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Abstract— This study investigates the classification of pupil
diameter data to differentiate between decision-making and
focus time in a mobile robot navigation task. Data were
collected from 19 healthy participants utilizing an eye-tracking-
based user interface to control the robot’s movements along
pre-set paths. The significance of eye tracking and pupillary
responses spans various disciplines, especially for people with
severe disabilities. Effortful decision-making is marked by pupil
dilation, reflecting increased cognitive load and can be used as
a potential measure for system adaptation to users’ mental
states. This paper presents a deep learning and SVM-based
classification approach to distinguish focus and decision-making
from pupil diameter patterns, offering insights for future
system improvements. On average, the Deep Learning model
has an average accuracy of over 82% in classifying the data
for participants using either the right, left, or average pupil
diameter data.

I. INTRODUCTION

This study explores the classification of pupil diameter
data to discern decision-making and focus time, gathered
from 19 healthy participants engaged in a mobile robot
navigation task. The robot’s movements are controlled by the
participant’s gaze using an eye-tracking-based user interface
containing control buttons and a live video feed of the arena.

Gaze-controlled assistive devices have been used for
people with severe disabilities [1], [2]. Eye tracking and
pupillary responses have been the focus of researchers from
various disciplines and for diverse applications, including
education [3], psychology [4], and marketing [5]. Studies
have found that higher cognitive load leads to an increase in
pupil diameter [6]. Not only mental load but changes in pupil
diameter can also indicate task difficulty [7]. Conversely, lit-
erature has discussed for some time the rapid responsiveness
of pupil diameter to brain activities. Therefore, it may serve
as a valuable measure for adjusting systems to meet users’
needs and mental states.

Various sources report an increase in pupil dilation during
effortful decision-making [8], [9] which is also indicated the
increase of cognitive load during decision making. The extent
of cognitive load can profoundly affect users’ performance
[10] therefore minimizing cognitive load is a key consid-
eration in system design [11]. This is especially beneficial
for assistive devices, as users often depend on these sys-
tems as their primary communication tools for prolonged

P. Azizinezhad and A. Chowdhury are with the School of Com-
puter Science and Electronic Engineering, University of Essex, Colch-
ester, United Kingdom. H. Ghonchi is with School of Mathematics,
Statistics and Actuarial Science, University of Essex, Colchester, United
Kingdom. (Email: p.azizinezhad@essex.ac.uk; h.ghonchi@essex.ac.uk;
a.chowdhury@essex.ac.uk)

periods, particularly while coping with underlying health
issues. Despite considerable progress in human-computer
interaction (HCI), a notable gap persists in adaptive settings
and workload-aware interaction, particularly in the context
of assistive technology users.

The possibility of distinguishing focus and decision-
making from patterns in pupil diameter during a navigation
task has been discussed in this paper. The data was collected
from 19 healthy participants during a mobile robot navigation
task through pre-set paths using an eye-tracking-based user
interface. pupil data collected from the experiment has been
labeled into two categories of focus and decision making.
A deep learning and a SVM based classification models has
been used. This detection capability holds promise for en-
hancing future iterations of the system, potentially enabling
the replacement of the fixed dwell time with a more adaptive
approach.

In this paper, we detail the experimental procedures, data
collection methods, and pre-processing techniques. Addition-
ally, we outline the parameters used in the deep learning-
based classification approach and propose a comparative
analysis of its performance with SVM classification. The
models has been tested with various sets of inputs of data.

II. METHODOLOGY

A. Data Collection

The data were collected from 19 healthy participants as
they completed a navigation task along two predetermined
paths. Ethical approval for the experiment was granted by the
University of Essex Ethics Subcommittee 3 (ERAMS Refer-
ence code: ETH2223-2300) and all subjects gave informed
consent.

There has been two pre-set paths for this experiment.
Participants completed the first, shorter path twice, followed
by the longer route, resulting in a total of three experimental
rounds. Prior to each round, the eye-tracking system was
calibrated to mitigate posture-related issues. Throughout the
experiment, the pupil diameter of both eyes and the point
of gaze on the screen were recorded at a sampling rate of
60Hz.

The user interface comprised four control buttons for
directing the movement of the mobile robot, along with a
video feed displaying the path and the robot’s movement
which is shown in Figure.1. The mouse cursor was manipu-
lated in accordance with the gaze point on the screen, with
clicks initiated by maintaining the cursor on a button for a
continuous period of 2 seconds.



