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Abstract

This paper develops methods for estimating and forecasting in Bayesian panel vector
autoregressions of large dimensions with time-varying parameters and stochastic
volatility. We exploit a hierarchical prior that takes into account possible pooling
restrictions involving both VAR coefficients and the error covariance matrix, and
propose a Bayesian dynamic learning procedure that controls for various sources of
model uncertainty. We tackle computational concerns by means of a simulation-
free algorithm that relies on analytical approximations to the posterior. We use our
methods to forecast inflation rates in the eurozone and show that these forecasts are
superior to alternative methods for large vector autoregressions.
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1 Introduction

As the economies of the world become increasingly linked through trade and financial

flows, the need for multi-country econometric modelling has increased. Panel Vector

Autoregressions (PVARs), which jointly model many macroeconomic variables in many

countries, are becoming a popular way of fulfilling this need. We use the general term PVAR

for models where the dependent variables for all countries are modelled jointly in a single

VAR and, thus, the VAR for each individual country is augmented with lagged dependent

variables from other countries. In this paper, we develop econometric methods for PVARs of

possibly large dimensions using a hierarchical prior which can help overcome the concerns

about over-parameterization that arise in these models. The novelties of our approach

are that i) we tackle in one integrated setting all concerns pertaining to out-of-sample

forecasting, such as controlling for over-fitting and dealing with model uncertainty; ii) we

allow for empirically relevant extensions that account for structural breaks and changing

volatilities; and iii) we do so in a computationally efficient way, building on previous work

by Koop and Korobilis (2013) for single-country VARs.

To explain the significance of the econometric contributions of this paper, we note a

major characteristic of the existing literature on multi-country VAR models lies in the

need to appropriately model linkages between countries. This literature includes Bayesian

multi-country VARs (Canova and Ciccarelli, 2009; Koop and Korobilis, 2016), Global VARs

(Dees, di Mauro, Pesaran and Smith, 2007; Feldkircher and Huber, 2016), multi-country

factor models (Kose, Otrok and Whiteman, 2003), and spatial VARs (Chudik and Pesaran,

2011). The common ground of all these modelling approaches is the need to account for

the panel structure in the data, and explicitly model inter-dependencies and commonalities

in the units (countries or individuals). This is an important consideration as the dimension

of panel VARs tends to grow rapidly: the case with only five variables for 10 countries

results in a model with 50 endogenous variables and thousands of parameters. Therefore,
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any panel-specific restrictions one can impose, such as clustering/pooling coefficients across

units, could help identify parsimonious models that are useful in forecasting or structural

inference. Alternative solutions to the overparametrization problem are offered in the

literature on large (single-country) VARs – such as those estimated by Bańbura, Giannone

and Reichlin (2010) and Koop and Korobilis (2013), that incorporate shrinkage estimators

and efficient computational algorithms. However, large VAR methods typically rely

on shrinkage priors that ignore the panel structure in the data and this loss of useful

information might have adverse effects in forecasting.1

Consequently, our motivation and first econometric contribution is to develop efficient

methods for VARs of large dimensions that feature panel-specific restrictions as well as

time-varying parameters and stochastic volatility, and fill this particular gap in the VAR

literature. Our starting point is the seminal contribution of Canova and Ciccarelli (2009)

who introduce a hierarchical shrinkage prior for multi-country VARs with time-varying

parameters and develop Markov chain Monte Carlo (MCMC) simulation methods to tackle

estimation.2 We extend their methods to account for stochastic volatility in the panel

VAR error covariance matrix. We also propose a model formulation that allows us to

introduce their hierarchical shrinkage prior to the time-varying error covariance matrix.

Both these extensions are empirically relevant. There is ample evidence that volatility

in empirical macroeconomic models is extremely important for forecasting (see, among

many others, Clark and Ravazzolo, 2015 and Diebold, Schorfheide and Shin, 2017), in

1In particular, popular applications of large VARs rely on the Minnesota prior (Doan, Litterman and
Sims, 1984) that places weak prior shrinkage on the intercepts and own autoregressive dynamics of each
variable, but heavily shrinks cross-terms and more distant lags. In the case of panel VARs right-hand side
lags include own lags of each variable of a given country, but also i) lags of the same variable of other
countries; ii) lags of other variables of the same country; and iii) lags of other variables of other countries.
The Minnesota prior would simply place equal prior weight on these three categories of right-hand side
variables, which would result in discarding useful information about interdependencies and homogeneities
among countries. Similar arguments would hold for any shrinkage prior or penalized estimator that is not
developed specifically for panel VARs, such as the popular lasso of Tibshirani (1996).

2As we explain later in this paper, this hierarchical prior pools certain VAR coefficients by country
or by variable, and results in a lower-dimensional VAR which greatly reduces the computational burden.
However, the use of simulation methods means that the authors consider only structural analysis (not much
more computationally-intensive recursive forecasting) using 27-variable PVARs.
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which case it is imperative to relax the assumption of homoskedasticity used by Canova

and Ciccarelli (2009). However, given that time-varying covariance matrices are non-

parsimonious, some form of shrinkage is also needed for these parameters. Off-diagonal

elements of the error covariance matrix of a panel VAR represent static/contemporaneous

interdependencies among countries. This motivates our use the same pooling prior on

these error covariance parameters that Canova and Ciccarelli (2009) only use for the VAR

coefficients. Finally, we adapt the scalable state-space estimator of Koop and Korobilis

(2013) to this time-varying parameter panel VAR setting. This estimator is simulation-

free and, in combination with the pooling-shrinkage prior of Canova and Ciccarelli (2009),

it allows estimation and forecasting with models with possibly hundreds of endogenous

variables.

A second econometric contribution lies in the treatment of model uncertainty. We

consider various sources of uncertainty that pertain to panel VARs with time-varying

parameters, and we use a Bayesian dynamic learning prior that allows to learn interesting

model features from the data. Given our interest in forecasting, we use posterior predictive

likelihoods (an out-of-sample measure) to inform a number of decisions about optimal

model structure. The Bayesian learning procedure we use is dynamic, meaning that at

each point in time a different model structure might hold. For example, one consideration

is whether to shrink using a pooling prior, or whether it is better for forecasting to reduce

the model to a more parsimonious country-specific structure where within-country effects

are the only drivers of fluctuations in the macroeconomic variables and between-country

spillover effects are zero. Our procedure allows for the choice between these two structures.

A second consideration is how much time-variation in parameters is optimal for forecasting.

As mentioned previously, there is a great deal of evidence that stochastic volatility is

extremely important for forecasting, but there is mixed evidence about whether allowing

for time-varying intercepts and autoregressive coefficients is important. Our full model

specification nests models with faster or slower drifts in coefficients, as well as a fully
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time-invariant panel VAR structure. Thus we can estimate (in a time-varying manner) the

amount of time variation in the error covariance and VAR coefficients. Finally, we take into

account uncertainty about the size of the panel VAR. When forecasting, it might be the case

that VARs with a small number of variables (or even VARs that include only the variable of

interest and no additional predictors, such as Stock and Watson, 2005, do for international

business cycle dynamics) might perform better. Existing evidence for forecasting inflation

in the US suggests that this might be the case; see the popular unobserved components

model of Stock and Watson (2007) that features no predictors but a time-varying trend and

stochastic volatility. We introduce, therefore, a very flexible learning mechanism that looks

at the most recent out-of-sample performance at each point in time and then shrinks the

panel VAR model to an optimal parsimonious structure. We show that this novel modelling

feature acts as a safeguard against overfitting and poor forecasting performance.

Our paper also seeks to contribute to the empirical literature on inflation modelling

in the eurozone. There are many linkages and inter-relationships between the economies

of the eurozone countries. Modelling aggregate inflation for the eurozone as a whole will

miss many interesting country-specific patterns since monetary policy can have differing

impacts on different countries. These considerations justify why we want to forecast

individual country inflation rates, but not using conventional VAR methods one country

at a time. The panel VAR is an effective way of modelling the spillovers and inter-linkages

between countries that may exist for the eurozone countries. Euro area inflation has been

an important component in many recent policy discussions. Deflation has been a recent

worry. For instance, in December 2014, most of the eurozone were experiencing deflation

and no country registered an inflation rate above 1%. Subsequently euro area inflation

has increased, but as of 2018 it still remains low by historic standards. Although there

has been a tendency for inflation rates in the various eurozone countries to converge to

one another, there are still substantive cross-country differences, in particular around the

time of the eurozone crisis. For instance, Delle Monache, Petrella and Venditti (2015)
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document the relative roles of country-specific and common shocks to euro area country

inflation rates. Although commonalities predominate, country-specific shocks play a large

role. Furthermore, Delle Monache, Petrella and Venditti (2015) document substantial time

variation in parameters, providing additional support for our model which allows for such

variation.

