Investigating Learning Rates for Evolution and
Temporal Difference Learning

Simon M. Lucas, Senior Member |IEEE

Abstract— Evidently, any learning algorithm can only learn small board go, and for Othello. They introduced forced
on the basis of the information given to it. This paper presents random moves into the game play in order to provide a
a first attempt to place an upper bound on the information e robust test for the learning algorithms. They found tha
rates attainable with standard co-evolution and with TDL. The TDL tvpically | d h faster th Ut d
upper bound for TDL is shown to be much higher than for co- ypically learne muc aster then co-evolu _|on, an
evolution. Under commonly used settings for learning to play that standard co-evolution scarcely learned anything lat al
Othello for example, TDL may have an upper bound that is By introducing parent-child weighted averaging, however,
hundr(_eds or even thousands of times higher than that of co- gnd after playing millions of games, co-evolution evenual
evolution. outperformed TDL. Notably, they only found this for simple

To test how well these bounds correlate with actual learn- ighted bi t ith v 64 iahts to | f
ing rates, a simple two-player game calledTreasure Hunt is weighted piece counters (with only weights {o learn for

developed. While the upper bounds cannot be used to predict Othello).
the number of games required to learn the optimal policy, they However, on the Othello Neural Network Servexl the

do correctly predict the rank order of the number of games pest players are based on more complex architectures with
required by each algorithm. many more weights than 64. The best performing architec-
tures are (in best first order) symmetric n-tuple networks,
.) o spatial MLPs, MLPs, weighted piece counters. The best
One of the key problems in machine learning is how aperforming symmetric n-tuple networks have around 15,000
agent can best learn in a largely unsupervised manner Vjaights. Apart from the weighted piece counters, all the
interactions with its environment. The payoff for a pari#&@u pest networks on the server have been trained using TDL,
action may be far removed in time and in state-space frofjough the IEEE CEC 2006 competition winner improved on
the action’s execution. The foremost methods for addrgssipy Tp(-trained MLP by slightly adapting its weights using
this problem are reinforcement learning algorithms suchy, evolutionary algorithm.
as temporal difference learning (TDL), and evolution (0r cq_eyolution is attractive due to its simplicity and its ro-
depending on the problem setup, co-evolution). bust emphasis on overall performance. Unfortunately, i ma
TDL was applied by Samuel as far back as 1957 [1] andg that for large complex architectures which are necessary
Michie in 1961 [2]. A famously successful application ofy, represent (and hence learn) complicated value functions
TDL was Tesauro’s TD Gammon [3], which was followed Upeading to interesting behaviour, co-evolution may be too
by an evolutionary approach to the same problem by Pollagi,steful to do this well in practice. The results from neural
and Blair [4]. In recent years there has been a surge of Biterg\eyork Othello mentioned above support this hypothesis.
|n.evolut|onary approaqhes to this type of learning. Much Qf Learning game strategy is similar to learning any kind of
this was probably inspired by the work of Pollack and Blailygntro| strategy, and also relevant are the results of Gomez
[4], and Chellapilla and Fogel [5] [6] [7]. _ et al[10]. They showed that a type of evolutionary algorithm
It is _relevgnt for t_he followmg sections t_O consider '_Ehecaued CoSyNE (Cooperative Synapse Neuroevolution) sig-
population sizes typically used in co-evolutionary leaqli pjsicantly outperformed all other methods under test, on dif
Pollack and Blair used a population size of two (& randofjeyit pole balancing problems. They also showed that TDL
mutation hill-climber), and used parent-child weighted avmethods were especially bad for that problem. However, the
eraging to overcome effects of noise. Fogel and Chellapilige ra networks evolved were of modest size, with around
used a population size of 30 (as(# + 15) ES), though 40 weights. Furthermore, CoSyNE is a non-standard EA that
using random opponent selection rather than a full roundsy 5its more information from the environment than the
rOb.II"I league. F_Qunarsson and Lucas_ [8] experimented with;ngard type of EA being studied in this paper. CoSyNE
various populatlon sizes, but found sizes of 10 or 30 to Worherforms a type of credit assignment whereby synapses are
well (anything between that would work well also). evolved on the basis of how well the networks they contribute
It is also important to consider the relative performancg, perform. This gleans more information from the control
achieved by TDL and co-evolution. Runarsson and LUCa§ game environment than simply picking a winner. It would

