.63 8.66 13.51 40.72 6.38 11.93 33.29 3.43
3sr70 744.70 58.53 8.97 15.63 44.69 7.15 15.00 39.52 5.70
3cq100 1013.95 68.28 11.94 1013.95 60.25 10.20 16.10 48.53 8.29
3sr100 1017.18 83.18 11.25 815.17 69.14 10.27 17.16 56.14 7.61
4cq20 1.71 15.53 0.07 1.35 12.28 0.03 0.87 10.48 0.03
4sr20 3.58 10.47 0.33 2.16 7.17 0.31 1.42 5.00 0.03
4cq30 7.51 30.65 2.66 6.66 21.57 0.91 5.64 18.21 0.69
4sr30 19.59 45.32 5.44 16.22 35.47 4.15 15.10 27.51 2.32
4cq40 17.90 37.87 6.80 11.60 34.76 4.46 10.41 28.53 2.47
4sr40 18.26 38.32 10.20 15.74 28.83 7.79 14.62 23.08 4.41
5cq15 0.95 30.11 0.07 0.41 29.80 0.03 0.20 28.66 0.00
5sr15 3.11 30.87 0.47 2.04 30.25 0.09 1.37 29.88 0.02
5cq18 2.41 38.73 0.57 2.17 38.26 0.20 1.27 36.40 0.04
5sr18 15.35 131.47 1.37 13.77 128.70 0.63 12.16 128.03 0.00
5cq25 7.52 48.11 3.84 6.11 45.41 1.97 5.00 45.06 0.54
5sr25 9.23 47.75 4.85 8.65 44.80 2.82 6.97 43.62 1.14
6cq12 0.62 35.66 0.24 0.08 35.55 0.00 0.01 35.18 0.00
6sr12 7.91 111.81 0.18 6.64 110.34 0.04 5.67 109.96 0.00
6cq15 2.26 43.66 1.43 1.58 43.68 0.32 1.31 42.22 0.08
6sr15 3.05 40.14 1.94 2.34 39.75 0.86 1.72 39.68 0.19
6cq18 3.91 51.19 15.43 2.48 49.98 1.43 1.90 48.95 0.51
6sr18 5.83 48.13 13.20 4.92 47.52 2.02 3.93 47.38 1.07

All avg. 146.04 47.88 4.71 82.23 43.09 2.64 6.56 39.62 1.61

Clique avg. 137.55 39.68 4.41 88.76 35.77 2.20 4.82 32.10 1.35
SR avg. 154.53 56.09 5.01 75.70 50.40 3.07 8.30 47.14 1.88

3-AP avg. 562.37 52.24 7.32 311.43 41.66 5.88 11.30 33.85 4.20
4-AP avg. 11.43 29.69 4.25 8.95 23.35 2.94 8.01 18.80 1.66
5-AP avg. 6.43 54.51 1.86 5.52 52.87 0.96 4.49 51.94 0.29
6-AP avg. 3.93 55.10 5.40 3.01 54.47 0.78 2.42 53.89 0.31

Small avg. 3.88 35.53 0.56 2.87 32.56 0.22 2.14 30.60 0.03
Moderate avg. 172.51 55.27 3.88 8.98 49.11 2.58 8.02 45.61 1.56
Large avg. 261.72 52.85 9.69 234.83 47.59 5.12 9.51 42.66 3.25

24 Evolutionary Computation Volume x, Number x

New Approach to Population Sizing: Case Study for MAP

Table 3: Metaheuristics comparison.

Relative solution error, %

10 sec. 30 sec. 100 sec. 300 sec.

