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Abstract— Physical human-robot interaction (pHRI) plays an
important role in robotic. In order for a human operator to
be able to easily adapt to interact with a robot, a minimal
interaction force in pHRI should be achieved. In this paper,
a pHRI framework is proposed to allow the robot to regulate
its trajectory adaptively for minimizing the interaction force
with small position-tracking errors. The trajectory of the robot
is first adjusted by the interaction force which is updated
by the performance evaluation index. Then, the human hand
motion is predicted based on the autoregressive (AR) model to
further adapt the trajectory. Thirdly, an adaptive impedance
control method is developed to update the stiffness in the robot
impedance controller using surface electromyography (sEMG)
signals for robot compliant interaction with the environment. This
method allows the human operator to interact with the robot by
the interaction force, the hand motion and muscle contraction.
By investigating the performance of the proposed method, the
interaction force is decreased and a good position tracking
accuracy is achieved. Comparative experiments demonstrate the
enhanced performance of the proposed method.
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Note to Practitioners—This paper focuses on developing a novel
method that can allow the robot to compliantly interact with the
human operator while simultaneously taking into account the
trajectory-tracking accuracy and the interaction force in pHRI
scenarios. The proposed method has a large application potential
in a variety of pHRI tasks, such as human-robot collaborative
transporting, curing, assembly, cutting, and so on. In addition,
the proposed method can allow the human operator to physically
interact with the robot in an easier and more intuitive manner,
by taking advantage of human motion prediction and adaptive
impedance control. Therefore, it is also potentially utilized for
rehabilitation and assistive robots, and robot learning skills from
human physical demonstration.

Index Terms— Physical human-robot interaction (pHRI), tra-
jectory adaptation, adaptive impedance control, human motion
prediction.

I. INTRODUCTION

APPLICATIONS of robots have attracted more and more
attention in recent years [1], [2], [3], [4], [5], [6].

However, in an increasing number of robotic applications,
the physical interaction of a human with a robotic system is
essential. Particularly for products that cannot be fully auto-
mated, the physical interaction between humans and robots is
expected to improve the overall efficiency of various manufac-
turing tasks and processes. Physical human-robot interaction
(pHRI) as a branch of robotics has penetrated every aspect
of human society, such as in rehabilitation [7], industry [8]
and agriculture [9]. It’s also a hot topic, especially when the
focus is on transporting, slicing, cutting, polishing tasks and
so on [10] and [11]. When a human operator guides a robot to
perform a tooling task, he or she must apply a certain force to
the robot to move it along the planned trajectory and achieve
a satisfactory performance. Performances largely depend on
the the robot’s ability of adapting their movements based on
human intentions in pHRI tasks. Namely, the trajectory of the
robot needs to be regulated to adapt to the human partner’s
motion.

Programming by demonstration (PbD) is usually used
to allow the guidance of a robot’s motion by a human
operator [12], [13], [14]. The operator transmits trajec-
tory information under specific tasks to the robot through
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kinematics teaching and then the robot replicates the trajec-
tory. However, PbD-based methods are not suitable when it
comes to an uncertain environment. In [15], a robot con-
troller was proposed to incorporate the estimated human’s
motion intention and make the robot proactively follow the
human partner’s movements. In [16], a method based on
support vector machine and least squares method was pro-
posed to improve robot execution ability. Reference [17]
proposed an incremental motor skill learning, generalization
and control method based on dynamic movement primi-
tives (DMP) and broad learning system (BLS) for extracting
skills from demonstrations. Reference [18] presented a skill
learning-based control strategy by fusion with DMP and the
Gaussian mixture model (GMM). Iterative learning control
(ILC) is introduced to enhance the effectiveness of pHRI
by trajectory regulation [19], [20], [21]. In [22], a spatial
iterative learning control method is proposed for a robot
to learn a desired path in an unknown environment. Since
it’s hard to precisely calculate intended motion trajectory,
interaction control is applied in pHRI instead of pure motion
control. In this case, the consideration of interaction force
becomes necessary. The interaction force is used to instruct
the robot’s movement. In [23], a trajectory learning method
based on iterative learning was proposed to improve tracking
performance and the interaction force was used to regulate
the trajectory. In [24], a spatial iterative learning algorithm
which combines the interaction force and machine vision was
proposed for online trajectory learning. Reference [25] pro-
posed a new human-cooperative strategy to detect the human
subject’s motion intention extracted from the measurement
of the subject’s muscular effort. Reference [26] developed a
trajectory adaptation method to guarantee the performance of
collaboration tasks, the information of the interaction force
was not only utilized to update the trajectory but also used to
adjust the robot’s impedance parameters. While the interaction
force cannot effectively estimate human intentions. Enhanced
performance in pHRI can be achieved if the robot can predict
the human’s trajectory and correspondingly adapt its own
trajectory.