[8] and Lucas and Runarsson [9] conducted extensive O he interesting to calculate information rates for Gy
parisons for learning weighted piece counters for playing, 5 future paper.

I. INTRODUCTION

Simon Lucas is with the Department of Computing and Elec- The contribution of this paper Is to apply some basic

tronic Systems, University of Essex, Colchester CO4 3SQ, eiail:
sm @ssex. ac. uk Ihttp://algoval.essex.ac.uk:8080/othello/html/Othéitml

principles of information theory as laid down by Shannorrommonly used and have been found to perform competi-
[11] to place upper bounds on how much information can beévely with other evolutionary algorithms for game strateg
gained per game played by each of these learning algorithniearning [8] [9]. This choice of EA makes the calculation

It will be shown that the upper bound for TDL is alwaysstraightforward. In a thorough comparison of various co-
higher than for single-parent co-evolution, and usuallgyve evolution settings, Runarsson and Lucas [8] found that best
much higher. A simple game called theeasure Hunt Game performance was obtained when selecting a single parent
is then described. This game was designed specifically fmm each generation, but then using weighted averaging of
analyse how well these learning rates compare with the ratége parent and best child to form the next parent; this was
achieved in practice for a simple game. Note that for moreecessary to counteract the effects of noise that resutbed f
complex games the actual rates are likely to be lower. forced random play.

Experiments were performed to measure the average num-\ote that it is important to distinguish between informa-
ber of games needed in order to learn the optimal policy fqfon and data. For example, when initialising an MLP with
this game. TDL is shown to learn the optimal policy muchandom weights, we are transferring lots of data into the
faster than co-evolutionary learning, but the rate of infornetwork, but no information. Similarly, when a child netkor
mation acquisition in each case is shown to be significantijnerits most of the weights from a parent, lots of data may
lower than the upper bound. be transferred, but this is not the same as the information

The rest of this paper is structured as follows. Section Yained. Information is only gained in the evaluation and
calculates maximum possible learning rates for singlemar selection process. It is also possible to use evolutionary
selection evolutionary algorithms, and for temporal diffe algorithms with case injection [12] [13], but in that case
ence learning. Section Ill describes the Treasure Hunt Gamfe information is being given to the evolutionary algatith
Section IV reports empirical results for learning the o@im iy, the form of a previously acquired case-base. The analysis
value function for that game, and section V concludes. developed in this paper would still apply to the information
gained as a result of running the evolutionary algorithm.

In this section we calculate upper bounds on the informa- Suppose that each g_eneration of players (where each player
tion rates attainable with each algorithm, in terms of thé&: is controlled by a weight vectan;) is evaluated by playing

average number of bits of information per garig (). every other player in a round-robin league. Since for our
The analysis is developed first in general terms, and t &,;O'Ce of ES there are = X orn = (A + 1) players,

IIl. INFORMATION RATES

figures are chosen from recent experimental work on ganje> Iﬁads tO”I n- L) ge(xjmes being plalyed per: gleneratllon
strategy learning in order to gain an idea of a typical ra or the two player board game example, each player plays