Inst. HL SA GK HL SA GK HL SA GK HL SA GK

3r40 38.25 63.50 4.50 32.50 60.75 4.75 28.75 51.75 2.50 27.25 47.00 1.75
3r70 14.00 55.00 0.57 13.29 45.14 0.00 11.43 37.71 0.00 10.71 34.29 0.00
3r100 4.10 45.60 0.00 3.50 36.60 0.00 3.00 30.80 0.00 2.40 24.80 0.00
4r20 49.50 94.50 0.00 44.00 80.00 0.00 38.50 63.00 0.00 34.00 52.00 0.00
4r30 37.33 83.00 0.00 33.67 68.00 0.00 31.00 58.00 0.00 28.00 45.00 0.00
4r40 27.00 66.00 0.00 22.75 62.25 0.00 20.25 49.75 0.00 19.50 41.75 0.00
5r15 42.67 82.00 0.00 35.33 75.33 0.00 32.00 65.33 0.00 28.00 51.33 0.00
5r18 47.22 95.56 0.00 41.67 71.11 0.00 31.67 62.22 0.00 28.33 59.44 0.00
5r25 40.00 90.00 0.00 32.00 68.40 0.00 27.60 61.20 0.00 24.40 51.20 0.00
6r12 42.50 91.67 0.00 33.33 74.17 0.00 25.00 60.83 0.00 16.67 53.33 0.00
6r15 38.00 90.00 0.00 34.00 74.00 0.00 27.33 64.00 0.00 26.00 52.00 0.00
6r18 37.78 95.00 0.00 33.89 76.11 0.00 28.89 72.22 0.00 23.89 56.67 0.00

All avg. 34.86 79.32 0.42 29.99 65.99 0.40 25.45 56.40 0.21 22.43 47.40 0.15

3-AP avg. 18.78 54.70 1.69 16.43 47.50 1.58 14.39 40.09 0.83 13.45 35.36 0.58
4-AP avg. 37.94 81.17 0.00 33.47 70.08 0.00 29.92 56.92 0.00 27.17 46.25 0.00
5-AP avg. 43.30 89.19 0.00 36.33 71.61 0.00 30.42 62.92 0.00 26.91 53.99 0.00
6-AP avg. 39.43 92.22 0.00 33.74 74.76 0.00 27.07 65.69 0.00 22.19 54.00 0.00

Small avg. 43.23 82.92 1.13 36.29 72.56 1.19 31.06 60.23 0.63 26.48 50.92 0.44
Moderate avg. 34.14 80.89 0.14 30.65 64.56 0.00 25.36 55.48 0.00 23.26 47.68 0.00
Large avg. 27.22 74.15 0.00 23.03 60.84 0.00 19.93 53.49 0.00 17.55 43.60 0.00