The remainder of the paper is organized as follows. In Section 2, we describe our

econometric methods, beginning with the panel VAR before proceeding to the case of

time-varying parameters and stochastic volatility, and then our dynamic treatment of

model uncertainty. Section 3 contains our empirical study of euro area inflation. We

find substantial evidence of forecasting benefits, in particular from using dynamic learning

methods which average over different PVAR dimensions and different hierarchical priors.

Section 4 concludes.

2 Econometric Methodology

In this section we detail the underlying econometric methodology for estimation in large

panel VARs. We begin by discussing some of the issues which occur with PVAR models

and introduce the hierarchical prior we adopt, before discussing time-varying parameter

versions of PVARs. We then propose modifications of the time-varying parameter PVAR

model in order to allow hierarchical modelling of the error covariance matrix. We conclude

this section with a discussion of our treatment of model uncertainty and provide a detailed

explanation of how the dynamic learning procedure works.

2.1 Methods of Ensuring Parsimony in the PVAR

Assume N countries and G variables for each country which are observed for T time

periods. In our empirical application these are 10 eurozone countries and we use inflation

plus an additional eight country-specific predictor variables, observed for 216 months. Let
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Yt = (y′1t, y
′
2t, ..., y

′
Nt) for t = 1, ..., T be the NG× 1 vector of dependent variables where y′it

is the G× 1 vector of dependent variables of country i, i = 1, ..., N .3 The i-th equation of

the PVAR with p lags takes the form

yit = A1
iYt−1 + ...+ ApiYt−p + uit, (1)

where Aji for j = 1, .., p are G×NG matrices PVAR coefficients for country i. Additionally,

uit is a G × 1 vector of disturbances, uncorrelated over time, where uit ∼ N (0,Σii). The

errors between countries may be correlated and we define E
(
uitu

′
jt

)
= Σij and Σ to be the

entire NG×NG error covariance matrix for ut = (u1t, .., uNt)
′. Let Aj =

(
Aj1, ..., A

j
N

)
for

j = 1, ..., p and α =
(
vec (A1)

′
, ..., vec (Apt )

′)′. Note that, for notational simplicity, we have

not added an intercept or other deterministic terms nor exogenous variables, but they can

be added with the obvious modifications to the formulae below. In our empirical work, we

include an intercept.

The unrestricted PVAR given in (1) is likely over-parameterized, involving K =

p×(N ×G)2 unknown autoregressive parameters and N×G×(N×G+1)
2

error covariance terms.

Plausible choices for N,G and p can lead to very large parameter spaces. A popular

approach to dimension reduction in Bayesian vector autoregressions is to use hierarchical

priors that induce shrinkage in the parameters. Examples of such priors include the

scale mixture of Normals priors used in George, Sun and Ni (2008) and the priors from

general equilibrium models of Del Negro and Schorfheide (2004). However, adopting any

of the existing priors developed for a single-country VAR will result in discarding valuable

information due to the fact that one would expect partial pooling of coefficients in a

panel setting. Incorporating such information could improve forecasts. Furthermore, these

methods require the use of MCMC methods which make them computationally infeasible

3In our empirical work, we also include the oil price in the vector of dependent variables and its
dimensionality is thus NG+ 1.
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with high-dimensional models, particularly in the context of a forecasting exercise.

A popular way to introduce such pooling in PVARs that will result in efficient shrinkage,

is described in Canova and Ciccarelli (2009, 2013). These authors use a certain hierarchical

prior so as to work with restricted versions of (1), a practice which we adopt in this paper.

In particular, we assume the following reduced rank representation of the PVAR coefficients:

α = Ξ1θ1 + Ξ2θ2 + ..+ Ξqθq + e

= Ξθ + e

where Ξ = (Ξ1, ..,Ξq) are known matrices and θ =
(
θ′1, .., θ

′
q

)′
is an R×1 vector of unknown

parameters with R < K and e is uncorrelated with ut and distributed as N (0,Σ⊗ V ) where

V = σ2I. Due to the fact that the high-dimensional vector of coefficients α is projected

into a lower dimensional vector of latent parameters θ, we will refer to this second layer

regression as a “factor model” for the PVAR coefficients (this will become clearer later

when α, θ become time-varying). This specification can be thought of as a hierarchical

prior for the PVAR model of the form α|Σ ∼ N (Ξθ,Σ⊗ V ) and θ ∼ N (0, Q), which is of

the natural conjugate form for α due to the conditioning on Σ.

How can we use this specification to extract meaningful lower-dimensional factors of

α that take into account the panel structure in the data? Suppose, for instance, that the

elements of α are made up of a common factor, a factor specific to each country and a

factor specific to each variable. This is the factor structure used in Canova and Ciccarelli

(2009). Then q = 3 and Ξ1 will be a K × 1 vector of ones, θ1 a scalar. Ξ2 will be a K ×N

matrix containing zeros and ones defined so as to pick out coefficients for each country and

θ2 is an N ×1 vector. Ξ3 will be a K×G matrix containing zeros and ones defined so as to

pick out coefficients for each variable and θ3 is an G× 1 vector. For instance, if N = G = 2
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and p = 1 then

Ξ2 =



ι1 0

ι1 0

0 ι2

0 ι2


and Ξ3 =



ι3 0

0 ι4

ι3 0

0 ι4


where ι1 = (1, 1, 0, 0)′ , ι2 = (0, 0, 1, 1)′ , ι3 = (1, 0, 1, 0)′ and ι4 = (0, 1, 0, 1)′. Thus, the

K dimensional α is dependent on a much lower dimensional vector of parameters, since θ

is of dimension R = 1 + N + G with e being left to model any residual variation in the

parameters. Such a strategy can be used to greatly reduce the dimensionality of α and

help achieve parsimony. However, such a method may come at a cost if the factor structure

is not chosen correctly. The latter could lead either to over-parameterization concerns or

to mis-specification concerns. In the previous example, where the coefficients are assumed

to depend on a common factor, a country specific factor and a variable specific factor, it

could be, e.g., that no common factor exists (θ1 = 0) and a specification which ignored this

restriction would over-parameterized. On the other hand, our example of a factor structure

might be too restrictive and mis-specification might result. The K distinct elements of α

may be so heterogeneous that a factor structure with only N +G+ 1 parameters may not

be adequate.

These considerations suggest that the model space should be augmented using different

choices of Ξ and an algorithm developed to choose between them. This is what we do

in this paper. In theory, one could devise a huge range of possible structures for Ξ, e.g.

allowing own lag coefficients to be unrestricted; impose “core” and “periphery” clusters on

the coefficients; global VAR restrictions, and so on. In practice, we have found that for our

euro area data two specific structures clearly beat a range of several other options in terms

of in-sample and out-of-sample fit. The first is one begins with the same pooling structure

proposed in Canova and Ciccarelli (2009) but leaves intercepts and first autoregressive
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lagged coefficients to be unrestricted – meaning that these sets of coefficients are not

determined through the common factors. This can simply be achieved if we extract one

factor for each coefficient we want to leave unrestricted and set the state variance of that

parameter to zero. If, as an example, the j-th element of α is an intercept, we extract a

new factor θi with associated “loadings vector” Ξi that has it’s j-th scalar element equal to

one, and all remaining K − 1 elements equal to zero. That way, we add 2×N ×G factors

to the ones that already Canova and Ciccarelli suggest.4

The second way of specifying the factor structure is by restricting Ξ in such a way that

the PVAR collapses to a country-specific VAR structure. To explain what we mean by

this, let p = 1 and consider the NG2 coefficients in the VAR for country i. G2 of these

coefficients are on lags of country i variables, with the remaining (N − 1)G2 being on lags

of other countries’ variables. We define Ξ such that its accompanying θ loads only on the

G2 coefficients that are on lags of country i variables. Thus, if e = 0, the coefficients

on other country variables are zero and the PVAR breaks down into N individual VARs,

one for each country (apart from any inter-linkages which occur through Σ). The impacts

of other countries’ variables on country i are only allowed for through the presence of e.

