
Joint Source-Channel Coding for Wireless Image
Transmission: A Deep Compressed-Sensing Based

Method
Mohammad Amin Jarrahi

School of Computer Science and
Electronic Engineering (CSEE)

University of Essex
Colchester, United Kingdom

m.jarrahi@essex.ac.uk

Eirina Bourtsoulatze
School of Computer Science and
Electronic Engineering (CSEE)

University of Essex
Colchester, United Kingdom
e.bourtsoulatze@essex.ac.uk

Vahid Abolghasemi
School of Computer Science and
Electronic Engineering (CSEE)

University of Essex
Colchester, United Kingdom
v.abolghasemi@essex.ac.uk

Abstract—Nowadays, the demand for image transmission over
wireless networks has surged significantly. To meet the need
for swift delivery of high-quality images through time-varying
channels with limited bandwidth, the development of efficient
transmission strategies and techniques for preserving image
quality is of importance. This paper introduces an innovative
approach to Joint Source-Channel Coding (JSCC) tailored for
wireless image transmission. It capitalizes on the power of
Compressed Sensing (CS) to achieve superior compression and
resilience to channel noise. In this method, the process begins
with the compression of images using a block-based CS technique
implemented through a Convolutional Neural Network (CNN)
structure. Subsequently, the images are encoded by directly
mapping image blocks to complex-valued channel input symbols.
Upon reception, the data is decoded to recover the channel-
encoded information, effectively removing the noise introduced
during transmission. To finalize the process, a novel CNN-based
reconstruction network is employed to restore the original image
from the channel-decoded data. The performance of the proposed
method is assessed using the CIFAR-10 and Kodak datasets. The
results illustrate a substantial improvement over existing JSCC
frameworks when assessed in terms of metrics such as Peak
Signal-to-Noise Ratio (PSNR) and Structural Similarity Index
(SSIM) across various channel Signal-to-Noise Ratios (SNRs)
and channel bandwidth values. These findings underscore the
potential of harnessing CNN-based CS for the development of
deep JSCC algorithms tailored for wireless image transmission.

Index Terms—Wireless image transmission, joint source-
channel coding, compressed sensing, deep learning

I. INTRODUCTION

A. Motivation

Wireless transmission of images have faced various chal-
lenges in compression, transmission resilience, and quality
preservation. Despite the popularity of the wireless image
transmission systems, achieving reliable transfer with efficient
image compression remains a challenge [1], [2]. Conven-
tional approaches utilize separate source and channel coding
methods. While this strategy has its merits, an alternative is
needed to improve the performance in noisy and bandwidth-
limited conditions [3]. The joint source-channel coding (JSCC)
method offers a compelling alternative, integrating statistical

image properties with channel characteristics to enhance com-
pression efficiency and resilience to channel noise [4].

Incorporating signal-processing concepts, particularly com-
pressed sensing (CS), in the design of JSCC presents an
opportunity to enhance wireless image transmission [5]. While
CS has demonstrated the ability to recover sparse signals,
its sparsity assumption and expensive reconstruction process
motivate new efficient methods. Deep Learning (DL) provides
a suitable option for CS to address its limitations and improve
the efficiency [6]. This paper aims to leverage DL-based CS
within the JSCC framework for wireless image transmission.
Through DL-based sampling and advanced reconstruction, the
goal is to propose a novel approach that enhances compression
efficiency and preserves image quality in challenging condi-
tions.

B. Literature Review

Up to now, various techniques and frameworks have been
proposed for JSCC and CS methods. In the following, these
methods are categorized and some important relevant papers
are reviewed and summarized.

1) DL-based JSCC for wireless image transmission: DL-
based methods have offered a new option for JSCC by
leveraging encoder and decoder network models that learn
from input images. These models are typically auto-encoders
implemented as deep networks. In this methodology, the
encoder output forms the transmitted code-word, which is a
compressed representation of the source. The paired decoder
at the receiver end aims to reconstruct the original source
image by decoding the received noisy code-word, which is
essentially a latent variables distorted by channel noise. For in-
stance, Bourtsoulatze et al. introduce an end-to-end model that
exhibits high performance, though it sacrifices interpretability
[7]. Likewise, the authors in [8] present a DL-based JSCC
approach capable of adapting to channel variations, which,
however, suffers from a notable encoding delay.

