
Investigating Learning Rates for Evolution and
Temporal Difference Learning

Simon M. Lucas, Senior Member IEEE

Abstract— Evidently, any learning algorithm can only learn
on the basis of the information given to it. This paper presents
a first attempt to place an upper bound on the information
rates attainable with standard co-evolution and with TDL. The
upper bound for TDL is shown to be much higher than for co-
evolution. Under commonly used settings for learning to play
Othello for example, TDL may have an upper bound that is
hundreds or even thousands of times higher than that of co-
evolution.

To test how well these bounds correlate with actual learn-
ing rates, a simple two-player game calledTreasure Hunt is
developed. While the upper bounds cannot be used to predict
the number of games required to learn the optimal policy, they
do correctly predict the rank order of the number of games
required by each algorithm.

I. I NTRODUCTION

One of the key problems in machine learning is how an
agent can best learn in a largely unsupervised manner via
interactions with its environment. The payoff for a particular
action may be far removed in time and in state-space from
the action’s execution. The foremost methods for addressing
this problem are reinforcement learning algorithms such
as temporal difference learning (TDL), and evolution (or
depending on the problem setup, co-evolution).

TDL was applied by Samuel as far back as 1957 [1] and
Michie in 1961 [2]. A famously successful application of
TDL was Tesauro’s TD Gammon [3], which was followed up
by an evolutionary approach to the same problem by Pollack
and Blair [4]. In recent years there has been a surge of interest
in evolutionary approaches to this type of learning. Much of
this was probably inspired by the work of Pollack and Blair
[4], and Chellapilla and Fogel [5] [6] [7].

It is relevant for the following sections to consider the
population sizes typically used in co-evolutionary learning.
Pollack and Blair used a population size of two (a random
mutation hill-climber), and used parent-child weighted av-
eraging to overcome effects of noise. Fogel and Chellapilla
used a population size of 30 (as a(15 + 15) ES), though
using random opponent selection rather than a full round-
robin league. Runarsson and Lucas [8] experimented with
various population sizes, but found sizes of 10 or 30 to work
well (anything between that would work well also).

It is also important to consider the relative performance
achieved by TDL and co-evolution. Runarsson and Lucas
[8] and Lucas and Runarsson [9] conducted extensive com-
parisons for learning weighted piece counters for playing

Simon Lucas is with the Department of Computing and Elec-
tronic Systems, University of Essex, Colchester CO4 3SQ, UK,email:
sml@essex.ac.uk

small board go, and for Othello. They introduced forced
random moves into the game play in order to provide a
more robust test for the learning algorithms. They found that
TDL typically learned much faster then co-evolution, and
that standard co-evolution scarcely learned anything at all.
By introducing parent-child weighted averaging, however,
and after playing millions of games, co-evolution eventually
outperformed TDL. Notably, they only found this for simple
weighted piece counters (with only 64 weights to learn for
Othello).

However, on the Othello Neural Network Server1 all the
best players are based on more complex architectures with
many more weights than 64. The best performing architec-
tures are (in best first order) symmetric n-tuple networks,
spatial MLPs, MLPs, weighted piece counters. The best
performing symmetric n-tuple networks have around 15,000
weights. Apart from the weighted piece counters, all the
best networks on the server have been trained using TDL,
though the IEEE CEC 2006 competition winner improved on
a TDL-trained MLP by slightly adapting its weights using
an evolutionary algorithm.

Co-evolution is attractive due to its simplicity and its ro-
bust emphasis on overall performance. Unfortunately, it may
be that for large complex architectures which are necessary
to represent (and hence learn) complicated value functions
leading to interesting behaviour, co-evolution may be too
wasteful to do this well in practice. The results from neural
network Othello mentioned above support this hypothesis.