Intuitively, this structure for Ξ captures the idea that working with VARs one country at

a time comes close to being adequate (i.e. most of the coefficients on lagged country j

variables in the country i VAR will be zero), but there are occasional inter-linkages which

can be captured through e. When we move to the time-varying parameter PVAR (TVP-

PVAR) in the next section, this definition of Ξ will imply the same intuition, except in

terms of individual-country TVP-VARs.

4It is not surprising that we find important for forecasting not to pool the coefficients on first own lags
with other VAR coefficients through a common factor structure. Intercepts and first own lags are always
important components of good time-series forecasts, and the Minnesota prior is also based on the same
principle and shares a similar structure for intercepts and AR(1) coefficients.
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2.2 Moving from the PVAR to the TVP-PVAR

We begin by putting t subscripts on all the PVAR coefficients in (1) and, thus, αt =(
vec (A1

t )
′
, ..., vec (Apt )

′)′ is the K × 1 vector collecting all PVAR parameters at time t. We

write the TVP-PVAR in matrix form as:

Yt = X ′tαt + ut, (2)

whereXt = I⊗
(
Y ′t−1, ..., Y

′
t−p
)′

, and ut ∼ N (0,Σt). An unrestricted time-varying parameter

VAR would typically assume αt to evolve as a random walk (see, e.g., Doan, Litterman

and Sims, 1984, Cogley and Sargent, 2005, or Primiceri, 2005). However, in the multi-

country TVP-PVAR case this may lead to an extremely over-parameterized model and

burdensome (or even infeasible) computation. At each point in time t the number of

PVAR parameters, p × (N ×G)2, could run into the thousands or more. The fact that

in the case of time-variation we have T such high-dimensional parameter vectors only

complicate computations. Adding to the mix the fact that typical estimation would rely

on MCMC methods (e.g. Cogley and Sargent, 2005, use MCMC), means that we have

to repeat thousands of times any burdensome algorithmic operations involving these high-

dimensional parameter vectors. Repeatedly running such an algorithm on an expanding

window of data, as is typically done in a recursive forecasting exercise, multiplies this burden

by hundreds in many applications. As discussed in Koop or Korobilis (2013), estimating

TVP-VARs using MCMC methods can easily become computationally infeasible unless the

number of forecasting models and their dimension are both small.

In order to achieve parsimony, we follow Canova and Ciccarelli (2009) and extend the

factorization of the PVAR coefficients described in the preceding subsection to the time-
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varying case using the following hierarchical prior:

αt = Ξθt + et (3)

θt = θt−1 + wt, (4)

where θt is an R×1 vector of unknown parameters, R� K, Ξ is defined as in the preceding

subsection and wt ∼ N (0,Wt) where Wt is an R × R covariance matrix, and extending

Canova and Ciccarelli (2009)’s homoskedastic specification we let et ∼ N (0,Σt ⊗ V ) where

V = σ2I. The factors θt evolve according to a random walk, in order to be consistent with

the bulk of the time-varying parameter VAR literature we cited above. The hierarchical

representation of the panel VAR using equations (2), (3) and (4) resembles the hierarchical

time-varying parameter SUR specified in Chib and Greenberg (1995). However, the

generic MCMC sampler of Chib and Greenberg (1995), when applied to the hierarchical

prior above, proves to be computationally inefficient. This is because their algorithm

requires many draws from the Normal conditional posterior of αt ∀t, which proves to

be extremely demanding. In this case, a certain conjugacy assumption of Canova and

Ciccarelli (2009) can help bypass explicit inference for the high-dimensional αt, resulting in

huge computational gains. To be specific, the assumption that the prior for αt in equation

(3) is of natural conjugate form (conditional on Σt) comes in handy.

As a consequence, we can simplify the TVP-PVAR given by (2), (3) and (4) into the

following simpler, two-equation form (see Canova and Ciccarelli, 2013, page 22, for a proof):

Yt = X̃ ′tθt + vt, (5)

θt = θt−1 + wt, (6)

where X̃t = XtΞ and vt = X ′tet + ut with vt ∼ N (0, (I + σ2X ′tXt)× Σt). Therefore, in

this form the TVP-PVAR is written as a Normal linear state-space model consisting of
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the measurement equation in (5) and the state equation (6). For known values of Σt, Wt

and σ2, standard methods for state space models based on the Kalman filter can be used

to obtain the predictive density and posterior distribution for θt. Thus, we will not repeat

the relevant formulae here and the reader is referred to the online technical Appendix of

this paper, as well as Koop and Korobilis (2013) for further computational details. A

typical Bayesian analysis would involve using MCMC methods to draw Σt, Wt and σ2 and

then, conditional on these draws, use such state space methods. However, in our case,

the computational burden of MCMC methods will be prohibitive. Accordingly, we use: i)

forgetting factor methods to provide an estimate of Wt, ii) Exponentially Weighted Moving

Average (EWMA) methods to estimate Σt and, iii) use a grid of values for σ2 and interpret

each value as defining a particular model and, thus, include them in our model space when

we take model uncertainty into account (see the next subsection). The following paragraphs

elaborate on these points.

First, in any state-space problem estimation of the state variance (Wt in our case) can

be quite demanding. In a VAR context, Primiceri (2005) discusses how the prior plays a

key role in determining this parameter when the information in the likelihood is weak. Here

we use instead a method introduced in engineering many decades ago involving the use of

forgetting factors. We refer the reader to Raftery, Karny and Ettler (2010) or to Koop and

Korobilis (2013) for a motivation and discussion of the properties of these methods. The

main idea behind this method is that of exponentially discounting past state variances in

order to obtain an estimate of the current period’s variance. This means that Wt can be

estimated using the following formula

Ŵt =

(
1

λ
− 1

)
var (θt|Dt−1) ,

where Dt−1 denotes data available through period t− 1, 0 < λ ≤ 1 is the forgetting factor

(typically set to a value lower than one but close to it) and var (θt|Dt−1) is a predicted
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variance readily available at time t from the Kalman filter iteration of the previous time

period, t − 1. Thus, at the cost of using a method which is approximate, we gain huge

benefits in terms of computational simplicity and stability.5 The forgetting factor approach

allows estimation of systems with large numbers of variables in seconds, and, hence, is

computationally attractive for recursive point and density forecasting or any other state

space modelling exercise that can become infeasible using MCMC methods.

Improving on the inference of Canova and Ciccarelli (2009), we allow for the TVP-

PVAR error covariance matrix to be time-varying and use EWMA filtering methods to

estimate it as:

Σ̂t = κΣ̂t−1 + (1− κ) ũtũ
′
t,

where ũtũ
′
t = (I + σ2X ′tXt)

−1
[(
Yt − X̃ ′tE (θt|Dt−1)

)(
Yt − X̃ ′tE (θt|Dt−1)

)′]
, E (θt|Dt−1) is

produced by the Kalman filter and 0 < κ ≤ 1. κ is referred to as a decay factor. We

define the κ = 1 case to be Σ̂t =
∑t
τ=1 ũτ ũ

′
τ

t
(i.e. equivalent to least squares methods in a

homoskedastic model). In order to initialize Σ̂t, we set Σ̂0 = 0.1× I which is a relatively

diffuse choice.