of maximum information rates between the two approache@very other player once as black a}nd once as white). Next
It is assumed that each learing algorithm operates B calculate the maximum information gained by the learner
learning a vector of parameters (weights) that control thea ach generation, where the learner in this case is a single-
behaviour of a player in some way. The exact nature of grRarent evolutionary algorithm.
mapping from the parameters to the behaviour induced by At each generation a single parent is chosen from a
those parameters makes no difference to the calculatidreof tPossiblen parents. Usually, the player that finishes top of the
information rate upper bound, though in practice the mappirieague for that generation is chosen. Other selectionipslic
has a profound effect on the actual learning rate, and on tAé also possible such as(a + A) ES (hence population
level of play that the learner eventually achieves. size of n = 2X). However, while selecting more parents
A standard example is learning the weights of a multi-layetfor a given population size) might seem to increase the
perceptron (MLP), where the MLP is used as a value functiofRformation used by the algorithm, there are two points to
within a game-playing engine. The analysis is applicable tdote regarding this. Firstly, as less able parents aretselec
most types of game, but here to give a concrete example %@ the usefulness of the information decreases. In terms
choose the two-player board game Othello. of information rates, we would be using the same amount
Although it is stated elsewhere in the paper, it is wortt®f information if we always picked the worst player as a
emphasising that the information rates calculated belav aparent, but the utility of that information would now be
upper boundsThis rests on the assumption that all event§egative, assuming that the intention was for good play
under consideration are equally likely. In the case of evold0 €evolve. Secondly, as more individuals are selected, the
tionary algorithms, all members of the next generation ar@dded information declines (irrespective of the utilitytbé
assumed equally likely to be the best. In the case of TDlinformation). The maximum information is reached when
only the branching factor of the game is considered and th@lf the population is selected. After that selecting more

assumption is that all legal moves are equally likely. decreases the amount of information, since it would be more
] efficient to specify the complement of the selected set. In
A. Evolution other words, the information can be encoded in fewer bits

The analysis developed here can be applied equally wély specifying the set of non-parents rather than the set of
to evolutionary or co-evolutionary algorithms. The ana@ys parents. If an evolutionary algorithm was able to make full
is done for a(1 T \) Evolution Strategy (ES) - these areuse of the entire ranking of the population, then this could

2 'C(Obgoé) requires2(n — 1) games to select a winner from players

5 0.12 (the factor of 2 comes from the board-game context where

10 0.037 each player plays as black then as white), leading to the

30 0.006 information rate in equation 3.

TABLE |
UPPER BOUNDS FOR INFORMATION GAINED DURING GAME PLAY FOR I — |ngn (3)
CO-EVOLUTION WHEN USING A ROUND-ROBIN LEAGUE (UNITS OF BITS e Q(n — 1)
PER GAME).

Tournament selection can also be used with smaller tour-
nament sizes, and in each case the information rate upper
bound calculation is straightforward.

. P : : : Evolutionary algorithms make progress when the selected
be directly specified imlo bits, simply by tagging each =" :
Y sD gan Ply by 1agging child is fitter than the parent. As the algorithm converges

of then members of the population with their position in the . 2
ranked list. toward an optima a reasonable assumption is that the prob-

To encode this information (i.e. the choice of 1 paren@Pility of an undirected random mutation leading to an
from a set ofn possible ones) requires at most Jagbits. improvement decreases, thereby lowering entropy and hence

Therefore the information rate in units of bits per game fo € mf_ormann_c_c;_ntent. Unde_lrl tfh'ﬁ aﬁsumpftlorr:, actual in-
single-parent selection co-evolutidp is given by: ormation acqwsmo_n rates WIR 1all s ort of these upper
bounds. Whether this assumption holds depends on the nature

_ log,n 1 of the fitness landscape. Also, adaptive mutation rates or
“ T nn—1) @) more sophisticated evolutionary algorithms such as CMA

. . ay alleviate this effect by making directed mutations.
This is an upper bound because it assumes that eartr:hy y g

member of the population is equally likely to be the fittestB. Temporal Difference Learning