Human intention recognition is an important topic in the
field of pHRI [27], [28]. It’s necessary to utilize human
intention to enhance the collaboration between human and the
robot. In [29], a shared control method was proposed to recog-
nize human intention. Reference [30] proposed to use Artificial
Neural Network (ANN) to estimate the intentions of human.
In [31], a haptic intention augmentation method was proposed
to achieve safe interaction. Reference [32] proposed a human-
in-the-loop control methodology for immersive training during
the physical therapy, and the motion control of the robot in a
compliant region is determined by humans. In [33], a novel
method was proposed to recognize the implicit intention of a
human user by using verbal communication, behavior recogni-
tion and motion recognition from the combination of machine
learning, computer vision and voice recognition technologies.
Moreover, human motion prediction can help recognize human
intention. It can be easier for the robot to track the trajectory
of the human by predicting his motion. In [34],a trajectory

prediction method was proposed with the usage of contextual
information for completing the corresponding tasks with the
estimation confidence. In [35], a method of virtual reality
based on K-means clustering and a hidden Markov model was
proposed to predict human motion. Reference [36] proposed a
Bayesian method to acquire the estimation of human stiffness
obeying Gaussian distribution and human motion intention.
In [37], a human motion prediction method based on autore-
gressive (AR) model was proposed for teleoperation and a
virtual force model based on the haptic device was designed
to correct the robot’s trajectory. However, predicting human
motion alone cannot meet the requirements of the pHRI tasks
well. There are many other ways that can be combined with
it to improve the performance.

It is popular to take advantages of biological signals which
take an important part in pHRI. In [38], a simple recurrent
neural network architecture was designed to predict human
motion in a prediction window of 1 second to improve the
performance in pHRI scenarios and achieve safer HRI. In [39],
a novel approach was proposed to embed a human model in
the robot’s path planner and the costmap can be updated based
on the observed or predicted states of the human. In [40],
a novel Continual Learning (CL) approach was proposed
for probabilistic human motion prediction which makes the
robot continually learn during its interaction with collabora-
tors. In fact, surface electromyography (sEMG) signals are
widely used in these years [41]. The muscles activations
which represent human stiffness can be obtained by sEMG
signals and transferred to robots. Reference [42] proposed a
method to estimate the stiffness of the human arm based on
the agonist-antagonist muscular co-activations. Reference [43]
developed a hybrid control that combines a brain-computer
interface (BCI) based on motor imagery (MI) with sEMG
signals to drive the exoskeleton and enhance human mobility.
In [44], an sEMG-based control method was proposed to pro-
vide the robot with the information about the human behaviour
and intention. In [45], a personalised variable gain control
was developed and the control gain was obtained by sEMG
signals so that the operator can interact with environment by
muscle contraction. In addition, impedance/admittance control
can work well for stiffness transfer. Reference [46] presented
a pHRI interaction approach using admittance control to
deal with a human subject’s intention and online stiffness
estimation to deal with the variable impedance property. Ref-
erence [47] developed a variable impedance control strategy
to obtain information about the operator intentions based on
EMG signals and include it into the robot control strategy.
In [48], a novel adaptive impedance control algorithm was
developed using sEMG signals to transfer stiffness from
human operator. In [49], a pHRI system was proposed to map
the estimated human arm stiffness extracted from EMG signals
into the robot impedance controller.