2) DL-based CS methods: DL excels in learning features
for tasks like recognition and restoration, replacing traditional



Fig. 1. Components of the system model [7]

methods in CS. The DL models prioritize preserving image
information, notably local features, by integrating stacked con-
volutional layers in the reconstruction process. This advance-
ment significantly accelerates reconstruction speed compared
to conventional methods. DL-based CS models dynamically
adapt during training, eliminating the need for manual de-
sign. For example, Deep-CS [9] offers a straightforward CS
approach, lacking robust theoretical guarantees. AMP-Net, a
denoising-based approach with end-to-end training, aims to
leverage prior knowledge but is sensitive to hyperparameter
tuning [10]. Trans-CS, utilizing self-attention mechanisms,
enhances reconstruction quality in compressed sensing [11].
Despite its flexibility, it is prone to overfitting.

3) Application of CS in wireless image transmission sys-
tems: Applying CS to wireless image transmission offers prac-
tical advantages, evident in solutions like SoftCast [12] and
SparseCast [13]. SoftCast uses a Discrete Cosine Transform
(DCT) on images and transmits coefficients directly through a
dense constellation [12]. SparseCast encodes DCT coefficients,
optimizing bandwidth with frequency domain sparsity and
minimal metadata using fixed measurement levels [13]. While
versatile, these methods are sensitive to channel changes.
Song et al. propose a distributed CS for scalable cloud-based
image transmission [14]. This strategy improves reconstruction
using cloud resources, cutting transmission time and enhancing
resistance to channel impairments. However, cloud disruptions
may impact image quality and increase transmission errors.

C. Contributions

In this paper, we propose a novel JSCC algorithm that lever-
ages the power of DL-based CS to achieve higher compression
rate and better resilience to channel noise compared to state-
of-the-art DL-based JSCC methods. In the proposed method,
the images are firstly compressed and encoded using a novel
CNN-based structure. This structure comprises a block-based
CS (BCS) module realised via a convolutional neural network
(CNN) which complements a DL-based source and channel
encoder. The introduction of this module allows to leverage the
properties of CS to enhance the performance of the DL-based
JSCC scheme. The CS module captures the image’s structural
information which is then mapped to a complex-valued signal
by the DL-based encoder. The compressed encoded images
are then transmitted over a noisy channel modeled as a non-
trainable layer. At the receiver side, a CNN-based decoder
recovers the channel-encoded data and reconstructs the im-
ages. The decoder consists of a DL-based decoder network
which recovers the channel-encoded information from the
channel noise. This is then fed into a CNN-based reconstruc-
tion network, which reconstructs the original image from the

compressed samples. The proposed JSCC algorithm leverages
a DL-based sampling matrix and reconstruction capabilities for
improved image compression and reconstruction in wireless
image transmission system. Numerical evaluations show that
the proposed scheme significantly outperforms existing DL-
based JSCC methods such as Deep JSCC (DJSCC) [7] and
Attention DL based JSCC (ADJSCC) [15] with respect to
various metrics.

II. SYSTEM MODEL

Consider a point-to-point image transmission system as
shown in Fig. 1. An input image of size H(height) ×
W (width)×C(number of channels) is represented by a vector
x ∈ Rn, where n = H×W ×C and R denotes the set of real
numbers. The joint source-channel encoder encodes x via the
encoding function fθ : Rn −→ Ck which produces a vector of
complex-valued channel input symbols z ∈ Ck. The encoding
process can be expressed as:

z = fθ(x) ∈ Ck (1)

where k is the number of channel input symbols, θ is the
parameter set of the joint source-channel encoder and C
denotes the set of complex numbers. The encoder maps the n-
dimensional vector of real-valued image x to a k-dimensional
vector of complex-valued channel input samples z.

To satisfy the average power constraint at the joint source-
channel encoder, 1

kE (zz∗) ≤ P is also imposed, where z∗

denotes the complex conjugate of z and P is the average power
constraint [3]. The encoded symbols z are transmitted over
a noisy channel represented by the function η : Ck → Ck.
Additive white Gaussian noise (AWGN) is considered in our
work. The channel output symbols ẑ ∈ Ck received by the
joint source-channel decoder are expressed as:

ẑ = η(z) = z + ω (2)

where the vector ω ∈ Ck consists of independent and
identically distributed (i.i.d) samples with the distribution
CN

(
0, σ2I

)
. σ2 is the average noise power and CN(., .)

denotes a circularly symmetric complex Gaussian distribution.
The proposed method can be extended to other channel models
which can be represented by a differentiable transfer function.
The joint source-channel decoder uses a decoding function
gφ : Ck → Rn to map ẑ as follows:

x̂ = gφ(ẑ) = gφ (η (fθ(x))) (3)

where x̂ ∈ Rn is an estimation of the original image x, and φ
is the parameter set of the joint source-channel decoder. In this
paper, the encoder fθ and decoder gφ functions are modeled
using a novel CNN structure, as presented in the following
section.



