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Abstract—The use of high-order constellation modulations is
imperative to improve the spectral efficiency, for both radio
frequency/laser-based satellite systems and optical wireless com-
munications. The geometric shaping (GS) optimization as one
typical constellation shaping method drives the improvement of
communication capacity and system performance. This paper
presents a novel mutual information neural estimation (MINE)-
based GS method to optimize the high-order constellations in
pure additive white Gaussian noise (AWGN) channel, which
uses the deep neural network (DNN) to estimate the mutual
information (MI) value and maximize the MI to approach the
AWGN capacity asymptotically. The proposed system trains both
the encoder and MINE networks by back propagation, and does
not need to train a decoder for optimization and thus can avoid
the loss caused by the decoder. Simulation results show that the
MINE-based shaping design outperforms the unshaped M -ary
quadrature amplitude modulation (QAM) in terms of MI values.
Note that the capacity gain increases slightly as the order M
increases. Furthermore, the proposed scheme is promising for
constellation design in various channel models, such as the phase
noise and the fading channels, once the channel model used in
MINE is matched, which can be a future research topic.

Index Terms—Constellation design, geometric shaping, mutual
information neural estimation, mutual information maximization,
high-order QAM.

I. INTRODUCTION

With the rapid growth of communication data and the
increasingly tight spectrum resources, using high-order mod-
ulations to improve the spectral efficiency is a hot trend in
the field of both radio frequency/laser-based satellite systems
and optical wireless communications. Constellation shaping
as a typical multi-level modulation optimization technology
is becoming more and more important, which is used to sig-
nificantly improve the spectral efficiency. Constellation design
can be divided into two types: probabilistic shaping (PS) [1],
[2] and geometric shaping (GS) [3], [4]. In the former type,
the constellation points are transmitted at fixed locations with
unequal probabilities to maximize the mutual information (MI)
in a given channel. By contrast, the constellation points in
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GS-based type are transmitted with equal probabilities but
with changing geometric locations of the constellation points
in Euclidean space. PS-based optimization has been proven
to be an effective strategy to improve spectral efficiency
and provide rate adaptivity [5]. However, the PS requires
an external distribution matcher for efficient implementation,
which limits its shaping gain. As a low-complexity alternative,
GS-based optimization only requires modifying the mapper
and demapper for design, which can be easily adapted to
different impairments, such as fiber nonlinearity [6] and laser
phase noise [7].

The basic quadrature amplitude modulation (QAM) con-
stellations are widely recognized and extensively used for
high-rate transmission. In the bandwidth-limited additive white
Gaussian noise (AWGN) channel, conventional high-order
QAM with square or rectangular structures can result in an
asymptotic loss of 1.53 dB towards the Shannon limit [8].
With the aid of GS, various novel QAM constellations have
achieved tremendous attention to further narrow the gap, such
as cross QAM, star QAM, and hexagonal QAM. Regarding
the GS-based constellation design, most literatures consider
two available optimization criteria including average symbol
error rate (SER) minimization [9], [10] and MI maximization
[11], [12]. For example, [13] made a comparative analysis
of average SER for several high-order QAM constellations,
which justified the supremacy of hexagonal QAM for wireless
communication systems. Additionally, [14] designed some
advanced modulation formats based on generalized MI (GMI),
and verified their better performance on GMI compared to the
standard star-8QAM and 32QAM.

Note that in the MI maximization-based constellation shap-
ing, the MI calculation is required to capture the non-linear
statistical depencies between variables through a specific chan-
nel [15]. However, direct and accurate calculation of MI is
difficult, since estimating MI depends on the underlying joint
probability density function which should match the channel
[16]. Furthermore, optimizing the constellation shape to maxi-
mize the MI in a given channel becomes more computationally
complex, as the constellation size and dimensionality increase.
To deal with these problems, the deep learning (DL) approach
is introduced into physical layer communications [17], [18].
In this way, DL-based MI calculation and constellation design
become feasible to improve the efficiency. In the conventional
end-to-end DL approach that treats the transmitter and receiver
as trainable neural networks, the constellation shaping com-
munication systems adopt the autoencoder to jointly train and
optimize the positions of constellation points in high-order



modulations to maximize the MI [19], [20].
This paper will focus on proposing a DL-based geomet-