In many cases this assumption is invalid. For example, CON- Temporal difference learning extracts unsupervised in-
side_rasimple single-bit mutation_evol_utionary algorithon t5rmation from the game as it is played, and also uses
solving the one-max problem (a bit string problem where thgpervised reward signals when available, in this caseeat th
fitness is defined as the number of bits set to one). If the bil,q of each game. The purpose of the unsupervised learning
to be mutated is chosen uniformly randomly over the entirﬁhase is to acquire a model of how states are temporally
string, then as the algorithm gets closer to the optimume|ated i.e. which game states can be reached from which
the probability of flipping a zero to a one decreases. Hencgyher game states.

most randomly mutated children of the parent will be worse |, TDL the weights of the evaluation function are updated
than the parent. This discussio_n can be direptly ap!olied Huring game play using a gradient-descent method 7L

the Treasure Hunt Game described below, using a bit-veciffe poard observed by a player about to move, and similarly
to specify the policy. This becomes similar to the one-may- the poard after the player has moved. Then the evaluation

problem in terms of the solution space, though the fitheggnction may be updated during play as follows.
landscape is very different, since game fitness is detednine

with respect to the opponent or set of opponents. ou(@)

Table | shows how the upper bound varies with the w; — w;+av(@) - v(F)] 5 4
population size for some commonly used population sizes. i . Wi o

An alternative to using co-evolution is to use standard = wi +afo(@) —v(@)] (1 - v(@)?);
evolution where the fitness function is based on performangghere
against a fixed player, or a fixed set of players. Assume now 9
that each member of the population is evaluated by playing v(Z) = tanh(f(Z)) = 7 SFEN 1 (5
m games against the set of fixed players, the information +exp(=2f(2))
rate upper bound for standard evolutignis is used to force the value functianto be in the range-1

to 1. This method is known as gradient-descent(0)D[14].
- log,n) If ' is a terminal state then the game has ended and the
mn following update is used:

Another alternative is to use knock-out tournament se-
lection within a co-evolutionary algorithm. There are many
ways this can be applied, and most will lead to highewherer corresponds to the final utilitiest1 if the winner
information rate upper bounds than a round-robin leagué Black, —1 when White, and) for a draw.

However, tournament selection is less reliable than a round This is based on Sutton and Barto [14, p.199], and the
robin league, since the tournament winner may not be thHermulation of it in Equation 4 together with the following
best player (unless the game is transitive and deterndpistiexplanation is taken directly from Lucas and Runarsson [9].
in which case the winner of a knock-out tournamest At each turn of the game, the TDL player either makes
guaranteed to be the best player). A knock-out tournameah in-game or a terminal (end-game) update. In the case of

w; — wi+alr—v@)](1- v(f)Z)xi

an in-game update, the value of the previous board positiavhich is approximately 298 bits in the case of game size
is adjusted to be more similar to the value of the current = 64.
board position. This is a type of bootstrapping process. For Considering the way in which temporal difference learning
a terminal update, the value of the penultimate board is usually applied to game strategy learning i.e. to train a
adjusted to be closer to the final value of that game-(+1 function approximator, it should be apparent that this is a
for black win,r = 0 for draw, » = —1 for white win). very loose upper bound. For example, when training a multi-
Interfacing a TDL-learner to a game engine is straighttayer perceptron (one of the most commonly used function
forward. The game engine calls a TDL update method fapproximators) it is common to initialise the network to &éav
any TDL player after each move has been made: it callendom weights. Therefore, during the first few runs of the
inGameUpdate during a game, or terminalUpdate at the eathjorithm the architecture is simply being trained to learn
of a game. that successive states should have similar nonsense values
It is instructive to study the Java code that implements thi<hough information is being given to the TDL algorithm,
process as shown in Figure 1. The variables are as followtsie algorithm is not putting it to any good use at this stage.
op is the output of the networkt g is the target value; Experiments were also made using only the terminal
al pha is the learning ratedel t a is the back error term; update. In this case the information rate upper bound is
pr ev is the previous state of the boamkxt is the current log,(3) ~ 1.6bits, since the only information presented to
state of the boardhet is an instance variable bound to somehe algorithm is the outcome of each game (win, lose, or
neural network type of architecture. draw).
In the case of Othello there are a maximaft possible
game states (since each square can be in at most 3 states, Ill. TREASUREHUNT GAME
empty, black, or white). If each square is equally likely to Most work on learning to play board games has naturally
be in any of the three states, this would lead t0,85§ ~ focused on challenging games that are interesting to play,
101bits of information being available at each mo¥e. such as chess, checkers, Othello and go. The disadvantage
However, successive states are highly correlated, so agy these games for our current purpose is that they take a
measure based directly on this would provide an overly loosgignificant amount of CPU time to play, and that the optimal
upper bound. 1-ply value function for each of these games is unknown.
Arguably a better way to proceed is to consider the |n response to the current need, the author developed the
branching factor of the game. If a game has on avetage Treasure Hunt Game with the following aims in mind:
possible moves at each efstages, then each move conveys _ . simple, fast to compute set of rules
on average logh,. bits of information, hence during the game | yhown optimal policy for each player
we get(s—1) times this information, because the last update | simple way to encode an optimal policy, using an
is based on the true reward. The true reward could be win, easily calculated number of bits