Upon button press, the robot executed a pre-defined step
and remained stationary until the next command was issued.
The selection of a 2-second dwell time was deliberate,
aimed at minimizing the likelihood of command conflicts and
allowing the robot sufficient time to complete its preceding
action.

Fig. 1. A screenshot of the interface while navigating the robot through
first path.

B. Pre-Processing

The pupil measurements have been divided into two
main labels decision and focus. Focus duration is the pupil
readings recorded during the 2 seconds spent on the button.
As mentioned in II-A, participants have the option to select
a button by maintaining the pointer over it for a duration of
2 seconds, known as the ”Focus event.” Within the context
of this paper, we characterize the decision event as the phase
of data wherein participants search for and comprehend the
button they intend to focus on and activate. For this purpose,
several steps have been developed.

• Find and Replace NaN values: Handling NaN val-
ues is essential in datasets, particularly in scenarios
where tracking devices may fail to record or recognize
participants’ pupils due to head or body movements,
or instances of blinking. To address this issue, we
implement a method to replace NaN values with the
average values from adjacent data points both before
and after each occurrence. By employing this strategy,
we ensure continuity in the dataset while mitigating the
impact of missing data points caused by such factors.

• Find Gaze Position: The gaze position refers to the
point where a participant directs their gaze using both
eyes simultaneously. To determine this position, we
examine the coordinates of both the left and right eyes at
each time point. Subsequently, we calculate the average
of these two positions, thereby establishing the gaze
position.

• Find Exit Time: To identify the segment of data cor-
responding to the decision event, it is necessary to
determine the exit time. The exit time signifies the
moment when the participant’s gaze shifts away from
the previous button. This occurrence may arise under
two circumstances: firstly, when the subsequent button

remains the same, but the participant needs to glance
at the robot’s position before making a decision; or
secondly, when the following button differs, prompting
the participant to redirect their gaze towards a new
location.

• Find Last Enter Time: The entry time marks the instant
when participants make a decision and shift their eye
positions towards the new button they intend to focus
on. It’s worth noting that participants’ eyes may ex-
perience minor movements, potentially causing inter-
mittent shifts away from the button. According to the
explanation given in the section II-A, button activation
occurs when the pointer remains steadily positioned
over the button for a duration of two seconds; other-
wise, it undergoes a reset. Consequently, the decision
event encompasses the time interval between the initial
instance of the participant’s eyes leaving the previous
button and the final instance of the participant’s eyes
fixating on the next button and maintaining focus on it.

C. Classification Methods

This paper employs two distinct classification methods
to evaluate our study. The first method utilizes a deep
learning model, while the second method employs a Support
Vector Machine (SVM) [12] algorithm. These algorithms are
applied to categorize two classes, namely decision and focus
data, extracted from the pupil data collected from partici-
pants (as mentioned at section II). The utilization of these
classification techniques facilitates a comprehensive analysis
of the collected data and enables a deeper understanding of
the underlying patterns and trends within the dataset.

1) Deep learning based classification: Recently, deep
learning models have emerged as powerful tools for ana-
lyzing time series data [13], [14], a type of data which
our study deals with, as outlined in Section II. To tackle
the classification task inherent in our dataset, we leverage a
convolutional neural network (CNN) architecture [15]. This
model configuration consists of a series of layers tailored
to extract pertinent patterns from the collected time series
data related to participants’ eye-pupil behaviour. Specifically,
our architecture integrates three one-dimensional convolution
layers, followed by corresponding max-pooling and dropout
layers. Additionally, a fully connected layer and a classifier
layer utilizing the softmax activation function are incorpo-
rated to facilitate robust classification.

Delving into the model’s architecture, the one-dimensional
convolution layers play a pivotal role in identifying localized
patterns within the time series data. By convolving filters
across the input sequences, these layers discern temporal
dependencies and extract features at varying temporal scales.
The initial two convolutional layers are outfitted with F1 and
F2 filters, employing kernel sizes of K1 and K2 respectively.
By harnessing the power of Rectified Linear Unit (ReLU)
activation functions, these layers delve deep into the temporal
intricacies of the data, allowing the network to discern a
diverse array of local features present in the input data.
Building upon the foundation laid by its predecessors, the



third one-dimensional convolutional layer further fine-tunes
the model’s comprehension of the features extracted in the
preceding stages. This layer utilizes F3 filters, doubling the
quantity employed in the previous layer, and a kernel size of
K3 to capture even more nuanced temporal features.