Learning game strategy is similar to learning any kind of
control strategy, and also relevant are the results of Gomez
et al [10]. They showed that a type of evolutionary algorithm
called CoSyNE (Cooperative Synapse Neuroevolution) sig-
nificantly outperformed all other methods under test, on dif-
ficult pole balancing problems. They also showed that TDL
methods were especially bad for that problem. However, the
neural networks evolved were of modest size, with around
40 weights. Furthermore, CoSyNE is a non-standard EA that
exploits more information from the environment than the
standard type of EA being studied in this paper. CoSyNE
performs a type of credit assignment whereby synapses are
evolved on the basis of how well the networks they contribute
to perform. This gleans more information from the control
or game environment than simply picking a winner. It would
also be interesting to calculate information rates for CoSyNE
in a future paper.

The contribution of this paper is to apply some basic

1http://algoval.essex.ac.uk:8080/othello/html/Othello.html

principles of information theory as laid down by Shannon
[11] to place upper bounds on how much information can be
gained per game played by each of these learning algorithms.
It will be shown that the upper bound for TDL is always
higher than for single-parent co-evolution, and usually very
much higher. A simple game called theTreasure Hunt Game
is then described. This game was designed specifically to
analyse how well these learning rates compare with the rates
achieved in practice for a simple game. Note that for more
complex games the actual rates are likely to be lower.

Experiments were performed to measure the average num-
ber of games needed in order to learn the optimal policy for
this game. TDL is shown to learn the optimal policy much
faster than co-evolutionary learning, but the rate of infor-
mation acquisition in each case is shown to be significantly
lower than the upper bound.

The rest of this paper is structured as follows. Section II
calculates maximum possible learning rates for single-parent
selection evolutionary algorithms, and for temporal differ-
ence learning. Section III describes the Treasure Hunt Game.
Section IV reports empirical results for learning the optimal
value function for that game, and section V concludes.

II. I NFORMATION RATES

In this section we calculate upper bounds on the informa-
tion rates attainable with each algorithm, in terms of the
average number of bits of information per game (bg−1).
The analysis is developed first in general terms, and then
figures are chosen from recent experimental work on game
strategy learning in order to gain an idea of a typical ratio
of maximum information rates between the two approaches.

It is assumed that each learning algorithm operates by
learning a vector of parameters (weights) that control the
behaviour of a player in some way. The exact nature of the
mapping from the parameters to the behaviour induced by
those parameters makes no difference to the calculation of the
information rate upper bound, though in practice the mapping
has a profound effect on the actual learning rate, and on the
level of play that the learner eventually achieves.

A standard example is learning the weights of a multi-layer
perceptron (MLP), where the MLP is used as a value function
within a game-playing engine. The analysis is applicable to
most types of game, but here to give a concrete example we
choose the two-player board game Othello.

Although it is stated elsewhere in the paper, it is worth
emphasising that the information rates calculated below are
upper bounds. This rests on the assumption that all events
under consideration are equally likely. In the case of evolu-
tionary algorithms, all members of the next generation are
assumed equally likely to be the best. In the case of TDL,
only the branching factor of the game is considered and the
assumption is that all legal moves are equally likely.

A. Evolution

The analysis developed here can be applied equally well
to evolutionary or co-evolutionary algorithms. The analysis
is done for a(1 +, λ) Evolution Strategy (ES) - these are

commonly used and have been found to perform competi-
tively with other evolutionary algorithms for game strategy
learning [8] [9]. This choice of EA makes the calculation
straightforward. In a thorough comparison of various co-
evolution settings, Runarsson and Lucas [8] found that best
performance was obtained when selecting a single parent
from each generation, but then using weighted averaging of
the parent and best child to form the next parent; this was
necessary to counteract the effects of noise that resulted from
forced random play.

Note that it is important to distinguish between informa-
tion and data. For example, when initialising an MLP with
random weights, we are transferring lots of data into the
network, but no information. Similarly, when a child network
inherits most of the weights from a parent, lots of data may
be transferred, but this is not the same as the information
gained. Information is only gained in the evaluation and
selection process. It is also possible to use evolutionary
algorithms with case injection [12] [13], but in that case
the information is being given to the evolutionary algorithm
in the form of a previously acquired case-base. The analysis
developed in this paper would still apply to the information
gained as a result of running the evolutionary algorithm.