ric constellation design scheme based on MI maximization.
Specifically, we introduce a novel mutual information neural
estimation (MINE)-based GS method to optimize the high-
order constellations in pure AWGN channel, which trains
both MINE and encoder networks to calculate and maximize
the MI via back propagation. Note that the principle of the
MINE was originally proposed in [21], and the MI between
high-dimensional continuous random variables was estimated
through gradient descent of the deep neural networks (DNN).
It is worth emphasizing that our MINE-based GS system
replaces the decoder in the traditional autoencoder with a
MINE network, and does not need to train the decoder for
optimization, thus avoiding the loss caused by the decoder. For
simplicity in training, the loss function of the designed system
is set as the negative of MI calculation function. With this
setting, the MINE-based GS system achieves back propagation
by gradient descent over the neural networks, and thus can
effectively train both the encoder and MINE networks to
maximize the MI which asymptotically approaches the AWGN
capacity.

The remainder of this paper is organized as follows. Sec-
tion II describes the system model. Section III presents the
specific MINE-based geometric constellation design. Section
IV provides the simulation analysis. Section V summarizes
our work.

II. SYSTEM MODEL

The pure AWGN channel model is considered in this work,
and thus the received signal can be written as

Yk = Xk + Zk, (1)

where Yk represents the received symbol in time slot k ∈
{1, 2, ...}, Xk represents transmitted symbol from the M
possible modulated symbols {X1, ..., XM} in the constellation
and Zk represents the complex AWGN variable with mean 0
and variance N0. Here, we denote Es as the average transmit
energy per symbol, and thus the signal-to-noise ratio (SNR)
can be defined as SNR = Es

N0
. Note that the information-

theoretic Shannon capacity defines the maximum information
rate of the channel, and given by C = N

2 log2 (1 + SNR)
where N is the number of real dimensions and we have N = 2
in this paper.

Here, we focus on the MI of the AWGN channel in which
the input constellation symbols are equiprobable with order
M . The probability distribution of transmitted symbol X is
denoted as fX , and we have fX(x) = 1

M . The MI of the
AWGN channel is defined as

I(X;Y ) = H(X)−H (X|Y )

≜ E
[
log

fY |X (y|x)
fY (y)

]
, (2)

where I(X;Y ) denotes the MI between X and Y , H(X)
denotes information entropy of X , H (X|Y ) denotes the
conditional information entropy of X given Y , and E[·]

Fig. 1. Structure of the proposed MINE-based GS system.

denotes the mathematical expectation. Besides, fY denotes the
probability distribution of Y

fY (y) =

∫ +∞

−∞
fY |X (y|x) fX(x)d(x)

=
1

M

∫ +∞

−∞
fY |X (y|x) , (3)

fY |X denotes the conditional distribution, that is channel law

fY |X (y|x) = 1

(πN0)
2 exp

(
−||y − x||2

N0

)
. (4)

III. GEOMETRIC CONSTELLATION DESIGN

This section first presents the architecture of the MINE-
based GS system and explains the specific role of each part
for geometric constellation design. Then, the principle of the
MINE and the specific expression for calculating MI are
introduced in detail. Finally, the training process and parameter
settings of the proposed scheme are given for optimization.

A. Geometric design architecture

The proposed MINE-based GS system structure is illus-
trated in Fig.1. In this framework, there are an encoder module,
a power normalization module, a channel module, and a
MINE module. Both the encoder and MIEN are two fully
connected neural networks, which are used for modulation
and MI estimation, respectively. The constellation points are
transmitted equally and the outputs from the encoder are
the modulated symbols. The MINE network inputs symbols
from both ends of the channel and outputs the estimated MI
value, which can be fed back to the encoder for constellation
optimization.

For the forward propagation process, a random string of
raw bits are first generated and then mapped into constellation
points according to two encoding rules which include Gray
encoding and Natural encoding. These constellation symbols
are converted into a one-hot code vector of length M and
input into the encoder for modulation. And the elements of
the one-hot code vector are defined as

evi [j] =

{
1, if i = j

0, otherwise
j = 0, . . . ,M − 1, (5)



where vi is the i-th symbol, evi [j] is the j-th vector element
corresponding to the symbol vi, and M is the modulation
order, i.e. Each input symbol is encoded into the in-phase and
quadrature (I/Q) components by the encoder. Subsequently,
the average power of the outputs by the encoder is normalized
to 1 to ensure the power efficiency of the designed constella-
tion. After power normalization, the symbol Xk is expressed
in the I/Q form and through the AWGN channel, we obtain the
damaged symbol Yk. These symbols Xk and Yk at both ends of
the channel are entered into the MINE network for estimating
the MI. Finally, the system trains both the encoder and MINE
networks and maximizes MI through back propagation.