Following each convolutional layer, max-pooling layers
are employed to downsample the extracted features, pre-
serving the most salient information while simultaneously
reducing computational complexity. The kernel sizes for
these max-pooling layers are denoted as M1, M1, and M2

respectively.
2) Regularization: In order to mitigate overfitting, a

comprehensive regularization strategy is implemented. Each
convolutional layer undergoes kernel regularization using
both L1 and L2 methods, along with bias regularization and
activity regularization utilizing the L2 method. Additionally,
Dropout layers are incorporated after each convolutional
layer, employing dropout rates denoted as D1, D2, and
D3 respectively. This holistic approach to regularization
stabilizes the training process and enhances the model’s
ability to generalize by discouraging reliance on specific
features or patterns within the data.

Before classification layer, there is a fully connected
layer with N1 neurons which extract final temporal features.
Finally, the classifier layer, employing the softmax function,
assigns probabilities to the different classes, enabling the
model to categorize the time series data into distinct fo-
cus and decision classes. Through this meticulously crafted
architecture, our model exhibits the capability to discern
intricate patterns within the time series data, ultimately
enhancing the accuracy and reliability of the classification
task at hand.

3) SVM based classification: In addition to deep learning
models, this paper employs Support Vector Machines (SVM),
a traditional yet powerful method for classification tasks,
particularly in analyzing eye pupil data. SVMs leverage the
concept of identifying the optimal hyperplane to effectively
distinguish between various classes of data points, making
them particularly adept at discerning patterns within datasets.
This characteristic renders SVMs invaluable for tasks re-
quiring a nuanced understanding of pupil behavior, shedding
light on cognitive processes, attentional states, and decision-
making dynamics.

In our study, the SVM kernel utilized is the Radial
Basis Function (RBF), chosen for its flexibility in captur-
ing complex relationships within the data. Additionally, the
regularization parameter, denoted as R1, is carefully selected
to strike a balance between model complexity and general-
ization performance. Through the selection of appropriate
parameters such as the kernel function and regularization
parameter, the SVM framework is tailored to effectively cap-
ture and classify intricate patterns inherent in eye pupil data,
further enhancing our understanding of cognitive processes
and behavioral dynamics.

A comprehensive summary of all parameters and config-
urations employed in this study is provided in Table I.

TABLE I
PARAMETERS AND SETUPS USED FOR TRAINING MODEL.

Parameter Name Value
Data preparation Normalization Z-score algorithm

Deep Learning

F1 16
F2 32
F3 64
K1 60
K1 30
K1 5
Activations Functions ReLU
D1 50%
D2 40%
D3 30%
N1 128
Classifier Softmax
Loss Binary Cross Entropy
Optimizer Adam
Epochs 250
Batch size 32
K-fold 5

SVM Kernel Radial Basis Function
R1 1

III. RESULTS

The effectiveness of our proposed deep learning (DL)
model and SVM is assessed through the obtained results.
For the model configuration, we utilized binary cross-entropy
as the loss function along with the Adam optimizer. The
training was conducted over 250 epochs, employing k-fold
cross-validation with k = 5. This approach ensures robust
evaluation and enhances the reliability of our findings in
classifying pupil diameter.

This paper utilized a deep learning and SVM-based
classification model to differentiate between focusing and
decision-making based on recorded pupil data. The accuracy
of the model was assessed and compared using various sets
of inputs, including the right, left, and average pupil diame-
ters for each participant and each round of the experiment.

The initial comparison involved employing pupil data from
all three rounds for each participant as separate inputs for
both the SVM and deep learning models. Figure.2 presents
the accuracies achieved by the SVM and deep learning
models using the right eye pupil data for each participant,
while Figure.3 displays the results for the left eye data. The
average of both eye’s pupil diameter is the input used for the
results shown in Figure.4. The figures depict a substantial
accuracy rate of approximately 90% for both the deep
learning and SVM algorithms. These findings emphasize a
notable distinction between decision and focus labels. The
high accuracy achieved by both algorithms highlights their
efficacy in discerning between these cognitive states during
the task.