According to above discussions, it’s reasonable to apply
both human intention recognition and interaction force in
pHRI. sEMG signals can be also employed to further improve
the performance in pHRI. Therefore, this paper develops a
novel trajectory adaptation method based on both human
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motion prediction and adaptive impedance control, in order
to achieve compliant interactions. The information of the
interaction force and human hand motion are both considered
to regulate the trajectory of the robot. Besides, the stiffness
of human arm is obtained and transferred to the robot for
a better interaction. The interaction force can be decreased
and the position tracking accuracy can be guaranteed. Our
method allows the human user to complete the tasks to obtain
a good performance in a comparatively easier manner without
the need to predefine a fixed reference trajectory.

The contributions of this paper are as follows:
1) A novel pHRI strategy that integrates robot trajectory

adaptation and human motion prediction is developed
in this work, it allows the robot to physically interact
with the operator with the consideration of human motion
intention.

2) An improved adaptive impedance control method
from [45] is introduced to the pHRI system to update
the stiffness of the robot using sEMG signals, further
decreasing the interaction force and enhancing the inter-
action between the human operator and the environment.

3) The proposed method is implemented on a Sawyer
robot for pHRI tasks. Experimental results demonstrate
the effectiveness of the proposed method. Compared
with [26] and [37], the proposed method has a lower
interaction force and a better interaction performance.

The rest of this article is structured as below. The prob-
lem preliminaries is described in Section II. The method
including trajectory adaptation, human hand motion prediction
and adaptive impedance control is described in Section III.
Section IV analyses the results of experiments on a Sawyer
robot. Section V is the discussions. Section VI concludes this
work and lists future work.

II. PROBLEM PRELIMINARIES

In this work, a typical pHRI scenario is considered where
a human operator cooperates with a robot to manipulate an
object and there is no relative motion between the human hand,
the object, and the robot. In the scenario, the robot regulates
its trajectory by the interaction force imposed by the human
operator.

The system dynamics of an n-degree-of-freedom (n-DOF)
robot interacting with a human’s upper limb in the joint space
are described as:

M(q(t))q̈(t) + C(q(t), q̇(t))q̇(t) + G(q(t)) + D(q̇(t))

= τ(t) + J T (t)Fh(t) (1)

where q(t) ∈ Rn represents the joint angle. τ ∈ Rn is control
input vector of the robot and Fh(t) ∈ Rn represents the inter-
action force applied by the human operator. M(q(t)) ∈ Rn×n

is the inertia matrix, C(q(t), q̇(t)) ∈ Rn is the Coriolis and
centrifugal force, G(q(t)) ∈ Rn represents the gravitational
force vector, and D(q̇(t)) ∈ Rn denotes the friction matrix.
J (t) ∈ Rn×n is the Jacobian matrix.

For convenient analysis, the robot’s dynamics are described
in the Cartesian space when the physical interaction occurs

at the robot’s end-effector. So the system dynamics in the
Cartesian space are given by:

Mx (t)Ẍ(t) + Cx (t)Ẋ(t) + Gx (t) = J−T (t)τ (t) + Fh(t) (2)

where X (t) represents the trajectory of the robot’s end-effector
in the Cartesian space, and Ẋ(t), Mx (t), Cx (t), Gx (t) are
described as:

Ẋ(t) = J (t)q̇(t) (3)

Mx (t) = J−T (t)M(q(t))J−1(t) (4)

Cx (t) = J−T (t)[C(q(t), q̇(t)) − M(q(t))J−1(t) J̇ (t)]J−1(t)

(5)

Gx (t) = J−T (t)(G(q(t)) + D(q̇(t))) (6)

According to human motor control [50], the interaction
force is modeled as:

Fh(t) = −K (t)(X (t) − Xh(t)) (7)

where K (t) ∈ Rn×n is the stiffness matrix of the human’s
upper limb and Xh(t) ∈ Rn represents the expected trajectory.
As a matter of fact, Fh(t) can be measured by a force sensor.