III. DEEP CS-BASED JSCC

A. Model Architecture

The architectural details of the encoder and decoder net-
works, along with their constituent blocks, are shown in Fig.
2. The JSCC encoder comprises a BCS sampling network,
followed by an array of further processing blocks, which col-
lectively realise image compression and resilience to channel-
induced noise. Considering that the input channel statistics are
generally not known at the decoder, the initial step involves
normalizing input images based on the maximum pixel value
of 255, thereby restricting pixel values to the [0, 1] range.
Subsequently, these normalized pixels feed into the sampling
layer, which gathers CS measurements. The sampling layer,
employing BCS [16], generates compressed image samples.

The CS sampling operates as follows [17]. Initially, the
image is partitioned into non-overlapping blocks, each having
dimensions B × B × l. Here, l denotes the number of
colour channels, and B signifies the block size. Compressed
measurements are derived using a sampling matrix φB , with
dimensions nB × lB2. In scenarios where a sampling ratio,
such as L/V , is applied, the dimensions of φB become
(L/V ) × B. The sampling process can be expressed as
yj = φBxj , with yj and xj representing the jth block. One
important insight is that each row of the sampling matrix
φB can be perceived as a filter. Hence, a convolutional layer
is adopted to simulate this compressed sampling process.
Given that the size of every image block is B × B × l,
the dimensions of each filter in the sampling layer are also
B×B×l, allowing each filter to produce a single measurement.
Notably, for non-overlapping sampling, the convolutional layer
employs a stride of B × B. There are no biases associated
with these filters, and no activation functions are applied
post-sampling. In essence, the output is nB feature maps,
with each column of output encapsulating nB measurements
originating from an image block. Importantly, the learning
process encompasses learning the sampling matrix alongside
other network parameters through an end-to-end optimization,
as elaborated in subsequent sections.

Subsequent to the sampling layer, the data flow progresses
through a sequence of convolutional layers, followed by the
application of Parametric Rectified Linear Unit (PReLU) ac-
tivation functions and a normalization layer. This sequence
of convolutional layers takes on the role of extracting crucial
features from the compressed image. These features are then
amalgamated to generate the channel’s input samples. The
inclusion of nonlinear activation functions, represented here by
PReLU, is pivotal. They facilitate the learning of a nonlinear
mapping that maps the source signal space into the coded
signal space. This is where the network can model complex,
non-linear relationships within the data. As a final step within
the encoder, the output of the last convolutional layer is
subjected to a normalization process as follows:

z =
√
kP

z̃√
z̃∗z̃

(4)

where z̃∗ is the conjugate transpose of z̃, such that the channel
input z satisfies the average transmit power constraint P . It
should be noted that the output of last CNN layer would
be the input of normalization layer. Following the encoding
operation, the joint source-channel coded sequence is sent over
the communication channel by directly transmitting the real
and imaginary parts of the channel input samples over the I
and Q components of the digital signal. The channel introduces
random corruption to the transmitted symbols. To be able
to optimize the proposed wireless image transmission system
in an end-to-end manner, the communication channel must
be incorporated into the overall architecture. Therefore, the
communication channel is modeled as a non-trainable layer,
which is represented by the transfer function in Eq. (2) [7].

The receiver comprises a joint source-channel decoder
which reconstructs the received noisy compressed data. The
decoder firstly maps the corrupted and compressed complex-
valued signal to an estimation of the original channel input,
then image blocks are reconstructed using a reconstruction
network. Specifically, the decoder first inverts the operations
performed by the encoder by passing the received corrupted
coded inputs through a series of transpose convolutional layers
with PReLU activation functions to map the image features to
an estimate of the originally transmitted image block.

The recovered CS measurements are then used to recon-
struct the original image. The reconstruction network consists
of an initial reconstruction network and a deep reconstruction
network [17]. Similar to the compressed sampling process, a
convolutional layer with appropriate kernel size and stride is
utilized to implement the initial reconstruction process. lB2

convolutional filters of size 1×1×nB are used to obtain each
initial reconstructed block. Then, a combination layer, which
contains a reshape function and a concatenation function, is
utilized to obtain the initial reconstructed image. This layer
first reshapes each 1 × 1 × B2 reconstructed vector to a
B × B × l block, then concatenates all blocks to get an
initial reconstructed image. The initial reconstruction allows
to reconstruct the entire image rather than an independent
image block, thus making full use of both intra- and inter-
block information for better reconstruction. Since there is no
activation layer in the initial reconstruction network, it is a
linear signal reconstruction network.