Suppose that each generation of players (where each player
pi is controlled by a weight vectorwi) is evaluated by playing
every other player in a round-robin league. Since for our
choice of ES there aren = λ or n = (λ + 1) players,
this leads ton(n − 1) games being played per generation
(for the two player board game example, each player plays
every other player once as black and once as white). Next
we calculate the maximum information gained by the learner
each generation, where the learner in this case is a single-
parent evolutionary algorithm.

At each generation a single parent is chosen from a
possiblen parents. Usually, the player that finishes top of the
league for that generation is chosen. Other selection policies
are also possible such as a(λ + λ) ES (hence population
size of n = 2λ). However, while selecting more parents
(for a given population size) might seem to increase the
information used by the algorithm, there are two points to
note regarding this. Firstly, as less able parents are selected,
so the usefulness of the information decreases. In terms
of information rates, we would be using the same amount
of information if we always picked the worst player as a
parent, but the utility of that information would now be
negative, assuming that the intention was for good play
to evolve. Secondly, as more individuals are selected, the
added information declines (irrespective of the utility ofthe
information). The maximum information is reached when
half the population is selected. After that selecting more
decreases the amount of information, since it would be more
efficient to specify the complement of the selected set. In
other words, the information can be encoded in fewer bits
by specifying the set of non-parents rather than the set of
parents. If an evolutionary algorithm was able to make full
use of the entire ranking of the population, then this could

n Ic(bg−1)
2 0.500
5 0.12
10 0.037
30 0.006

TABLE I

UPPER BOUNDS FOR INFORMATION GAINED DURING GAME PLAY FOR

CO-EVOLUTION WHEN USING A ROUND-ROBIN LEAGUE (UNITS OF BITS

PER GAME).

be directly specified innlog2n bits, simply by tagging each
of then members of the population with their position in the
ranked list.

To encode this information (i.e. the choice of 1 parent
from a set ofn possible ones) requires at most log2n bits.
Therefore the information rate in units of bits per game for
single-parent selection co-evolutionIc is given by:

Ic =
log2n

n(n− 1)
(1)

This is an upper bound because it assumes that each
member of the population is equally likely to be the fittest.
In many cases this assumption is invalid. For example, con-
sider a simple single-bit mutation evolutionary algorithmfor
solving the one-max problem (a bit string problem where the
fitness is defined as the number of bits set to one). If the bit
to be mutated is chosen uniformly randomly over the entire
string, then as the algorithm gets closer to the optimum,
the probability of flipping a zero to a one decreases. Hence,
most randomly mutated children of the parent will be worse
than the parent. This discussion can be directly applied to
the Treasure Hunt Game described below, using a bit-vector
to specify the policy. This becomes similar to the one-max
problem in terms of the solution space, though the fitness
landscape is very different, since game fitness is determined
with respect to the opponent or set of opponents.

Table I shows how the upper bound varies with the
population size for some commonly used population sizes.

An alternative to using co-evolution is to use standard
evolution where the fitness function is based on performance
against a fixed player, or a fixed set of players. Assume now
that each member of the population is evaluated by playing
m games against the set of fixed players, the information
rate upper bound for standard evolutionIe is

Ie =
log2n

mn
(2)

Another alternative is to use knock-out tournament se-
lection within a co-evolutionary algorithm. There are many
ways this can be applied, and most will lead to higher
information rate upper bounds than a round-robin league.
However, tournament selection is less reliable than a round-
robin league, since the tournament winner may not be the
best player (unless the game is transitive and deterministic,
in which case the winner of a knock-out tournamentis
guaranteed to be the best player). A knock-out tournament

requires2(n − 1) games to select a winner fromn players
(the factor of 2 comes from the board-game context where
each player plays as black then as white), leading to the
information rate in equation 3.

Ie =
log2n

2(n− 1)
(3)

Tournament selection can also be used with smaller tour-
nament sizes, and in each case the information rate upper
bound calculation is straightforward.