The forgetting factor λ and decay factor κ control the amount of time variation in the

system. Lower (higher) values of λ, κ imply faster (slower) changes over time in the values

of θt and Σt, respectively. When λ = κ = 1 then both θt and Σt become time invariant

and we have the constant parameter homoskedastic PVAR. In our empirical work, we let

λ = {0.990, 0.992, 0.994, 0.996, 0.998, 1.000} and κ = {0.92, 0.94, 0.96, 0.98, 1.00}, interpret

each grid point as defining a model and use dynamic model selection methods (to be

described below) to select the optimal value. Thus, the data can select either the constant

coefficient PVAR or homoskedastic PVAR at any point in time, or can select a greater

degree of variation in coefficients or error covariance matrix. We adopt a similar strategy

5Likelihood-based methods, such as Bayesian and maximum likelihood inference, rely on formulae
involving var (θt|Dt). However, at time t this quantity is uknown and needs to be estimated reliably,
which will directly affect the way θt is updated and estimated.
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for σ2, using a grid of σ2 ∈ {0.001, 0.003, 0.005, 0.007, 0.009, 0.01, 0.03, 0.05, 0.07, 0.09,

0.1, 0.3, 0.5, 0.7, 0.9, 1, 3, 5, 7, 9}.

The Kalman filter provides us with a one-step ahead predictive density. Since we wish to

forecast at horizon h > 1 and calculate predictive likelihoods, we use predictive simulation

for longer forecast horizons. To do this, we draw YT+1 from its Normal predictive density

with mean and variance given by the Kalman filter (these are assumed to be constant and

fixed during predictive simulation), then simulate YT+2 from its Normal predictive density

conditional on the drawn YT+1, etc. up to h.

2.3 A Hierarchical Prior for the Error Covariance Matrix

As we have seen, the error covariance matrix of the TVP-PVAR can also be huge, leading

to a desire for shrinkage on it as well. In this subsection, we extend the hierarchical prior

of Canova and Ciccarelli (2009) to allow for such shrinkage. We decompose the error

covariance matrix as Σt = B−1t Ht

(
HtB

−1
t

)′
where Bt is a lower triangular matrix with ones

on the diagonal, Ht is a diagonal matrix and write the VAR as

Yt = X ′tαt +B−1t Htεt,

where εt ∼ N (0, I). We can write the model in the following form as:

Yt = X ′tαt +W ′
tβt +Htεt, (7)
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where Wt is the matrix

Wt =



0 . . . . . . 0

ε1t 0 . . . 0

0 [ε1t, ε2t]
. . .

...

...
. . . . . . 0

0 . . . 0
[
ε1t, ..., ε(NG−1)t

]


.

With this specification we have an equivalent model where the error covariances show

up as contemporaneous regressors on the right hand side of the TVP-PVAR. This model

cannot be estimated as a multivariate system using standard filtering methods described

previously. To see this, note that elements Yt show up both on the left-hand side, and the

right-hand side of the PVAR (via the matrix of contemporaneous error terms, Wt). In this

case, the state-space system is nonlinear and multivariate estimation would need to rely

on computationally intensive simulation methods. A potential solution to this problem

would be to follow Carriero, Clark and Marcellino (2016) and estimate the model equation-

by-equation: the first equation does not contain any contemporaneous information on the

right-hand side so can be estimated independently of other equations using a linear filter;

the second equation is dependent on ε1t which can be replaced by residuals from the first

equation; the third equation is dependent on ε1t, ε2t which can also be replaced by residuals,

and so on until equation NG which also depends on residuals available from the previous

NG− 1 equations.6 However, such an option is not available to us, since the pooling prior

6In a previous version of this manuscript we were instead working with the model

Yt = X ′tγt + Z ′tβt +Htεt,

where γt =
(
vec

(
BtA

1
t

)′
, ..., vec (BtA

p
t )
′
)′

and Zt had the same structure as Wt but with elements −Yjt
in place of ε̂jt – see also the definition of the respective matrix Zt in the Appendix of Primiceri (2005).
This previous formulation of the VAR and the one we currently use in equation (7) are observationally
equivalent, however, the latter offers the advantage of having the original VAR coefficient αt remaining the
vector of VAR coefficients as in our original specification in (2). In contrast, the VAR form described above
is in terms of coefficients γt which consist of products of VAR coefficients At and the VAR covariance Bt.
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we adopt clusters coefficients among different equations. As a consequence the parameters

of different PVAR equations will not be independent a-posteriori, and equation-by-equation

estimation is not available. We overcome this issue in a fashion similar to the problem of

estimating time-varying covariance matrices using the EWMA specification described in the

previous subsection. That is, when constructing Wt we replace εt with the one-step ahead

residuals from each Kalman filter iteration, namely ε̃t = Yt−X ′tE (αt|Dt−1)−W ′
tE (βt|Dt−1).

Doing so allows each time period t to have all right-hand-side variables observed and proceed

with the estimation methods described in the previous section.

In order to complete this new but equivalent PVAR specification that treats elements of

the error covariance matrix as exogenous predictors, we can extend our previous approach

and introduce a hierarchical prior on both αt and βt of the form:

δt ≡

 αt

βt

 =

 Ξα 0

0 Ξβ

 θt + ut ≡ Ξθt + ut, (8)

θt = θt−1 + vt.

where now ut ∼ N (0, HtHt ⊗ (σ2I)), which has a diagonal covariance matrix since both Ht

and σ2I are diagonal matrices. Under the additional assumption that Ξ is block diagonal

and αt and βt load on separate factors (rows of θt), then we have prior independence between

the two sets of coefficients. This exact prior independence of the sets of coefficients – an

assumption that is used extensively in many Bayesian applications (see Primiceri, 2005) –

is a crucial assumption that allows for equation-by-equation estimation of the PVAR using

the linear Kalman filter. The econometric methods described in the preceding subsection

can be used directly, with a slight simplification due to the diagonality of Ht.

The two choices for Ξα are those described at the end of Section 2.1. For Ξβ we also

use these two choices with the trivial adaptation required by the structure for Wt. In the

In this case, applying the pooling prior on γt instead of the original VAR coefficients αt is a feature that
is not desirable. The new, equivalent formulation solves this problem.

16



forecasting exercise we allow for Ξα and Ξβ to potentially be different. Using P (for pooled)

subscripts to denote the form that builds on Canova and Ciccarelli (2009), and CS (for

country-specific) subscripts to denote the country-specific VAR factor structure, we define

four possible specification for the Ξ matrices: i) Ξα
P and Ξβ

P , ii) Ξα
P and Ξβ

CS, iii) Ξα
CS and

Ξβ
P and iv) Ξα

CS and Ξβ
CS. As we explain next in the following subsection, selection of the

best specification pair for Ξα and Ξβ is part of a more general dynamic procedure that

selects the values of various hyperparameters that are optimal for forecasting.

It is worth digressing briefly to discuss the role of the ordering of variables in our model

when we decompose Σt using a lower triangular Bt and diagonal Ht. We stress first that

we are not using this decomposition to identify structural shocks, merely to estimate a

reduced form forecasting model. Next we note that, conditional on Σt, the posterior of the

VAR coefficients does not depend on the ordering of variables. That is, it will be exactly

the same for any ordering of the variables. The only possible sensitivity to ordering relates

to Σt itself and the prior we use. That is, we elicit priors separately on Bt and Ht and

the resulting prior for Σt has the potential to differ slightly depending on the ordering of

the variables. This issue is inherent to all the many papers which use this decomposition

(e.g. Primiceri, 2005). But, we would argue, it is a small problem relative to the benefits

of working with this way of decomposing the error covariance matrix. In particular, it

allows for fast equation-by-equation computation and for straightforward development of

restrictions on covariances through our Ξα matrices.

2.4 Dynamic Treatment of Model Uncertainty

The previous subsections discussed the estimation of single time-varying parameter PVARs

and defined our model space. Our most general approach involves a model space where

the models differ in various features, in order to explicitly control for model uncertainty.

The features defining the models include the different choices for λ, κ and σ2 described in
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sub-section 2.2, the different combinations of Ξα and Ξβ described in sub-section 2.3; and

different PVAR dimensions (to be described in sub-section 3.1). In total we have 16,800

PVAR or TVP-VAR models to choose between. In this sub-section, we describe how to do

so in a dynamic manner such that the chosen model may change over time. Our methods

use posterior model probabilities constructed in a dynamic manner.

We can use such posterior model probabilities to either do model selection or averaging.