B. The MINE principle

This subsection introduces the principle of the MINE that
can estimate the MI between high-dimensional continuous
random variables by gradient descent over neural networks.
Note that the MI between X and Y is defined as

I (X;Y ) =

∫
X×Y

log
fXY

dfX ⊗ fY
dfXY , (6)

where fXY is the joint distribution of X and Y , and ⊗ is the
tensor product between two distributions.

Note that the KL divergence, also called relative entropy, is
an asymmetric measure of the difference between the joint
distribution and the product of the marginals [22]. Thus,
the KL divergence can be used to achieve a general mutual
information estimator. In information theory, the MI between
X and Y is equivalent to the KL divergence between the joint
distribution fXY and the product of the marginals fX ⊗ fY .
That is, we have

I (X;Y ) = DKL (fXY ∥ fX ⊗ fY )

= EfXY

[
dfXY

dfX ⊗ fY

]
. (7)

In this way, the problem of MI estimation is transformed into
the estimation of KL divergence.

The focus of MINE is on the dual representation of KL
divergence, also known as Donsker-Varadhan representation
[23], which is specifically expressed as

DKL (fXY ∥ fX ⊗ fY )

= sup
T :Ω→R

EfXY
[T ]− log

(
EfX⊗fY

[
eT
])
, (8)

where e is the natural logarithmic base, T is a function in the
set of all functions R, T : Ω → R satisfying the integrability
constraints of the theorem, and sup means the upper bound of
the function.

For the MI estimation based on the dual representation
of the KL divergence, the idea is that assuming the set of
functions Tθ : X × Y → R parametrized by a DNN with
parameters θ ∈ Θ. And the neural network can obtain Tθoptim

and MI maximization by optimizing θ. The relationship be-
tween the MI of the neural network and the real MI is thus
defined as

IΘ(X,Y ) ≤ I(X;Y ), (9)
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Fig. 2. Training procedure of the proposed MINE-based GS scheme.

where the neural information measure of the MINE network
with parameter θ ∈ Θ is defined as

IΘ (X,Y ) = sup
θ∈Θ

EfXY
[Tθ]− log

(
EfX⊗fY

[
eTθ
])
. (10)

For network training, the loss function of the MINE-based
system is set as the negative value of MI measurement and
thus expressed as

Loss = −IΘ (X,Y )

= −
{
sup
θ∈Θ

EfXY
[Tθ]− log

(
EfX⊗fY

[
eTθ
])}

. (11)

With this specific loss function, the system achieves back
propagation by gradient descent over the neural networks,
and therefore, we can train both the encoder and MINE to
maximize MI. The maximized MI value can be thus iteratively
estimated and calculated.

C. Construction and training details

The construction and training details of the proposed net-
work are given here. The encoder network has 3 hidden layers
and each hidden layer has 256 neurons. And the Leaky ReLU
is used as the activation function therein. As for the MINE
network, it has 3 hidden layers and each hidden layer has 128
neurons with the Leaky ReLU as its activation function. To
maximize the MI numerically, the Adam optimizer in [24] is
used to optimize the network parameters of the encoder and
MINE networks. The learning rate for both networks is set
to 0.01. More importantly, the back propagation algorithm is
used to calculate the gradients for optimizing the parameter θ.

The detailed training procedure is shown in Fig.2. Firstly,
the encoder, MINE, and optimizer are constructed. A total
of L iteration cycles are trained. In each training cycle,
the constellation points to be optimized for each SNR are
propagated forward as shown in Fig.1, and the estimated value
of MI is calculated based on the trained MINE network.
Specifically, in the forward propagation process, the model



Fig. 3. MI comparison between the proposed MINE-based GS-16QAM using
Gray encoding and the unshaped 16QAM in AWGN channel.

traverses the training set and performs MI calculation based on
(10). In the back propagation training process, there are three
key steps including gradient zeroing, gradient calculation and
gradient updating. Most importantly, loss function is used to
update the gradient and optimize the parameters of the neural
networks through back propagation, facilitating the training
of the encoder and MINE networks. Note that the number of
iteration cycles is set to L=500 in this simulation to ensure
loss function is convergent. The MINE network is trained at
each iteration cycle, whereas the encoder neural network is
trained every 10 iteration cycles.