draw, or lose, leading to an upper bound of J8dits of « a simply way to vary the size of the game

information available at the end of the game. The T Hunt G tisfi Il th riteri
Hence, the information availablé for a TDL learner € Ireasure Hunt ame satisfies alfl these criteria.

during a game is given by: A. Rules

Games are always played in sets. A “board” hagjuares.
Half of them have a value of one to the occupier, the other
noting thats > 1 andb,. > 1. From equations 1 and 6 it is half have no value. The distribution of values to squares is
clear that the upper bound for TDL is always greater thaassigned uniform randomly at the start of each set of games,

I = (s — 1)logyb + log,3 (6)

for single parent co-evolution. and remains fixed for that set.
Putting the appropriate figures in for Othello for = 7 The players have no prior knowledge regarding the value
ands = 60 leads to the figure of, ~ 166bg—". of each square. Each game commences with an empty board.

For the Treasure Hunt Game we can use a better estim@kyers take turns to occupy squares with counters of their
than the average branching factor, since at each move wen colour. Once a square is occupied it stays occupied for
know exactly the number of possible moves. If they ar¢he remainder of that game. The game is over when all the
assumed equally likely (not true of course, since playersquares are occupied. The player who has occupied the most
develop hypotheses about which squares contain treasuresgsares of value wins. It's a draw if players have occupied
the set of games are played), then the upper bound can e equal number of valuable squares. Players get no reward

calculated as follows: signal other than this win/lose/draw signal at the end of the
n game.
I = Iogg3+Z|oggi (7) Therefore, players can learn by observing correlations
i=1 between squares occupied and game outcomes; this is the

) _ _ o TDL approach. Alternatively, players can learn by having
The true figure is lower than this, since the centre four segiaan never

be empty, but the only purpose of stating this is to give a roegfimate, compe‘_[ing hypotheses about which squares are valuable,. and
and this figure will not be used in the subsequent calculation rewarding the hypotheses that tend to lead to game wins,

public void i nGaneUpdat e(doubl e[] prev, double[] next) {
doubl e op = tanh(net.forward(prev));
double tg = tanh(net.forward(next));
doubl e delta = alpha * (tg - op) * (1 - op * op);
net . updat eWei ght s(prev, delta);

}

public void term nal Updat e(doubl e[] prev, double tg) {
doubl e op = tanh(net.forward(prev));
doubl e delta = alpha * (tg - op) * (1 - op * op);
net . updat eWi ght s(prev, delta);

Fig. 1. The two main methods used to implement temporal differégaming.

by allowing those ones to breed more offspring. This is theveights to all valuable squares than to valueless squares
evolutionary approach. encodes an optimal policy. Note however that a TDL player

A twist to this game is the exploration-exploitation tradethat uses such a weight vector will still play sub-optimally
off when playing for a fixed set of games. We ignore thisf ¢, the probability of making a random move, is greater
aspect of the game for this paper, and instead focus on ttiean zero. Hence, for real world learning there would be an
number of games taken to learn the optimal strategy. exploration-exploitation trade-off problem to be solv&dr
this paper, we ignore that, and simply measure the number
of games taken to learn an optimal weight vector.