In this paper, we adopt the view that some of our specification choices relate to concepts

which can be interpreted as parameters (i.e. λ, κ and σ2). For these we do model selection

since this is similar to estimating them (e.g. if we select a model with λ = 0.99 this is the

same as estimating λ to be 0.99). We also do model selection for the different choices for

Ξα and Ξβ since they define different priors and presenting results which average over very

different priors would reduce the interpretability of results. With regards to choosing the

dimension of the PVAR, this is more like a conventional modelling choice. For this, we use

model averaging methods following standard Bayesian practice. Of course, the econometric

methods developed in this paper could be used to use a single approach throughout (e.g.,

do only dynamic model selection over all models in our model space).

To be precise, for Ξα, Ξβ, λ, κ and σ2, we choose the values that maximize posterior

model probabilities. Conditional on the optimal choice of these, we then estimate TVP-

PVARs with different numbers of endogenous variables and provide forecasts which average

over them. That is, we produce forecasts from every model and then our final forecast is a

weighted average of them, where the weights are given by their respective posterior model

probabilities.

Calculating posterior model probabilities can also be computationally burdensome,

especially with a vast array of models. In addition, most conventional methods are not

dynamic (e.g. simply calculating the marginal likelihood for each model). In the remainder

of this sub-section, we outline a computationally simple method for the calculation of

posterior model probabilities in a dynamic fashion, comparable with the Kalman filter
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update rules used for parameter estimation (i.e. we predict time t model probabilities

given information at time t−1, and then update these probabilities when time t information

becomes observed).

Let M (i) for i = 1, ..., J be the set of models under consideration, which in our

application are all nested and J is a very large number. In order to be able to learn

about the optimal configuration for forecasting we need to quantify a measure of belief for

each single model. We follow Raftery et al (2010) and do so by calculating dynamic model

probabilities, p
(
M (i)|Dt−1

)
, for each model. We use forgetting factor methods to estimate

p
(
M (i)|Dt−1

)
. The forgetting factor literature (e.g. Kulhavý and Kraus, 1996 and Raftery,

Karny and Ettler, 2010) provides derivations and additional motivation for how sensible

estimates for p
(
M (i)|Dt−1

)
can be produced in a fast, recursive manner, in the spirit of

the Kalman filtering approach. Here we outline the basic steps, following the exponential

forgetting factor approach of Kulhavý and Kraus (1996). Let ω
(i)
t|t−1 = p

(
M (i)|Dt−1

)
be the

probability associated with model i for forecasting Yt using data available through time

t− 1. The general version of the algorithm combines a prediction step

ω
(i)
t|t−1 =

(
ω
(i)
t−1|t−1

)µ
∑J

j=1

(
ω
(j)
t−1|t−1

)µ , (9)

with an updating step

ω
(i)
t|t ∝ ω

(i)
t|t−1p

(
Yt|M (i),Dt−1

)
, (10)

with a normalizing constant to ensure the ω
(i)
t|t sum to one. p

(
Yt|M (i),Dt−1

)
is the predictive

density produced by the Kalman filter, evaluated at the realized value for Yt. The recursions

begin with an initial condition for the weights, which we set at ω
(i)
0|0 = 1

J
(i.e. all models

have equal prior probability).

The quantity 0 < µ ≤ 1 is a forgetting factor used to discount exponentially more

distant observations in a similar fashion to λ. Since p
(
Yt|M (i),Dt−1

)
is a measure of
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forecast performance, it can be seen that this approach attaches more weight to models

which have forecast well in the recent past. To see this clearly, note that (9) can be written

as

ω
(i)
t|t−1 ∝

t−1∏
i=1

[
p
(
Yt|M (i),Dt−1

)]µi
.

With monthly data and µ = 0.99, this equation implies that forecast performance one year

ago receives about 90% as much weight as forecast performance last period, two years ago

receives about 80% as much weight, etc. This is the value used by Raftery, Karny and

Ettler (2010) and in our empirical work.

We alter this algorithm in a minor way to take account for the fact that some of

our models differ in Yt (i.e. they have a different number of endogenous variables). To

surmount this problem, p
(
Yt|M (i),Dt−1

)
is replaced by p

(
Y C
t |M (i),Dt−1

)
where Y C

t is the

set of variables which are common to all models. In our application, these are the three

variables which are included in our smallest TVP-PVAR (see sub-section 3.1) for every

country. We refer to the approach as the TVP-PVAR with a dynamic learning prior:

TVP-PVAR (DLP). We use this terminology since the prior is hierarchical and dynamic

so we can learn about which panel structure is appropriate to impose on the coefficients.

Finally, note that it is also possible to include lag length selection as another specification

choice and do dynamic model selection over p in a time-varying fashion. However, we do

not do so to keep the computational burden manageable. Canova and Ciccarelli (2009) set

p = 1 for all their specifications involving TVP-PVARs. Allowing for p > 1 is possible and

we found that p = 2 provides optimal inflation forecasts compared to other choices. Hence,

our empirical results use p = 2.
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3 Forecasting Euro Area Inflation

This Section presents the performance of the proposed methods in a standard pseudo out-of-

sample forecasting exercise. However, an important feature of our methodology is assessing

the in-sample fit. For the sake of brevity we present in-sample estimation results in the

online Appendix. There, the reader can find evidence that variances and time-varying

parameters are changing, as well as evidence about the panel structure and dimensions of

the VAR model changing.

The next subsections present the data, model setup and forecasting results for the

problem of forecasting Euro-Area inflation.

3.1 Data

We use G = 9 macroeconomic series for N = 10 major euro zone countries for the

period 1999M1 to 2016M12. The countries are Austria (AT), Belgium (BE), Finland

(FI), France (FR), Germany (DE), Greece (GR), Italy (IT), Netherlands (NL), Portugal

(PT) and Spain (ES). All variables are transformed so as to be rates (e.g. inflation rate,

unemployment rate, etc.), as shown in the last column of the following table, where ∆ ln

denotes first log differences (growth rates), and lev denotes that the variable remains in

levels and is not transformed. All variables are seasonally adjusted. We also add a 10th

variable, the oil price, into all models. But since this does not vary across countries, it

is entered only once in the vector of dependent variables. Thus, the largest models we

work with have 91 dependent variables. We also consider smaller models with G = 3, .., 9

variables (plus the oil price). These models choose variables according to their ordering in

the following table (i.e. the model with G = 3 uses the first three variables, G = 4 uses the

first four, etc.).

Our choice of a long term interest rate, as opposed to a short term interest rate (e.g. a

monetary policy instrument or the euro overnight index average inter-bank rate or EONIA),

21



is motivated by our wish to exploit cross-country as well as inter-temporal variation in

variables in our panel forecasting exercise. In the euro zone, long term interest rates exhibit

substantial variation across countries, whereas short term interest rates do not. Using long

term interest rates thus seems sensible in a forecasting exercise, as opposed to a structural

analysis where it might be important to include a monetary policy instrument.

Variables Explanation Source Tr
HICP Indices of Consumer Pricesa Eurostat ∆ ln
UN Harmonised unemployment rates (%) Eurostat lev
LTI Long-Term Interest Rate (10 year, Euro denominated) Eurostat lev
REER Real Effective Exchange Rate Eurostat ∆ ln
IP Industrial production index IMF IFSb ∆ ln
SURVEY1 Financial situation over the next 12 months Eurostat lev
SURVEY2 General economic situation over the next 12 months Eurostat lev
SURVEY3 Price trends over the next 12 months Eurostat lev
SURVEY4 Consumer Confidence Indicator, SA Eurostat lev
OIL.PRICE European Dated BFOE Crude Oil Spot Pricea ECB SDWc ∆ ln
a Variables that are not seasonally adjusted by the provider, are adjusted by the authors using the X11 filter in Eviews.

b International Monetary Fund, International Financial Statistics

c European Central Bank, Statistical Data Warehouse

3.2 Models for Comparison

We compare our TVP-PVAR (DLP) approach to several potential competitors. There

are, of course, an enormous number of models used for forecasting inflation which we could

consider. To focus on the potential benefits of our approach, we emphasize five of its features

which, in combination, make our approach distinct from the existing literature. We choose

comparators which differ according to one or more of these five features. The five features

may briefly be summarized as: i) incorporation of panel structure in the prior in a dynamic

fashion, ii) time variation of parameters, iii) type of panel structure used in the prior,

iv) allowing for multi-country linkages and v) use of conventional Bayesian hierarchical

priors (as opposed to machine learning methods as discussed below). We offer an intuitive
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explanation of our alternative approaches in the following paragraphs and provide complete

specification details of all approaches in the online Appendix accompanying this article.