Reducing the interaction force is key to pHRI. A minimal
interaction force can not only reduce the workload but also
improve efficiency. The following method is therefore devel-
oped to perform pHRI tasks with a minimal interaction force
and a good position tracking accuracy.

III. PROPOSED METHOD

In this article, we propose a method to regulate the robot’s
trajectory by introducing trajectory adaptation into the human
hand motion prediction. During the regulation, we also develop
a method to update the impedance parameters of the robot. The
structure of the proposed method is shown in Fig. 1. It can
be seen that the prediction position and the interaction force
determine the actual trajectory of the robot. In addition, the
human operator is able to update the impedance parameters of
the robot according to human muscle contractions. The details
of trajectory adaptation, human hand prediction model and
adaptive impedance control will be presented as below.

A. Trajectory Adaptation

The robot trajectory is adapted based on the interaction force
and the current states, namely:

xd(t) = 9( fh(t), x(t)) (8)

where xd(t) ∈ R represents the updated reference trajectory
of the robot, x(t) ∈ R represents the robot’s current trajectory,
fh(t) ∈ R represents the interaction force on the end of the
robot, 9 is the function describing the relationship of x(t),
xd(t) and fh(t).

The interaction force can be used to update the robot’s
trajectory [26]. The updating law is as follows:

xd(t) = β1 fh(t) + x(t) (9)

where β1 = B1α1 is a parameter to adjust the interaction force,
B1 is used to adjust β1 and α1 need to be constantly updated.
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Fig. 1. The structure of the proposed method.

Fig. 2. The scheme of trajectory adaptation.

The expected trajectory and the actual trajectory determine the
deviation (e(t) = x(t) − xd(t)). The relationship of position
error and the interaction force is written as follows [51]:

θ = K1e(t)2 (10)

where θ represents a performance evaluation index and K1 rep-
resents a parameter to adjust the deviation e(t). The function
J (θ) which is used to regulate α1 can be defined as follows:

J (θ) =

i∑
j=1

θ( j)e−γ1(i− j)1t (11)

where i is the sampling number, 1t is the sampling time, γ1
is aim to adjust the forgetting rate. With the above definitions,
α1 is calculated by:

α1(i) = 1 − e−J (θ)η1 (12)

where e is the natural index and η1 is a parameter to regulate
the interaction force.

By using trajectory adaptation, the robot can adjust the
trajectory by the interaction force and follow human motion
actively. The structure of trajectory adaptation is shown in
Fig. 2.

B. Human Motion Prediction

Autoregression model (AR model) is a time series model
that uses observations from previous time steps as input to a
regression equation to predict the value at the next time step.

In this article AR model is employed to predict the human
hand motion which can be described as a time series model.
The definition of p-order AR model is as follows [37]:

xt = φ0 + φ1xt−1 + φ2xt−2 + · · · + φpxt−p + ϵt (13)

where xt , xt−1, · · · , xt−p represent time series data, φ0,
φ1, · · · , φp represent autoregression parameters which need to
be determined, ϵt represents the white noise. The AR model
can be described as a form of state space:

Qt = Ut Ht + Vt (14)

where Ut = (xt−1, xt−2, · · · , xt−p), Ht = (φ0, φ1, · · · , φt ) and
Vt = 0. The human hand motion is assumed as a continuous
trajectory as follows:

ẏh(t) = a0 + a1 y(t) + a2 y(t − T )

+ · · · + ai y(t − (i − 1)T )