The initial reconstruction is followed by a non-linear re-
construction process which further improves the quality of
the reconstructed image. In this paper, a deep sub-network
is utilized [17], called a deep reconstruction sub-network,
which realises the non-linear reconstruction process. The deep
reconstruction sub-network contains m layers where the layers
except the first and the last are of the same type: d filters of
size f × f × d where a filter operates on a f × f spatial
region across d channels (feature maps). The first layer of
the deep reconstruction sub-network operates on the initial
reconstructed output, so that it has d filters of size f × f × 1.
The last layer, which outputs the final image estimation,
consists of a single filter of size f×f×d. In the experiments,
d and f are set to d = 64 and f = 3. Furthermore, ReLU



Fig. 2. Architecture of the proposed model

is also utilized as activation function after each convolution
layer in the deep reconstruction sub-network.

B. Loss Function
The proposed encoder and the decoder network are op-

timized jointly in an end-to-end manner. Given the input
image x, the goal is to obtain a highly compressed encoded
measurement with the encoder, and then recover the original
input image x from its noisy version with the decoder network.
Since the encoder, decoder and communication channel form
an end-to-end network, they can be trained jointly. Following
most of DL based methods in this field, the mean square error
is adopted as the cost function of the proposed network. The
optimization objective is represented as:

min
1

N

N∑
i=1

∥gφ (η (fθ(xi)))− xi∥22 (5)

where φ represents the parameter of the decoder network
needed to be trained, and gφ (η (fθ(xi))) is the final recon-
structed output x̂. Also, N represents the number of samples
or data points in the dataset. It should be noted that we train
the encoder network and the decoder network jointly, but they
can be utilized in the model independently.

IV. RESULTS AND DISCUSSIONS

The proposed model is implemented in Tensorflow and
optimized using the Adam algorithm. The compression ratio
k/n, defined as the ratio of the channel bandwidth k to source
bandwidth n, is changed from 0.05 to 0.45. Also, the channel
signal-to-noise ratio (SNR), defined as:

SNR = 10 log10
P

σ2
(dB) (6)

is varied during different experiments. The performance of the
algorithm is quantified in terms of peak SNR (PSNR) of the
reconstructed images. PSNR is calculated as the ratio of the
peak signal power (Peak) to the mean squared error (MSE)
between the original and reconstructed images:

PSNR = 10 log10
Peak2

MSE
(dB) (7)

We train our proposed JSCC architecture on both CIFAR-10
and Imagenet datasets and compare the results with state-of-
the-art deep learning-based JSCC methods, namely DJSCC [7]
and ADJSCC [15].

A. Evaluation on CIFAR-10 Dataset

The training dataset comprises 60000 images, each sized
32× 32× 3, alongside randomly generated realizations of the
communication channel [7]. To gauge the effectiveness of the
proposed technique, it is assessed on a distinct set of 10000
test images from the CIFAR-10 dataset, these images being
separate from those used during training. Initially, a learning
rate of 10−3 is employed, which is then lowered to 10−4 after
500000 iterations. Training is conducted using mini-batches,
each containing 64 samples, until the performance on the test
dataset no longer shows improvement. The following values
are considered in the experiments for this dataset: B = 8 and
l = 3. It is important to note that the test set images are not
employed for tuning network hyperparameters. To account for
the influence of channel-induced randomness, each image is
transmitted 10 times during performance evaluation. The study
examines the performance of the proposed algorithm within
AWGN environment, with SNR being adjusted to varying
levels.

In Fig. 3, the performance of the proposed algorithm on
CIFAR-10 test images with respect to the compression ratio,
for different SNR values is shown. It must be noted that for
each case, the same SNR value is used in training and evalua-
tion. The results show that the proposed method significantly
outperforms the state-of-the-art methods DJSCC and ADJSCC
across the entire range of compression ratio and for both low
and medium SNR values.