For a game withn squares (i.e. a game of sizg the |y the graphs below all error bars are shown at one
optimal policy can be represented by a stringudiits where standard error from the mean.
each bit is either zero or one to indicate that a reward is
present or not. For learning purposes it is better to allow a
measure of confidence or probability that a particular sgjuap,. Evolution
is valuable, so for all our experiments we use a weighted
piece counter as the value function. The agent bases its playwe used two types of evolutionary algorithms. The first
on a vectorw of n weights. At each turn in the game, was a standard -+ 9 evolution strategy (ES), run for 1,000
it places a counter of its own colour on the empty squargenerations where the fitness was measured by the games
with the highest associated weight. At present this rule iwon against a random player. Since measuring performance
deterministic, but it would be possible to sample from against a random player leads to a noisy fithess function,
Boltzmann distribution instead, for example. experiments were conducted to study the effects of varying

A weight vector encodes an optimal policy=-: the number of games played per fithess evaluation. It was
found that increasing this figure invariably meant that more
games (though fewer fitness evaluations) were needed in
whereV is the set of all treasure squares, ands the set order to reach an optimal policy. However, it is important
of all non-treasure squares. to note that using this sort of algorithm in the presence

In other words, if all squares of value have higher weight8f noise means that the algorithm does not know when
than all squares of no value, then it will play optimally. ~ the true optimum has been reached, and it is often reached

These are coded using 8-byte (64 bit) double precisiotnd then wandered away from. This wandering away from
numbers, so technically the number of bits used in each valtfge optimum is possible because a sub-optimal player may
function is64n, but this is highly redundant and the numbesstill achieve a perfect score against a random player. The
of bits of information required is simply. In other words, algorithm was not penalised for this, and only the first hgti
there are many sets of weights that lead to identical pslicietime was measured.

A multi-valued measure diue fitnesscan also be calcu- The results for standard evolution are shown in figure 2.
lated as follows. This is defined as the number of valuabl€he graph only shows board sizes of uR The algorithm
squares above the median, divided by the number of valualitgled to reliably learn the optimal policy for larger board
squares (which is always/2). sizes (given the population size and number of generations)
Various values were tried fam, the number of games per
fithess evaluation. Best results (in terms of number of games

In this section the experimental setup is described fqulayed to reach the optimum) were obtained with= 1.
each algorithm, then the results are presented and comparidte that the algorithm scales very poorly (much worse than
For these experiments the number of games required linear) with respect to the board size. This is due to the loss
learn an optimal weight vector is measured. Recall from thef gradient against the fixed random opponent as the evolved
discussion above that any weight vector that assigns highglayer improves.

B. Optimal Policy

wi>iji€V,j€V

IV. RESULTS

2000 S board with64 squares requires onlyl5 games on average,
000 compared with1,500 games for the best performing co-
evolution.
3000
nGames . 120
D) P —
2000 e
1000 80 .
() A g ¥ nGames I
4 8 12 16 20 e
40 T
nSquares
Fig. 2. Number of games against a random player required fodatd I

evolution to learn the optimal policy, plotted against thentwer of squares 0

on the board. 4 16 28 40 52 64

nSquares

B. Co-evolution Fig. 4. Number of self-play games required to learn the optinudicy
L . plotted against the number of squares on the board.
A similar setup was used for co-evolution, except that the