First, relative to other approaches for high-dimensional VARs, our dynamic learning

prior allows for the model to learn which panel prior is appropriate. This motivates

a comparison with other Big Data approaches which do not allow for this sort of

learning. Thus, we include a conventional large Minnesota prior VAR similar to the

popular specification of Bańbura, Giannone and Reichlin (2010) but with optimal degree

of shrinkage estimated as in Giannone, Lenza and Primiceri (2015). We also include a

dynamic factor model and a factor augmented VAR. We abbreviate these three approaches

as BVAR, DFM and FAVAR, respectively.

Second, relative to other large VAR approaches which do incorporate a panel structure in

the hierarchical prior, our approach allows for time-variation in parameters. This motivates

comparison with a model with a panel structure similar to our own, but without time-

variation in the parameters. We consider a version of the constant parameter model of

Canova and Ciccarelli (2009) which is nested within our TVP-PVAR (DLP) approach. This

uses their choices of Ξα
P and Ξβ

P and sets λ = κ = 1, thus ensuring a homoskedastic model

with no time-variation in PVAR coefficients. We do not do model averaging over VAR

dimensions with this approach. All other specification and modelling choices (including

treatment of σ2) is the same as in our TVP-PVAR (DLP) approach. This is labelled

PVAR (CC09) in the tables.

Third, our TVP-PVAR (DLP) considers two different panel structures in the

hierarchical prior. However, several other structures have been proposed in the literature.

An influential one allows for the investigation of whether there are dynamic or static

interdependencies between countries as described in Canova and Ciccarelli (2013). We

consider a hierarchical prior which allows for the selection or omission of these types

of interdependencies between countries. We adopt the approach of our earlier work,

Koop and Korobilis (2016), which develops a simulation algorithm called stochastic search
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specification selection (SSSS) to find such interdependencies if they exist and refer to the

approach as PVAR (SSSS). We also consider a restricted version of our approach which

leads to a single TVP-PVAR of the form considered in Canova and Ciccarelli (2009). That

is, we use the full set of endogenous variables, select Ξα
P and Ξβ

P as done in their paper

and set λ = 0.99 and κ = 1. Thus, we have a model which is homoskedastic, but allows

for time-variation in the PVAR coefficients in the same manner as Canova and Ciccarelli

(2009). Our use of forgetting factor methods (as opposed to MCMC) mean estimation and

forecasting are computationally feasible.

Fourth, our approach differs from many approaches that estimate a model for each

country individually. As a representative of this class of models, we present forecasts

from country specific VARs and abbreviate this approach as CS-VAR. We also consider

two popular univariate models which we run one country at a time. These are the

unobserved components stochastic volatility (UCSV) model of Stock and Watson (2007)

and an extension of the UCSV model which allows for AR lags with time varying coefficients

on the right hand side. The latter model, which we label TVP-AR, was found by Pettenuzzo

and Timmermann (2017) to provide good forecasts of inflation.

Finally, in Big Data models there is a growing interest in use of machine learning

methods. Such methods are starting to work their way into the VAR literature and it

is of interest to compare our approach to something from this emerging literature. The

general idea of this literature is to allow an algorithm to automatically search through

the myriad possible specification choices without much input from the economist. This

contrasts with conventional approaches used in econometrics where the researcher carefully

designs a hierarchical prior based on empirical insight into the problem at hand (e.g. the

factor structure Σα
P reflects the empirical wisdom expressed in Canova and Ciccarelli, 2009,

as to how VARs in different countries might be related to one another). In Koop, Korobilis

and Pettenuzzo (2017), we developed a particular type of machine learning algorithm using

random compression methods for large VARs. In the present paper, we forecast with it
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and refer to it as BCVAR. See the Technical Appendix or Koop, Korobilis and Pettenuzzo

(2017) for exact details on how this method works, but the key point to stress here is that

it does not reflect the multi-country nature of our data set. Rather each equation in the

VAR receives an identical treatment and it is left to the algorithm to uncover the nature

of any inter-linkages across countries. Complete details of these models are given in the

online Appendix.

For the sake of brevity, we do not offer a more extensive comparison to the many models

nested within our approach since one of the key advantages of our dynamic learning prior is

that it can choose these if it wishes. For instance, it could have chosen the TVP-PVAR with

the hierarchical prior of the Canova and Ciccarelli (2009) but, as we saw in the preceding

sub-section it did not always do so. Our approach could have chosen constant coefficient

versions of our models, either with regards to the VAR coefficients (by choosing λ = 1) or

the error covariance (by choosing κ = 1), but it does not. Our approach could have chosen

smaller PVARs (by choosing G = 3), but it does not always do so. Thus, comparison with

these types of restrictions on our models is less interesting than comparison with other

plausible non-nested alternatives which are described above.

3.3 Forecasting Results

We evaluate statistically forecasts of inflation from the models introduced in the previous

sub-section relative to a benchmark approach which produces forecasts using individual

AR(2) models for each country’s inflation series. We forecast pt+h − pt where pt is the log

of a country’s prices at time t for various forecast horizons. Our forecasts are produced

recursively on an expanding window of data. We present Mean Squared Forecast Errors

(MSFEs) and Averages of Log Predictive Likelihood (ALPLs) in order to evaluate point

and density forecasts, respectively. In the tables in this sub-section, we present results for

the 10 inflation rates in the 10 countries in our sample as well as an average across all
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countries. For the MSFEs, we use a simple average (and divide by the comparable figure

using the AR(2) benchmarks). For the ALPLs, the cross-country average is based on the

multivariate predictive density for the 10 inflation series and the comparable figure from the

AR(2) benchmark is subtracted off. The forecast evaluation period is 2006M1-2016M12.

It can be seen that, when we look at cross-country averages, our TVP-PVAR (DLP)

approach is forecasting best particularly at short horizons. This holds true regardless of

whether we use MSFEs or ALPLs as measures of forecast performance. We elaborate on

these points in the remainder of this section in relation to the five features mentioned at

the beginning of the preceding sub-section.

Incorporating the panel structure in the prior in a dynamic fashion is helping improve

forecast performance. A comparison of the TVP-PVAR (DLP) results to a conventional

Minnesota prior large VAR indicates the former is forecasting better at all horizons,

regardless of whether MSFE or ALPL is used as a forecast metric. The same holds for

the DFM and FAVAR approaches.

If we compare our approach to other approaches which do have a panel structure in

the prior but do not allow for time variation (i.e. compare TVP-PVAR (DLP) to PVAR

(CC09)) we find, without exception, evidence in favour of the TVP-PVAR (DLP). This

holds true regardless of whether MSFEs or ALPLs are used as a measure of forecast

performance. This suggests that it is not enough to allow for selection of different panel

priors in the context of a constant coefficient models, one must do so in a dynamic fashion

allowing for the panel structure to change.

Next we compare the forecast performance of our approach to the alternative panel

structure in the prior of PVAR (SSSS). Recall that this latter algorithm was proposed by

Koop and Korobilis (2016) in order to stochastically search for all combinations of static and

dynamic interdependencies that can possibly occur among N countries. However, being a

computationally expensive simulation-based approach, this approach only features constant

coefficients and covariance. As a consequence, this alternative is also consistently beaten by
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our current approach in terms of forecast performance. Similarly PVAR (CC09) which uses

the single factor structure of Canova and Ciccarelli (2009) in a constant coefficient model

provides forecasts inferior to our approach. Even allowing for time-variation in parameters

(but constant volatilities) as in the TVP-PVAR (CC09) does not substantially improve

things.

Working with individual country models such as CS-VAR, UCSV or TVP-AR also

produces, on average, consistently worse forecast performance over all forecast horizons

and both forecast metrics. Finally, the TVP-PVAR (DLP) is even forecasting better than

the approach inspired by the machine learning literature: BCVAR.