Fig. 4 depicts the PSNR of the reconstructed images against
the SNR of the channel, with a fixed compression ratio of 1/6.
Each curve within Fig. 4 is generated by training the proposed
end-to-end system at a specific channel SNR value, referred to
as SNRtrain. Subsequently, the performance of the learned en-
coder/decoder parameters is assessed using test images under



Fig. 3. CIFAR-10 dataset: performance of the proposed method versus varying
compression ratios over an AWGN channel (PM=Proposed Method)

Fig. 4. CIFAR-10 dataset: performance of different methods with com-
pression ratio 1/6, versus varying channel SNRs over an AWGN channel
(PM=Proposed Method)

various SNR conditions, designated as SNRtest. Essentially,
each curve illustrates the effectiveness of the proposed ap-
proach when optimized for a channel SNR equal to SNRtrain,
then tested in distinct channel conditions corresponding to
SNRtest. These findings shed light on the algorithm behavior
when operating in channel conditions divergent from the
optimization scenario, highlighting its resilience to channel
quality variations. The outcomes highlight that the proposed
method consistently outperforms trained DJSCC. Moreover,
both the proposed method and ADJSCC exhibit adaptability
to changing SNR, evident from their smooth decline in perfor-
mance as SNR decreases. Notably, the proposed method holds
an advantage over ADJSCC, showcasing superior performance
as SNRtest increases, surpassing ADJSCC (SNRtrain = 4dB)
by up to 1.5dB.

Fig. 5. Kodak dataset: performance of different methods with compression ra-
tio 1/6, versus varying channel SNRs over an AWGN channel (PM=Proposed
Method)

Fig. 6. Example of reconstructed images produced by the proposed method
with compression ratio of 1/6 and SNR value of 4dB (PM=Proposed Method)

B. Evaluation on Kodak Dataset

The proposed approach is also evaluated using higher reso-
lution images. To achieve this, the proposed architecture is
trained on the Imagenet dataset [7], a widely used dataset
in this domain comprising around 1.2 million images. The
images are subjected to random cropping to generate patches
of dimensions 224×224, which are then processed in batches
of 32 samples through the network. For this set of experiments,
we set B = 32 and l = 3. The model’s learning rate is set
to 10−4, and training continues until convergence is achieved.
For the Imagenet dataset, the model is trained using SNRtrain
values of 4dB. This involves splitting the dataset into a 9 : 1
ratio for training and validation purposes. For final assessment,
the Kodak dataset is employed [18]. During the evaluation
process, each image is transmitted 100 times, allowing the
performance to be averaged across multiple instances of the
random channel. The evaluation scenario involves the consid-
eration of AWGN channel.

Fig. 5 presents the comparison of average PSNR against
SNR for a compression ratio of 1/6 with DJSCC and AD-
JSCC. The results in Fig. 5 demonstrate that our method out-
performs DJSCC and ADJSCC, capturing critical visual details
in compressed images for better quality reconstructions. This



indicates consistently higher PSNR values across varying SNR
levels, highlighting improved image fidelity and minimized
channel-induced distortions. The proposed technique excels in
delivering superior image quality with increased compression
level, even in noisy conditions.

Finally, a visual comparison of the reconstructed images
for the proposed scheme trained for CIFAR-10 under consid-
eration in AWGN channels in comparison with DJSCC and
ADJSCC is presented in Fig. 6. For each reconstruction, we
calculated the PSNR and structural similarity index measure
(SSIM) values. Based on the given results, it is clear that the
proposed method exhibits excellent visual reconstruction abil-
ity. Also, the method can more accurately restore the details
of the original image. It can be concluded that the proposed
method is capable of preserving the image quality and results
in a superior compressing and reconstruction performance.

V. CONCLUSION

This paper introduces a novel deep joint source-channel
coding algorithm for efficient image transmission over wireless
channels. The approach combines block-based CS with DL
techniques to design a joint source-channel encoder. This
encoder employs a CNN-based model for image compression,
enhancing resilience against noise by proper encoding. The
model integrates an adaptive CNN-based sampling matrix to
capture structural information for improved compression and
encodes compressed images into complex-valued signals that
adhere to the average power constraint. The decoder net-
work, comprising CNN-based layers, reconstructs high-quality
images from channel-encoded data. Through joint training,
the proposed method minimizes the loss function for high-
quality image reconstruction. Evaluations on CIFAR-10 and
Kodak datasets highlight the method’s superior performance
compared to DJSCC and ADJSCC frameworks. Our approach
consistently outperforms these methods in terms of PSNR
across varying SNR and compression ratios, showcasing its
effectiveness in achieving robust image transmission in the
presence of wireless channel noise. This synergy between
CS principles and DL-based techniques presents a promising
solution for improved image compression and reconstruction
in wireless image transmission systems.
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