Evolutionary algorithms make progress when the selected
child is fitter than the parent. As the algorithm converges
toward an optima a reasonable assumption is that the prob-
ability of an undirected random mutation leading to an
improvement decreases, thereby lowering entropy and hence
the information content. Under this assumption, actual in-
formation acquisition rates will fall short of these upper
bounds. Whether this assumption holds depends on the nature
of the fitness landscape. Also, adaptive mutation rates or
more sophisticated evolutionary algorithms such as CMA
may alleviate this effect by making directed mutations.

B. Temporal Difference Learning

Temporal difference learning extracts unsupervised in-
formation from the game as it is played, and also uses
supervised reward signals when available, in this case at the
end of each game. The purpose of the unsupervised learning
phase is to acquire a model of how states are temporally
related i.e. which game states can be reached from which
other game states.

In TDL the weights of the evaluation function are updated
during game play using a gradient-descent method. Let~x be
the board observed by a player about to move, and similarly
~x′ the board after the player has moved. Then the evaluation
function may be updated during play as follows.

wi ← wi + α
[

v(~x′)− v(~x)
]∂v(~x)

∂wi

(4)

= wi + α
[

v(~x′)− v(~x)
](

1− v(~x)2
)

xi

where

v(~x) = tanh(f(~x)) =
2

1 + exp(−2f(~x))
− 1 (5)

is used to force the value functionv to be in the range−1
to 1. This method is known as gradient-descent TD(0) [14].
If ~x′ is a terminal state then the game has ended and the
following update is used:

wi ← wi + α
[

r − v(~x)
](

1− v(~x)2
)

xi

wherer corresponds to the final utilities:+1 if the winner
is Black,−1 when White, and0 for a draw.

This is based on Sutton and Barto [14, p.199], and the
formulation of it in Equation 4 together with the following
explanation is taken directly from Lucas and Runarsson [9].

At each turn of the game, the TDL player either makes
an in-game or a terminal (end-game) update. In the case of

an in-game update, the value of the previous board position
is adjusted to be more similar to the value of the current
board position. This is a type of bootstrapping process. For
a terminal update, the value of the penultimate board is
adjusted to be closer to the final value of that game (r = +1
for black win, r = 0 for draw, r = −1 for white win).

Interfacing a TDL-learner to a game engine is straight-
forward. The game engine calls a TDL update method for
any TDL player after each move has been made: it calls
inGameUpdate during a game, or terminalUpdate at the end
of a game.

It is instructive to study the Java code that implements this
process as shown in Figure 1. The variables are as follows:
op is the output of the network;tg is the target value;
alpha is the learning rate;delta is the back error term;
prev is the previous state of the board;next is the current
state of the board;net is an instance variable bound to some
neural network type of architecture.

In the case of Othello there are a maximum364 possible
game states (since each square can be in at most 3 states,
empty, black, or white). If each square is equally likely to
be in any of the three states, this would lead to log23

64 ≈

101bits of information being available at each move.2

However, successive states are highly correlated, so any
measure based directly on this would provide an overly loose
upper bound.

Arguably a better way to proceed is to consider the
branching factor of the game. If a game has on averagebr

possible moves at each ofs stages, then each move conveys
on average log2br bits of information, hence during the game
we get(s−1) times this information, because the last update
is based on the true reward. The true reward could be win,
draw, or lose, leading to an upper bound of log23 bits of
information available at the end of the game.

Hence, the information availableIt for a TDL learner
during a game is given by:

It = (s− 1)log2b + log23 (6)

noting thats ≥ 1 and br > 1. From equations 1 and 6 it is
clear that the upper bound for TDL is always greater than
for single parent co-evolution.

Putting the appropriate figures in for Othello forbr = 7
ands = 60 leads to the figure ofIt ≈ 166bg−1.

For the Treasure Hunt Game we can use a better estimate
than the average branching factor, since at each move we
know exactly the number of possible moves. If they are
assumed equally likely (not true of course, since players
develop hypotheses about which squares contain treasure as
the set of games are played), then the upper bound can be
calculated as follows:

It = log23 +

n
∑

i=1

log2i (7)

2The true figure is lower than this, since the centre four squares can never
be empty, but the only purpose of stating this is to give a roughestimate,
and this figure will not be used in the subsequent calculations.

which is approximately 298 bits in the case of game size
n = 64.