The preceding conclusions are based on looking at cross-country averages in Tables 1 and

2. A careful examination of the individual country results also supports these conclusions.

With only a few exceptions, the TVP-PVAR (DLP) approach forecasts best. The few

exceptions occur mainly for Greece, Portugal and Spain. For these countries, which are

often referred to as peripheral countries in the European Union, all of our forecasting

models do relatively poorly. At longer forecast horizons, when using MSFEs as the forecast

metric, the TVP-PVAR (DLP) does not even beat the AR(2) benchmark. Using ALPLs,

the performance of TVP-PVAR (DLP) is better for Portugal and Spain, but not for Greece.

But for the vast majority of countries, particular those at the core of Europe who were less

affected by the eurozone crisis, our method is producing forecasts which beat plausible

alternative forecasting models.

Figure 6 sheds light on the forecast performance of our TVP-PVAR (DLP) over time.

It presents the cumulative sums of log predictive likelihoods where the sums are taken

over time and across countries. It can be seen that, up to 2008 all of the approaches were

forecasting roughly as well as one another. However, after some time in 2008 (depending

on forecast horizon), TVP-PVAR (DLP) exhibits better forecasting performance than all

the other approaches. After middle to late 2009 (depending on forecast horizon), few

additional forecast gains are made by TVP-VAR (DLP). Thus, most of the benefits of
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Table 1. MSFEs relative to AR(2) for the period 2006M1-2016M12
AT.INF BE.INF FI.INF FR.INF DE.INF GR.INF IT.INF NL.INF PT.INF ES.INF AVERAGE

Panel A. Forecast Horizon h = 1
TVP-PVAR (DLP) 0.620 0.785 0.651 0.719 0.881 0.964 0.676 0.854 0.970 0.869 0.799
Restricted versions of our model:
PVAR(CC09) 0.752 0.891 0.707 0.949 0.890 1.014 0.773 0.931 1.005 1.021 0.893
TVP-PVAR (CC09) 0.729 0.873 0.692 0.926 0.871 0.990 0.759 0.915 0.983 1.011 0.875
Univariate benchmarks:
UCSV 0.661 0.854 0.721 0.759 0.882 0.888 0.786 0.867 1.034 0.904 0.836
TVP-AR 0.653 0.845 0.711 0.750 0.879 0.880 0.775 0.861 1.036 0.901 0.829
Multivariate benchmarks:
PVAR (SSSS) 0.782 0.808 0.788 0.758 0.840 0.987 0.747 0.851 1.047 1.093 0.870
CS-VAR 0.675 0.812 0.806 0.766 1.080 1.015 0.715 1.042 1.046 0.918 0.887
BCVAR 0.706 0.894 0.708 0.815 0.960 0.992 0.861 1.004 1.148 1.004 0.909
BVAR 0.716 0.877 0.700 0.917 0.882 0.987 0.763 0.906 0.974 1.015 0.874
DFM 0.720 0.933 0.679 1.022 0.822 0.902 0.859 0.821 1.027 0.948 0.873
FAVAR 0.701 0.892 0.741 0.786 0.913 0.912 0.829 0.896 1.066 0.937 0.867

Panel B. Forecast Horizon h = 3
TVP-PVAR (DLP) 0.647 0.795 0.663 0.873 0.825 1.072 0.849 0.885 1.012 1.025 0.865
Restricted versions of our model:
PVAR(CC09) 0.745 0.892 0.732 0.945 0.932 0.927 0.796 0.913 1.028 1.126 0.904
TVP-PVAR (CC09) 0.733 0.884 0.716 0.928 0.917 0.913 0.790 0.907 1.009 1.109 0.891
Univariate benchmarks:
UCSV 0.694 0.806 0.687 0.889 0.856 1.148 0.901 0.931 1.075 0.974 0.896
TVP-AR 0.686 0.794 0.683 0.888 0.855 1.147 0.891 0.930 1.072 0.972 0.892
Multivariate benchmarks:
PVAR (SSSS) 0.716 0.861 0.725 0.921 0.908 1.123 0.904 0.931 1.098 1.203 0.939
CS-VAR 0.713 0.837 0.720 0.929 0.878 1.140 0.908 0.955 1.082 1.173 0.933
BCVAR 0.872 1.061 0.786 0.993 0.981 0.971 0.935 1.026 1.082 1.077 0.978
BVAR 0.737 0.877 0.727 0.926 0.922 0.930 0.795 0.907 1.006 1.096 0.892
DFM 0.712 1.127 1.017 1.142 0.906 0.934 0.868 0.764 1.123 1.215 0.981
FAVAR 0.728 0.842 0.697 0.922 0.898 1.162 0.936 0.949 1.089 1.202 0.943

Panel C. Forecast Horizon h = 6
TVP-PVAR (DLP) 0.609 0.749 0.628 0.767 0.833 0.982 0.774 0.836 1.007 1.073 0.826
Restricted versions of our model:
PVAR (CC09) 0.734 0.870 0.712 0.942 0.966 0.932 0.743 0.938 1.046 1.175 0.906
TVP-PVAR (CC09) 0.722 0.858 0.698 0.927 0.951 0.917 0.734 0.913 1.025 1.165 0.891
Univariate benchmarks:
USCV 0.675 0.813 0.686 0.881 0.869 1.084 0.831 0.880 1.055 0.953 0.873
TVP-AR 0.675 0.807 0.677 0.874 0.863 1.072 0.823 0.877 1.051 0.945 0.866
Multivariate benchmarks:
PVAR (SSSS) 0.680 0.836 0.680 0.833 0.879 1.076 0.844 0.893 1.088 1.098 0.891
CS-VAR 0.662 0.799 0.702 0.839 0.880 1.095 0.818 0.893 1.029 1.091 0.881
BCVAR 0.762 0.974 0.712 0.935 0.948 0.943 0.795 0.973 1.212 1.080 0.934
BVAR 0.711 0.866 0.690 0.939 0.954 0.934 0.730 0.920 1.031 1.168 0.894
DFM 0.744 0.963 0.704 0.878 0.699 0.931 0.729 0.661 1.082 1.014 0.841
FAVAR 0.700 0.838 0.706 0.900 0.907 1.127 0.858 0.916 1.085 1.141 0.918

Panel D. Forecast Horizon h = 12
TVP-PVAR (DLP) 0.688 0.856 0.835 0.907 0.818 0.931 0.890 0.887 1.095 1.062 0.897
Restricted versions of our model:
PVAR (CC09) 0.768 0.886 0.881 0.877 0.854 1.061 0.925 0.939 1.096 1.145 0.943
TVP-PVAR (CC09) 0.742 0.868 0.857 0.858 0.834 1.033 0.910 0.923 1.078 1.123 0.923
Univariate benchmarks:
USCV 0.644 0.769 0.722 0.862 0.781 1.109 0.929 0.940 0.976 0.941 0.867
TVP-AR 0.638 0.766 0.719 0.857 0.779 1.111 0.929 0.931 0.973 0.944 0.865
Multivariate benchmarks:
PVAR (SSSS) 0.749 0.830 0.749 0.862 0.876 1.121 0.950 0.944 1.143 1.124 0.935
CS-VAR 0.676 0.831 0.722 0.900 0.876 1.103 0.914 0.939 1.098 1.130 0.919
BCVAR 0.836 1.098 0.863 0.945 0.986 0.956 1.004 1.087 1.315 1.073 1.016
BVAR 0.677 0.821 0.757 0.853 0.847 1.038 0.914 0.923 1.080 1.130 0.904
DFM 0.695 0.851 0.810 0.922 0.896 1.252 0.973 1.055 1.083 1.281 0.982
FAVAR 0.662 0.781 0.734 0.888 0.790 1.129 0.959 0.948 1.010 1.120 0.902
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Table 2. ALPLs relative to AR(2) for the period 2006M1-2016M12
AT.INF BE.INF FI.INF FR.INF DE.INF GR.INF IT.INF NL.INF PT.INF ES.INF AVERAGE