IV. NUMERICAL RESULTS

To demonstrate the feasibility of our approach, we simulate
the MI performance of the learned GS-based QAMs in the
AWGN channel in this section. Simulations are implemented
using the Pytorch DNN framework with Python programming
language. Note that the MI calculation adopts the Monte Carlo
estimation method, where using sufficient sample size can
guarantee that the true MI can be approximated.

To verify the performance of the designed MINE-based sys-
tem, the MI values of MINE-based GS-16QAM and unshaped
16QAM are compared in the SNR range from 0 dB to 20 dB
as shown in Fig.3. Under the condition that the loss function
converges, it can be seen that under low SNR, the MI of both
modulation formats are relatively close to the Shannon limit.
However, the proposed GS-16QAM outperforms the regular
16QAM under all considered SNR values. The curve at SNR
= 10 dB is mainly studied. As observed, the GS-16QAM
has about 0.054 bit/symbol gain compared to the unshaped
16QAM in terms of MI at 10 dB, and thus decreases the
gap with the capacity limit. Fig.4 shows the MINE-based
GS constellation points for 16QAM at several SNRs. Note
that for higher SNR, these constellations are displayed to be
more circularly symmetric compared to square QAM. With the
increase of SNR, the minimum Euclidean distance between
any adjacent points increases gradually, which suggests their
higher AWGN tolerance.

Furthermore, the proposed approach can be generalized
and applied to higher-order modulations. Our simulations are

(a) SNR=5 dB (b) SNR=10 dB

(c) SNR=15 dB (d) SNR=20 dB

Fig. 4. MINE-based GS-16QAM with Gray encoding at different SNRs.

(a) Gray GS for 10 dB (b) Gray GS for 25 dB

(c) Natural GS for 10 dB (d) Natural GS for 25 dB

Fig. 5. MINE-based GS-64QAM with (a-b) Gray encoding (c-d) Nature
encoding at 10 dB and 25 dB.

implemented to optimize the GS-64QAM/128QAM with two
distinct encoding methods, namely Gray encoding and Natural
encoding. The Gray-encoded constellations in Fig.5 (a) (b) and
Natural-encoded constellations in Fig.5 (c) (d) are shown for
MINE-based GS-64QAM at 10 dB and 25 dB, respectively.
It is observed that the GS-64QAM constellations using the
Gray encoding method is closer to circular symmetry as SNR
increase, and thus Gray encoding is considered in our work
for better optimization. Note that Figs.6 and 7 show the MI
comparison between the MINE-based GS-64/128QAM and
the unshaped 64/128QAM using Gray encoding. It can be
observed that for higher-order modulations, the optimized GS-
QAMs has better MI performance than the unshaped ones.
Specifically, in the magnification curve at SNR = 10 dB,
the MI values of GS-64QAM and GS-128QAM are 3.3365
bit/symbol and 3.3526 bit/symbol, respectively. Additionally,
the proposed approach significantly reduces the gap to the
Shannon limit from 0.2450 bit/symbol for GS-16QAM to
0.1074 bit/symbol for GS-128QAM, further validating the



Fig. 6. MI comparison between the proposed MINE-based GS-64QAM using
Gray encoding and the unshaped 64QAM in AWGN channel.

Fig. 7. MI comparison between the proposed MINE-based GS-128QAM
using Gray encoding and the unshaped 128QAM in AWGN channel.

effectiveness of our design to improve the spectrum efficiency.

V. CONCLUSION

In this work, we have introduced a novel MINE-based
GS approach to optimize the high-order constellations in the
AWGN channel. To evaluate the performance of the proposed
approach, we have conducted numerical comparisons of the
MI between the GS-QAM and the unshaped QAM. The
results demonstrate that the proposed scheme asymptotically
approaches the AWGN capacity and outperforms the regular
M -QAMs in terms of MI under a wide range of SNR. Note
that the capacity gain exhibits a slight increase as the order
M of the constellations grows. In future, our approach is
expected to be applied to various channel models. And higher-
order modulation formats will be investigated to improve the
spectrum efficiency.
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