+ · · · + ap y(t − (p − 1)T ) (15)

where y(t) ∈ R represents the actual trajectory of the human
hand, i = 0, 1, 2, · · · , p represent the parameters that is
determined by the type of human hand motion, T represents
a time step. And Eq. (15) can be written as follows:

ẏh(t) = AT W (t) (16)

where AT
= [a0, a1, a2, · · · , ap], W (t) = [1, y(t), y(t −

T ), · · · , y(t − (p − 1)T )]. We can make the following
approximation in order to obtain the value of ẏh(t):

˙ŷh = ÂT W (t) − µ1 ỹh(t − T ) (17)

where ỹh(t − T ) = ŷh(t − T ) − yh(t − T ) is a deviation, Â is
the estimated value of A, µ1 is a positive scalar.

In order to obtain the intention of human motion more
accurately and correct the robot’s trajectory, we introduce
trajectory adaptation into the human hand prediction model.
By employing trajectory adaptation, the desired trajectory of
the robot is regulated by both the human hand motion and
the interaction force. The interaction force is further adjusted
by the method shown in Sec III. A. The updated law is as
follows:

˙̂A = −(ỹh(t − T ) + β1 fh)W (t) (18)
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Fig. 3. The scheme of human motion prediction.

where β1 and fh have already been presented above. The
desired trajectory of the robot is defined as follows:

ẏd =
˙ŷh − β1 fh + µ2 ỹh(t − T ) (19)

where µ2 is a positive scalar. The structure of human motion
prediction is shown in Fig. 3.

C. Adaptive Impedance Control

We further explore adaptive impedance control to improve
the interaction performance. The impedance control model is
usually given as follows:

Md Ẍe + Dd Ẋe + Kd Xe = Fext (20)

where Md ∈ R3×3, Dd ∈ R3×3, and Kd ∈ R3×3 represent the
expected inertia, damping and stiffness parameters, Fext ∈ R3

represents the external force. In this article, the adaptation of
the stiffness Kd is achieved using the sEMG signals, namely,
the variable stiffness profile is transferred from human operator
to the robot and position error Xe ∈ R3 is not considered.

A processing procedure is needed to obtain the sEMG-based
stiffness, as shown in Fig. 4. The raw sEMG signals from all
channels are processed as follows:

s0(t) =

N∑
i=1

√
s2

i (t) (21)

where N represents the number of channels and si (t) ∈ R
represents the raw sEMG signal. After low-pass filter and
normalization, s0(t) becomes s(t). The neural activation model
is as follows:

u(t) = B1s(t − d) + B2u(t − 1) + B3u(t − 2) (22)

where B1, B2, B3 are parameters which need to be determined
and d is delay time. The nonlinear mapping from neural
activation to muscle activation is realized as follows:

a(t) =
eCu(t)−1

eC − 1
(23)

where e is the natural index and C is the nonlinear shape
factor. The variable stiffness is defined as follows [45]:

K (t) = (Kmax − Kmin)
a(t) − amin

amax − amin
+ Kmin (24)

where K (t) is the stiffness of the human’s upper limb. It’s
noted that Kmax , Kmin , amax , amin are obtained experimentally

beforehand. By the proposed adaptive impedance control, the
human operator can adjust the stiffness of the robot so that
they can interact with the environment better.

With trajectory adaptation, human hand motion prediction
and adaptive impedance control, the robot’s trajectory can be
regulated accurately and the interaction force can be decreased.

IV. EXPERIMENTS

In the section, we validate the efficiency of the proposed
method by designing comparative experiments.

A. Experimental Setup

Experiments are performed on a Sawyer robot which is a
7-DOF robot arm and the human operator can complete pHRI
tasks with it. The sEMG signals are obtained by a MYO
armband. MYO has a default sampling frequency of 200Hz
and 8 channels. It can be wore by the human operator easily.
Robot operation system (ROS) is used to integrate the system
through the ROS topics. The experimental platform is shown
in Fig. 5.