individuals were ranked on their performance in a round-

robin league, and the league winner each time was selec eGIfExrperm;ent? v;/eri?] also ir:atde ruilggr;hel TDrL rpltiy(:rthasn
as the parent. For the co-evolution experiment, each pla pore, except playing against a random piayer, ratner tha

played deterministically based on the value of its weig l1‘Sing self-play. Interestingly, this greatly diminishebiet

vector, as explained above. Therefore, the co-evolutiona ea;ncl)nq”:a_blllty Ofbthi TDL plz;\%/er, lunless W?ds fSEt cloile b
learner had the benefit of noise-free learning (the onlyen0i§0 -0 This may be because the player could frequently be
rewarded for the wrong reasons against a random player, and

being in the random mutations made to the weight vectors). 7)
nce learn a poor policy far removed from the optimum, but
S

Experiments were made with population sizes of 2, 5, and
10 (in each case using(@ + (n — 1)) ES ill successful enough to defeat a random player most of the
) time.

The results are shown in Figure 3. The number of games . .
required to reach an optimal weight vector is now approxi- One of the S|mple_ aspects O_f the T_reasure Hunt Ga“_‘e 'S
mately linear in the number of games. Furthermore, the upp twhen a counter 1S placed, it remams_unchanged until the
bounds correctly predicted the rank-order of the algoriihmend qf the game. This suggests tha’? a reinforcement leaming
For smaller population sizes the upper bound is looser. algorithm _that performed on_Iy terminal updates.rather than

both terminal updates and in-game updates might perform
just as well. An experiment was conducted to test this, but

6000

P — it took on averagd 70 games to learn the optimal policy for
np=s - a 64 square board. This is significantly more than ty
000§ PP=10 T] required on average when in-game updates were also used.
nGames [D. Results Summary
2000 B Table Il summarises these results, showing information

rate upper bounds for each method, average number of games
(and standard errors) required to learn optimal strategy fo
game size ob4, predicted number of games needed (if the
upper bound was reached), and the ratio of actual number of
games over predicted number of games.
Fig. 3. Number of league games required for co-evolution tonlehe TDL and TDL refer to exactly the same algorithm and
optimal policy, plotted against the number of squares on theco the empirical results for these use the same data, but the
calculations use a different information rate upper bound
_) estimate. The TDL estimate uses in-game and terminal
C. Temporal Difference Learning update rates, whereas TDL is based only on the terminal
TDL was initially used in self-play mode. The setup wasupdate.
taken directly from the work on learning Othello by Lucas The first thing to note is that the information rates corgectl
and Runarsson [9], as described above in Section II-B, witbredict the rank order of the actual games required. Segond|
e set to 0.1, andr set to 0.2. The results are shown inall estimates apart from the straight TDL estimate are withi
Figure 4. TDL offers much more rapid learning for this gamen order of magnitude of the observed number of games
than evolution or co-evolution. To learn optimal play on aneeded, and when it is based on the end-game information

nSquares

only (TDL) it becomes the closest estimate. Given how over-[9]
optimistic the straight TDL estimate is, it maybe that a re-
think is required of how the in-game information should bg,;
treated.

V. CONCLUSION [11]

This paper introduced a novel calculation of the uppy
per bounds for information gained during game play for
population-based evolutionary learning, and for temporfﬂs]
difference learning.

Two estimates were developed for TDL: one that con-
siders in-game and terminal information, and one that onE'/"']
considers terminal (end-game) information. The one that

S. M. Lucas and T. P. Runarsson, “Temporal difference niear
versus co-evolution for acquiring othello position evéio,” in IEEE
Symposium on Computational Intelligence and Gar2ég6.

F. Gomez, J. Schmidhuber, and R. Miikkulainen, “Acceedaneu-
ral evolution through cooperatively coevolved synapsésyirnal of
Machine Learning Researchol. 9, pp. 937 — 965, 2008.