Panel A. Forecast Horizon h = 1
TVP-PVAR (DLP) 3.43 2.52 4.72 5.87 1.35 -0.04 1.72 4.53 1.47 1.72 2.73
Restricted versions of our model:
PVAR(CC09) 2.06 1.61 1.90 3.24 0.42 -0.64 1.13 1.16 0.45 1.36 1.27
TVP-PVAR (CC09) 2.87 2.17 3.66 5.10 1.09 -0.80 1.01 3.64 0.61 1.15 2.05
Univariate benchmarks:
UCSV 1.88 2.01 2.50 2.37 0.68 -0.88 0.48 1.99 0.54 0.79 1.24
TVP-AR 1.75 1.88 2.06 3.47 0.65 -0.63 0.53 1.97 0.17 0.81 1.27
Multivariate benchmarks:
PVAR (SSSS) 2.72 1.80 3.40 5.11 1.12 -0.78 0.80 3.14 0.61 0.80 1.87
CS-VAR 2.80 2.17 3.79 4.97 1.40 -0.97 1.00 3.34 0.57 1.29 2.04
BCVAR 1.78 1.96 2.46 2.35 0.35 -0.86 0.26 2.37 0.45 1.25 1.24
BVAR 1.96 1.90 2.27 3.62 0.66 -0.63 0.57 2.18 0.00 0.66 1.32
DFM 2.34 1.90 3.48 5.02 0.87 -0.70 0.70 3.41 0.56 0.87 1.85
FAVAR 2.14 1.26 3.08 4.46 -0.39 -1.78 0.14 3.39 0.38 0.44 1.31

Panel B. Forecast Horizon h = 3
TVP-PVAR (DLP) 2.98 2.23 4.74 5.58 0.91 -0.23 1.54 4.71 0.86 1.57 2.49
Restricted versions of our model:
PVAR(CC09) 1.76 1.24 1.99 3.42 0.35 -0.67 0.79 1.85 0.22 1.06 1.20
TVP-PVAR (CC09) 2.59 1.84 3.87 4.85 0.50 -0.76 1.10 3.62 0.40 1.16 1.92
Univariate benchmarks:
UCSV 1.76 1.30 2.47 2.39 0.02 -0.83 0.78 1.67 0.28 0.58 1.04
TVP-AR 1.94 1.47 2.55 3.64 0.39 -0.98 0.55 2.27 0.17 0.73 1.27
Multivariate benchmarks:
PVAR (SSSS) 2.65 2.20 3.86 4.65 0.59 -0.76 1.09 3.45 0.27 0.96 1.90
CS-VAR 2.61 2.10 3.49 4.93 0.32 -0.98 1.26 4.06 0.17 1.18 1.91
BCVAR 1.86 1.53 2.29 2.39 -0.34 -0.81 0.56 1.64 0.25 0.37 0.97
BVAR 1.81 1.29 2.99 3.53 0.87 -0.73 0.90 2.20 0.29 1.00 1.42
DFM 2.61 2.42 4.04 4.88 0.70 -0.46 0.99 3.45 0.31 0.89 1.98
FAVAR 1.62 0.60 3.43 4.03 -0.49 -1.86 0.04 2.92 -0.44 0.19 1.00

Panel C. Forecast Horizon h = 6
TVP-PVAR (DLP) 2.40 1.85 4.42 4.98 0.46 -0.52 1.36 4.21 0.54 1.14 2.08
Restricted versions of our model:
PVAR (CC09) 1.22 0.85 1.80 2.81 -0.10 -0.87 0.55 1.34 -0.06 0.64 0.82
TVP-PVAR (CC09) 1.90 1.42 3.73 4.58 -0.08 -0.96 0.81 3.54 -0.07 0.74 1.56
Univariate benchmarks:
USCV 1.04 0.86 2.82 2.12 -0.30 -1.11 0.20 1.45 -0.05 0.65 0.77
TVP-AR 1.00 0.64 2.15 3.06 -0.27 -1.15 0.30 1.75 -0.33 0.43 0.76
Multivariate benchmarks:
PVAR (SSSS) 1.77 1.40 3.40 4.24 -0.10 -1.03 0.86 3.20 0.15 0.47 1.44
CS-VAR 1.53 1.45 3.55 4.99 -0.23 -1.23 0.97 3.80 0.17 0.70 1.57
BCVAR 1.14 0.82 3.02 2.00 -0.31 -0.64 0.18 1.47 0.12 0.76 0.86
BVAR 0.62 0.42 2.00 3.15 -0.48 -0.93 0.57 1.58 -0.21 0.59 0.73
DFM 1.92 1.33 3.32 4.34 0.27 -1.17 0.61 3.24 0.17 0.74 1.48
FAVAR 0.70 0.07 2.65 3.22 -1.12 -1.97 0.11 1.81 -0.95 -0.06 0.45

Panel D. Forecast Horizon h = 12
TVP-PVAR (DLP) 2.10 1.45 3.95 3.88 -0.18 -0.65 0.84 4.71 -0.38 0.75 1.65
Restricted versions of our model:
PVAR (CC09) 0.99 0.71 1.52 2.37 -0.64 -1.08 0.10 2.43 -0.65 0.18 0.59
TVP-PVAR (CC09) 1.59 1.10 3.22 3.57 -0.57 -1.17 0.35 4.08 -0.61 0.17 1.17
Univariate benchmarks:
USCV 0.96 0.69 2.27 1.19 -0.69 -1.27 -0.25 2.74 -0.43 -0.42 0.48
TVP-AR 0.78 0.83 1.57 2.43 -0.81 -1.15 0.02 2.37 -0.73 -0.07 0.52
Multivariate benchmarks:
PVAR (SSSS) 1.58 1.26 2.74 3.52 -0.61 -1.17 0.16 3.64 -0.48 0.30 1.09
CS-VAR 1.80 0.98 2.91 3.79 -0.60 -1.00 0.40 4.02 -0.37 0.27 1.22
BCVAR 1.02 0.80 2.62 1.62 -0.56 -0.94 -0.19 3.09 -0.11 -0.36 0.70
BVAR 0.83 0.91 1.27 2.69 -0.98 -1.38 -0.33 2.18 -0.67 -0.25 0.43
DFM 1.81 1.08 2.67 3.58 -0.58 -0.91 0.13 3.80 -0.49 0.05 1.12
FAVAR 0.78 0.05 2.26 2.39 -1.49 -2.55 -0.74 3.61 -2.25 -0.76 0.13
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TVP-VAR (DLP) are to be found at the times of the financial and euro zone crises.
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Figure 1: Cumulative sums of log predictive likelihoods (sums taken over time and across
countries)

4 Conclusions

In this paper, we have developed Bayesian methods for estimating large TVP-PVARs

and shown them to forecast well in an application involving euro area inflation rates.

This development involved the design of plausible hierarchical priors for working with

multi-country data which ensure parsimony without mis-specification, and the design of

computationally feasible forecasting methods using these priors.
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[28] Kulhavý, R., and Kraus, F. (1996), “On Duality of Regularized Exponential and Linear

Forgetting,”Automatica, 32, 1403-1415.

[29] Lütkephol, H. (2005) New Introduction to Multiple Time Series Analysis. Heidelberg:

Springer Berlin.

[30] Pettenuzzo, D., and Timmermann, A. (2017), “Forecasting Macroeconomic Variables

Under Model Instability,” Journal of Business and Economic Statistics, 35, 183-201

33



[31] Primiceri, G. (2005), “Time Varying Structural Vector Autoregressions and Monetary

Policy,”Review of Economic Studies, 72, 821-852.

[32] Raftery, A., Karny, M., and Ettler, P. (2010), “Online Prediction Under

Model Uncertainty via Dynamic Model Averaging: Application to a Cold Rolling

Mill,”Technometrics, 52, 52-66.

[33] Stock, J. and Watson, M. (2005). “Understanding Changes in International Business

Cycle Dynamics” Journal of the European Economic Association, 3, 968-1006.

[34] Stock, J. and Watson, M. (2007). “Why has U.S. Inflation Become Harder to

Forecast?” Journal of Money, Credit and Banking, 39, 3-33.

[35] Tibshirani, R. (1996), “Regression Shrinkage and Selection via the Lasso,”Journal of

the Royal Statistical Society, Series B, 58, 267-288.

34


	Introduction
	Econometric Methodology
	Methods of Ensuring Parsimony in the PVAR
	Moving from the PVAR to the TVP-PVAR
	A Hierarchical Prior for the Error Covariance Matrix
	Dynamic Treatment of Model Uncertainty

	Forecasting Euro Area Inflation
	Data
	Models for Comparison
	Forecasting Results

	Conclusions
	References