In the experiments, different tasks are performed with three
different methods.

• Condition 1: Trajectory adaptation (TA). The robot’s
trajectory is only regulated by the interaction force.

• Condition 2: Trajectory adaptation with human motion
prediction (TA-HMP). The human motion is predicted
to be an adjustment to the robot’s trajectory, and the
interaction force is used to further adapt the trajectory.

• Condition 3: Trajectory adaptation with human
motion prediction and adaptive impedance control
(TA-HMP&AIC). With trajectory adaptation and human
motion prediction, the human operator can adjust the
stiffness of the robot by introducing the proposed
adaptive impedance control.

It’s expected that the robot can follow human motion actively
and the interaction can be achieved naturally between the
human operator and the robot. The robot is unaware of the
reference trajectory in advance. Therefore, the expected tra-
jectory was drawn onto the whiteboard before the experiment
for the human operator to follow. The aim of the experiments is
to decrease the interaction force with a good position tracking
accuracy. With a smaller interaction force, the human operator
can more easily manipulate the robot to move to the desired
place. From this point of view, the following position errors are
used to demonstrate the effectiveness of the proposed method.
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Fig. 4. The sEMG processing procedure for stiffness estimation.

Fig. 5. The experimental platform.

Fig. 6. The scene of Experiment 1.

The key parameters in the experiments are set as follows:
K1=10, γ1=0.05, η1=0.05, µ1=5, µ2=0.05. It’s noted that amin ,
amax , Kmin , and Kmax need to be set according to different
experimental subjects.

The position and the interaction force of the end-effector of
the robot are recorded for subsequent analysis. The average
absolute value of resultant force and the position error are
employed to observe the performance of the proposed method.
The following equation is used to treat the force in the X-axis
(Fx ) and Y-axis (Fy) as the resultant force (F).

F =

√
F2

x + F2
y (25)

Root-mean-square error (RMSE), mean absolute error (MAE)
and roundness error (RE) are used to evaluate the position

tracking accuracy.

RM SE =

√√√√ 1
m

m∑
i=1

(y(i)
1 − y(i))2 (26)

M AE =
1
m

m∑
i=1

|y(i)
1 − y(i)

| (27)

RE =
1
m

m∑
i=1

|

√
(x (i)

1 − x0)2 + (y(i)
1 − y0)2 − r | (28)

where m is the number of data, i is the sampling number, y
is the true value and x1, y1 denote the measured value. x0,
y0 denote the centre of the circle and r is the radius. The
proposed RE method allows the accuracy of the circle to be
estimated from the distance between the resulting trajectory
and the centre of the circle, and is easy to implement.

B. Experiment 1

In Experiment 1, three different methods are used to perform
a pHRI task. The human operator cooperates with the sawyer
robot while following an expected trajectory. To simplify the
experiment, we regard the object as a point mass so that
the trajectory of human hand is equivalent to the trajectory
of the robot’s end-effector. The scene of Experiment 1 is
shown in Fig. 6. In order to emulate the complex process
of transportation better, the expected trajectory is divided into
different parts. The expected trajectory is as follows:

y =


0.18 sin(5π(x − 0.3)) x ∈ [0.3, 0.5)

0 x ∈ [0.5, 0.6)

−1.8(x − 0.6) x ∈ [0.6, 0.7)

1.8(x − 0.8) x ∈ [0.7, 0.8]

(29)

Fig. 7(a) shows the trajectory when performing experiments
with TA, TA-HMP and TA-HMP&AIC. Fig. 7(b) shows the
tracking performances and tracking errors. It can be seen that
all of above methods can reach a good position accuracy.
When it comes to a complex trajectory, the error variation
is relatively large. Since it’s hard for the human operator
to follow accurately. The results of MAE and RMSE are
presented in Fig. 9(a). It’s shown that the proposed method can
complete the task with a better position accuracy. It’s easier
to guide the robot follow the expected trajectory with human
motion prediction and adaptive impedance control.