3cq40 2.21 7.71 0.00 1.83 6.50 0.00 0.96 4.29 0.00 0.91 2.94 0.00
3sr40 3.16 9.61 0.11 2.41 6.63 0.00 1.82 5.27 0.00 1.00 3.10 0.00
3cq70 10.59 25.66 3.25 9.96 22.15 1.49 8.62 17.36 1.17 8.07 13.35 0.70
3sr70 12.87 32.42 3.11 12.17 24.37 1.86 10.50 20.82 1.18 9.89 17.23 0.41
3cq100 14.36 40.41 7.21 13.90 33.08 5.49 12.87 27.63 5.18 11.51 24.22 4.71
3sr100 15.34 45.72 6.27 14.03 38.22 4.63 13.22 30.96 3.30 12.56 27.57 3.27
4cq20 0.43 6.90 0.01 0.22 3.23 0.00 0.05 2.80 0.00 0.01 1.03 0.00
4sr20 0.91 2.04 0.03 0.69 1.54 0.00 0.48 1.19 0.00 0.22 0.40 0.00
4cq30 4.78 14.91 0.18 4.03 11.24 0.17 3.03 7.29 0.14 2.45 4.63 0.07
4sr30 13.40 22.09 1.01 12.24 18.87 0.52 10.60 14.32 0.28 9.68 11.19 0.13
4cq40 9.43 20.53 1.02 8.92 15.90 0.87 8.40 12.47 0.39 7.67 7.79 0.45
4sr40 13.43 17.58 1.85 11.84 14.93 1.30 10.48 12.03 0.47 10.14 9.56 0.41
5cq15 0.06 28.03 0.00 0.03 27.55 0.00 0.03 27.14 0.00 0.00 26.99 0.00
5sr15 0.56 29.75 0.00 0.19 29.66 0.00 0.00 29.66 0.00 0.00 29.66 0.00
5cq18 0.78 34.26 0.04 0.38 33.27 0.02 0.03 32.75 0.00 0.00 32.44 0.00
5sr18 10.24 126.20 0.06 8.81 124.74 0.00 7.09 123.65 0.00 6.28 123.09 0.00
5cq25 3.95 42.39 0.10 3.35 41.83 0.03 2.53 39.92 0.07 2.27 39.36 0.06
5sr25 6.21 43.15 0.64 5.85 42.13 0.31 5.16 41.85 0.10 4.37 41.70 0.14
6cq12 0.00 34.69 0.00 0.00 34.71 0.00 0.00 34.00 0.00 0.00 33.93 0.00
6sr12 4.16 109.43 0.00 3.66 109.41 0.00 2.11 109.41 0.00 1.59 109.41 0.00
6cq15 0.76 41.57 0.06 0.39 41.39 0.00 0.07 41.11 0.00 0.03 40.80 0.00
6sr15 1.29 39.57 0.22 0.93 39.57 0.09 0.70 39.57 0.00 0.60 39.57 0.00
6cq18 1.39 47.49 0.26 1.06 47.27 0.15 0.64 46.90 0.08 0.43 46.78 0.06
6sr18 3.31 47.23 0.25 2.79 47.15 0.03 2.14 47.14 0.04 1.74 47.14 0.04

All avg. 5.57 36.22 1.07 4.99 33.97 0.71 4.23 32.06 0.52 3.81 30.58 0.44

Clique avg. 4.06 28.72 1.01 3.67 26.51 0.69 3.10 24.47 0.59 2.78 22.85 0.50
SR avg. 7.07 43.73 1.13 6.30 41.43 0.73 5.36 39.66 0.45 4.84 38.30 0.37

3-AP avg. 9.76 26.93 3.33 9.05 21.83 2.25 8.00 17.72 1.80 7.32 14.73 1.51
4-AP avg. 7.06 14.01 0.68 6.32 10.95 0.48 5.51 8.35 0.21 5.03 5.77 0.18
5-AP avg. 3.64 50.63 0.14 3.10 49.86 0.06 2.47 49.16 0.03 2.15 48.87 0.03
6-AP avg. 1.82 53.33 0.13 1.47 53.25 0.05 0.94 53.02 0.02 0.73 52.94 0.02

Small avg. 1.44 28.52 0.02 1.13 27.40 0.00 0.68 26.72 0.00 0.47 25.93 0.00
Moderate avg. 6.84 42.09 0.99 6.11 39.45 0.52 5.08 37.11 0.35 4.62 35.29 0.16
Large avg. 8.43 38.06 2.20 7.72 35.06 1.60 6.93 32.36 1.20 6.34 30.51 1.14

Evolutionary Computation Volume x, Number x 25

	1 Introduction
	2 Managing Solution Quality and Population Sizing
	2.1 Population Size
	2.2 Choosing Constants a, b and c
	2.3 Finding Local Search Average Running Time t

	3 Case Study: Algorithm for Multidimensional Assignment Problem
	3.1 Main Algorithm Scheme
	3.2 Coding
	3.3 First Generation
	3.4 Crossover
	3.5 Perturbation Algorithm
	3.6 Local Search Procedure
	3.7 Population Size Adjustment

	4 Test Bed
	5 Experimental Evaluation
	5.1 HL Heuristic
	5.2 SA Heuristic
	5.3 Experiment Results

	6 Conclusion