Table.II presents a comparison of the accuracies achieved
by SVM and deep learning model. Overall, the deep learn-
ing approach demonstrates superior accuracy, reaching a
maximum of 95.83% with right eye data. However, it is
noteworthy that the classification accuracies of SVM and
DL vary for each set of inputs and individuals. In some
cases, SVM outperforms deep learning, while in others,



Fig. 2. Right eye accuracy results for SVM and DL for individual
participants.

Fig. 3. left eye accuracy results for SVM and DL for individual participants.

the opposite is observed, and this discrepancy also vary
depending on the input used. In general, the total accuracy
for both algorithms are close to each other in all different
inputs.

The subsequent comparisons were conducted using data
collected from each round separately with the SVM model.
Deep learning was not employed in this comparison due to
an insufficient amount of data for the model in some cases.
Figure.5 illustrates the comparison of accuracy across dif-
ferent rounds using right pupil data, while Figure.6 presents
the results for the left eye. Additionally, Figure.7 depicts the
accuracy comparison based on the average pupil data.

As mentioned before, Round 1 and 2 are done on the
same path while round 3 is the new longer path. Some
participants the accuracy is lower in round 2 in comparison
with other rounds. This can be due to lower efforts in
decision making due to familiarity with the path. Another
contributing factor to this phenomenon may be because of the
consecutive running of rounds 1 and 2, which likely induced
tiredness among participants. Consequently, this tiredness
could have adversely impacted their performance outcomes.
The sustained engagement in multiple rounds of the task may
have led to increased mental and physical exertion, thereby
diminishing participants’ cognitive capacities and overall
effectiveness in executing the task. Participants number 3
and 4 haven’t completed round three in this study therefore
the data is missing from the figures.

Table.III has compared the accuracy achieved with sepa-

Fig. 4. Accuracy of average of right and left eye pupil diameters for SVM
and DL for individual participants.

Fig. 5. Right eye accuracy results using SVM for three rounds.

rated rounds data. The highest accuracy of 96% is achieved
in the first round by using the average pupil diameter data.

IV. CONCLUSION

The paper presents a comparative analysis of model ac-
curacy in classifying focus and decision-making based on
pupil diameter data collected from 19 healthy participants
during a navigation task. Various sets of inputs were ex-
amined to assess model performance. The deep learning
model achieved an accuracy exceeding 82%, with an average
accuracy of 84.24% across all participants using right eye
data, and a maximum accuracy of 95.83% for one participant.
In contrast, SVM exhibited an average accuracy of 81%,
indicating superior performance of the deep learning model
overall. While there were variations in model performance
among individual participants, with a minimum accuracy of
72.26% observed when utilizing average pupil diameter data
for one participant, no significant differences were observed
in the effectiveness of using right, left, or average pupil data.

The outcomes of this study hold implications for interface
design enhancement and potential replacement of fixed dwell
time with an adaptive setting. By leveraging the deep learning
model’s robust performance in pupil diameter classification,
future iterations of the interface can be tailored to better ac-
commodate users’ cognitive states, thereby enhancing overall
usability and effectiveness.



TABLE II
DEEP LEARNING AND SVM ACCURACY FOR EACH PARTICIPANTS.

Left Right Average
Max Min Average Max Min Average Max Min Average

DL 93.33% 73.66% 83.89% 95.83% 75.32% 84.24% 90% 72.76% 82.03%
SVM 89.68% 66.09% 80.75% 90.68% 65.62% 81.81% 89.71% 67.84% 82%

TABLE III
SVM ACCURACY FOR EACH ROUND.

Left Right Average
Max Min Average Max Min Average Max Min Average

Round 1 91.61% 65.55% 79.56% 90.51% 54.22% 78.90% 96% 60.04% 78.97%
Round 2 89.64% 46.66% 73.71% 94.66% 47.50% 76.37% 91.21% 40.77% 75.91%
Round 3 90.24% 61.16% 77.83% 90.73% 65.38% 79.60% 90.75% 63.16% 78.85%

Fig. 6. left eye accuracy results using SVM for three rounds.

Fig. 7. average of right and left eye pupil diameters accuracy result using
SVM for three rounds.
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