Parts of the interaction forces with TA, TA-HMP and TA-
HMP&AIC are shown in Fig. 8(a). Since the robot may
experience vibrations with TA, the interaction force in the
X-axis and Y-axis sometimes fluctuates a lot. However, the
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Fig. 7. The trajectories with TA, TA-HMP and TA-HMP&AIC in Experiment 1.

Fig. 8. The interaction forces with TA, TA-HMP and TA-HMP&AIC in Experiment 1.

Fig. 9. The results obtained by TA, TA-HMP and TA-HMP&AIC in Experiment 1.

interaction force is more stable with human motion prediction
and adaptive impedance control. With the proposed method,
the vibration becomes weaker. Fig. 8(b) shows the interaction

force and the interaction force with the process of mov-
ing average filtering with TA, TA-HMP and TA-HMP&AIC,
respectively. The filtered curves can better compare the
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TABLE I
THE RESULTANT FORCE, MAE AND RMSE IN EXPERIMENT 1

TABLE II
THE RESULTANT FORCE(N) IN EXPERIMENT 1

Fig. 10. The scene of Experiment 2.

magnitude of the interaction force. Fig. 9(b) shows the mean
absolute force in the X-axis and Y-axis and Fig. 9(c) shows
the resultant force.

It can be seen that the proposed method can achieve a
minimized interaction force in the pHRI task. By proposed
method, the human operator can cooperate with the robot
easily. The resultant force and the results of MAE and RMSE
in Experiment 1 are presented in Table I. In order to further
verify the interaction force among different methods, five
subjects were selected for the experiment. Table II shows
the resultant force by different methods in the five subjects’
experiment. From this Table, it can be seen that the proposed
method can obtain the best performance.

C. Experiment 2

In Experiment 2, the same methods as Experiment 1 are
used to perform a different pHRI task. The human operator
cooperates with the robot to transport a box. The trajectory of
human hand is obtained by the trajectory of the robot’s end-
effector and the size of the box. The scene of Experiment 2 is
shown in Fig. 10. The expected trajectory is as follows:

(x − 0.6)2
+ y2

= 0.04 (30)

Fig. 11 shows the tracking performances with these three
methods, i.e., TA, TA-HMP and TA-HMP&AIC. The results of
roundness error is shown in Fig. 13(a). Similar to the results in

Fig. 11. The trajectories with TA, TA-HMP and TA-HMP&AIC in Experi-
ment 2.

Experiment 1, the proposed TA-HMP&AIC method achieves
the best position tracking accuracy.

Fig. 12 shows parts of the interaction force with TA,
TA-HMP and TA-HMP&AIC. Fig. 13(b) shows the mean
absolute force in the X-axis and Y-axis and Fig. 13(c) shows
the resultant force. It is clear to see that the proposed
method achieves a minimized interaction force and the weak-
est vibration. Although the interaction force in X-axis of
TA-HMP&AIC is higher than that of TA-HMP, the resultant
force of TA-HMP&AIC is still the smallest. The resultant force
and the result of roundness error in Experiment 2 are also
presented in Table III. Table IV shows the resultant force by
different methods for five subjects. It can be seen that the
proposed method has the minimum interaction force among
the above mentioned methods.

The statistical results are presented in Fig. 14 and
Table V-VII. It shows the interaction force results and the
position error results by using TA, TA-HMP and
TA-HMP&AIC. It can be seen that the proposed method
obtains the smallest interaction force in the process of pHRI.
With a smaller interaction force, the human operator can
more easily manipulate the robot to move to the desired
place, and the position accuracy can also be guaranteed. It’s
noted that the best position accuracy can be achieved in the
appropriate high stiffness gain range.

In summary, the proposed method is tested by different
experiments. The conclusion can be drawn that the proposed
method can track the expected trajectory of human well while
minimizing the interaction force. The human operator can
complete pHRI tasks easier by the proposed method.