C. Shannon, “A mathematical theory of communicatiofitie Bell
System Technical Journalol. 27, pp. 379 — 423, 623 — 656, 1948.
S. J. Louis and J. McDonnell, “Learning with case inggttgenetic
algorithms,”IEEE Transactions on Evolutionary Computatjosol. 8,
pp. 316 — 328, 2004.

S. J. Louis and C. Miles, “Playing to learn: case-ingettgenetic
algorithms for learning to play computer gamel§EE Transactions
on Evolutionary Computatigrvol. 9, pp. 669 — 681, 2005.

R. Sutton and A. Bartdntroduction to Reinforcement LearningVIT
Press, 1998.

considers both leads to a terribly over-optimistic estamatAcknowledgements
on the Treasure Hunt Game. The terminal-estimate is a good; thank the anonymous reviewers for their helpful com-
predictor of the actual information rate achieved by TDL foinents on an earlier draft of this paper.

this game.

The information rate upper bounds correctly predicted
the rank order of observed information acquisition rates,
suggesting that this framework provides useful insight int
the design of game strategy learning algorithms. In pdeicu
it provides a limit on the total amount of information that
can be learned within a given number of games. Even
for the simple Treasure Hunt Game a widely used co-
evolutionary algorithm took over 700 games to learn 64 bits
of information. For more complex games the actual learning
rate would most likely be much lower than this.

For both co-evolution and TDL there was a linear rela-
tionship between the number of games required to learn the
optimal strategy for a given board size of Treasure Hunt
Game.

It would be interesting future work to investigate how the
rules of the Treasure Hunt Game can be changed to favour
either TDL or evolution. This may provide valuable insights
into which type of game each class of algorithm is best
suited to learn, and how the algorithms might be modified
or tuned in order to optimise the information rates. Other
important work is to analyse the information rates for more
sophisticated evolutionary algorithms such as CoSyNE.[10]

REFERENCES

[1] A. Samuel, “Some studies in machine learning using the game of
checkers,1BM Journal of Research and Developmevil. 3, pp. 211
— 229, 1959.

[2] D. Michie, “Trial and error,” inIn Science Survey, part 2 Penguin,
1961, pp. 129-145.

[3] G. Tesauro, “Temporal difference learning and TD-gammd@gin-
munications of the ACIWol. 38, no. 3, pp. 58-68, 1995.

[4] J. Pollack and A. Blair, “Co-evolution in the successfaarning of
backgammon strategyWachine Learningvol. 32, pp. 225-240, 1998.

[5] K. Chellapilla and D. Fogel, “Evolving neural network® tplay

checkers without expert knowledgdEEE Transactions on Neural

Networks vol. 10, no. 6, pp. 1382-1391, 1999.

[6] ——, “Evolving an expert checkers playing program withaising
human expertise,JEEE Transactions on Evolutionary Computation
vol. 5, pp. 422 — 428, 2001.

[7] D. Fogel,Blondie24: playing at the edge of Al Morgan Kaufmann
Publishers Inc., 2002.

[8] T. P. Runarsson and S. M. Lucas, “Co-evolution versus-Hay
temporal difference learning for acquiring position evéihmin small-
board go,”IEEE Transactions on Evolutionary Computatiorol. 9,
pp. 628 — 640, 2005.

method | bg~! | mean (s.e.) pred.| ratio
coev (2) | 0.500| 724 (55) | 128 | 5.7
coev (5) | 0.12 | 2188 (233)| 533 | 4.1
coev (10)| 0.037| 5223 (276)| 1729 | 3.0
TDL 298 | 107 (4.5) | 0.2 | 498
TDL 1.6 107 (4.5) | 40 2.7
TABLE I
COMPARISON OF EXPECTED VERSUS ACTUAL NUMBER OF GAMES REQUIRETO LEARN OPTIMAL POLICY FOR A64-SQUARE BOARD.