V. DISCUSSIONS

Comparative experiments in section IV demonstrate the per-
formance of the proposed method, which achieves a minimized
interaction force with a good position tracking accuracy. Tra-
jectory adaptation is used to adjust the trajectory of the robot
by the interaction force updated by the performance evaluation
index. Compared to trajectory adaptation, the proposed method
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Fig. 12. The interaction forces with TA, TA-HMP and TA-HMP&AIC in Experiment 2.

Fig. 13. The results obtained by TA, TA-HMP and TA-HMP&AIC in Experiment 2.

can regulate the robot’s trajectory by both the interaction force
and prediction of human motion. By predicting human motion,
the robot is aware of the intentions of human movements
and the interaction force is effectively reduced. In contrast to
trajectory adaptation with human motion prediction, adaptive
impedance control is introduced to update the stiffness of the
robot using sEMG signals. The interaction force is further
reduced and the human operator can interact with the robot
by muscle contraction for a better interaction.

Because of the physiological tremor of the human operator’s
hand, the interaction force of TA is significantly large and
vibrates a lot. With the introduction of human motion predic-
tion and adaptive impedance control, the effect of the human
operator’s physiological tremor is diminished and vibration
becomes weaker. It also shows the adaptability of the proposed
method to uncertain environments.

Additionally, five subjects take participate in the exper-
iments to verify the robustness of the proposed method,
and statistical experimental results show that the proposed
TA-HMP&AIC can achieve the best performance among TA,
TA-HMP and TA-HMP&AIC conditions.

The proposed method can be applied for various scenarios
in pHRI. In fact, it shows great potential in path following

TABLE III
THE INTERACTION FORCE AND ROUNDNESS ERROR IN EXPERIMENT 2

TABLE IV
THE RESULTANT FORCE(N) IN EXPERIMENT 2

tasks, i.e., welding, polishing and slicing. It can be also used
for exoskeleton robots to transport objects with human users.

There are some limitations of the proposed method. If the
human movement has significant uncertainties, the proposed
method cannot be satisfying. Besides, the position error cannot
be limited to a specific range because of the uncertainty of
physical interaction. This may need introduce machine vision
and advanced image extraction algorithms to improve the per-
formances. In addition, three-dimensional cutting experiments



10 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

Fig. 14. Boxplot graphs of the resultant force using different methods in
Experiment 1 and Experiment 2.

TABLE V
THE FORCE RESULTS OF DIFFERENT METHODS IN EXPERIMENT 1

TABLE VI
THE FORCE RESULTS OF DIFFERENT METHODS IN EXPERIMENT 2

TABLE VII
THE MEAN MAE, RMSE AND RE USING DIFFERENT METHODS FOR

FIVE SUBJECTS IN EXPERIMENT 1 AND EXPERIMENT 2

will be designed to provide more focused results on the
reduction of interaction force by the proposed method in future
work.

VI. CONCLUSION

In this paper, a novel pHRI framework is proposed to allow
the robot to regulate its trajectory adaptively. The human hand
motion prediction based on AR model and the interaction
force updated by the performance evaluation index are both
considered to recognize the human intentions and regulate the
robot’s trajectory. In addition, sEMG signals is extracted for
robot compliant interaction with the environment by trans-
ferring the human operator’s stiffness to the robot. By the
proposed method, the robot’s trajectory can be regulated in a
small position error and the interaction force can be decreased.

Experiments on a sawyer robot demonstrate the effective-
ness of the proposed method. As shown by the experimental

results, it’s tough to reach a small interaction force with
trajectory adaptation. While introducing trajectory adaptation
into human motion prediction can further decrease the interac-
tion force. Moreover, the interaction force can be minimized
and the position accuracy can be guaranteed by the proposed
method. The interaction between the human operator and the
robot is improved. The robot can follow the human motion
actively to reduce human burden and make the process of
pHRI easier and more intuitive.
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