Considering the way in which temporal difference learning
is usually applied to game strategy learning i.e. to train a
function approximator, it should be apparent that this is a
very loose upper bound. For example, when training a multi-
layer perceptron (one of the most commonly used function
approximators) it is common to initialise the network to have
random weights. Therefore, during the first few runs of the
algorithm the architecture is simply being trained to learn
that successive states should have similar nonsense values.
Although information is being given to the TDL algorithm,
the algorithm is not putting it to any good use at this stage.

Experiments were also made using only the terminal
update. In this case the information rate upper bound is
log2(3) ≈ 1.6bits, since the only information presented to
the algorithm is the outcome of each game (win, lose, or
draw).

III. T REASUREHUNT GAME

Most work on learning to play board games has naturally
focused on challenging games that are interesting to play,
such as chess, checkers, Othello and go. The disadvantage
of these games for our current purpose is that they take a
significant amount of CPU time to play, and that the optimal
1-ply value function for each of these games is unknown.

In response to the current need, the author developed the
Treasure Hunt Game with the following aims in mind:

• a simple, fast to compute set of rules
• a known optimal policy for each player
• a simple way to encode an optimal policy, using an

easily calculated number of bits
• a simply way to vary the size of the game

The Treasure Hunt Game satisfies all these criteria.

A. Rules

Games are always played in sets. A “board” hasn squares.
Half of them have a value of one to the occupier, the other
half have no value. The distribution of values to squares is
assigned uniform randomly at the start of each set of games,
and remains fixed for that set.

The players have no prior knowledge regarding the value
of each square. Each game commences with an empty board.
Players take turns to occupy squares with counters of their
own colour. Once a square is occupied it stays occupied for
the remainder of that game. The game is over when all the
squares are occupied. The player who has occupied the most
squares of value wins. It’s a draw if players have occupied
an equal number of valuable squares. Players get no reward
signal other than this win/lose/draw signal at the end of the
game.

Therefore, players can learn by observing correlations
between squares occupied and game outcomes; this is the
TDL approach. Alternatively, players can learn by having
competing hypotheses about which squares are valuable, and
rewarding the hypotheses that tend to lead to game wins,

public void inGameUpdate(double[] prev, double[] next) {
double op = tanh(net.forward(prev));
double tg = tanh(net.forward(next));
double delta = alpha * (tg - op) * (1 - op * op);
net.updateWeights(prev, delta);

}

public void terminalUpdate(double[] prev, double tg) {
double op = tanh(net.forward(prev));
double delta = alpha * (tg - op) * (1 - op * op);
net.updateWeights(prev, delta);

}

Fig. 1. The two main methods used to implement temporal differencelearning.

by allowing those ones to breed more offspring. This is the
evolutionary approach.

A twist to this game is the exploration-exploitation trade-
off when playing for a fixed set of games. We ignore this
aspect of the game for this paper, and instead focus on the
number of games taken to learn the optimal strategy.

B. Optimal Policy

For a game withn squares (i.e. a game of sizen) the
optimal policy can be represented by a string ofn bits where
each bit is either zero or one to indicate that a reward is
present or not. For learning purposes it is better to allow a
measure of confidence or probability that a particular square
is valuable, so for all our experiments we use a weighted
piece counter as the value function. The agent bases its play
on a vectorw of n weights. At each turn in the game,
it places a counter of its own colour on the empty square
with the highest associated weight. At present this rule is
deterministic, but it would be possible to sample from a
Boltzmann distribution instead, for example.

A weight vector encodes an optimal policy⇐⇒ :

wi > wj ∀ i ∈ V, j ∈ V

whereV is the set of all treasure squares, andV is the set
of all non-treasure squares.

In other words, if all squares of value have higher weights
than all squares of no value, then it will play optimally.

These are coded using 8-byte (64 bit) double precision
numbers, so technically the number of bits used in each value
function is64n, but this is highly redundant and the number
of bits of information required is simplyn. In other words,
there are many sets of weights that lead to identical policies.

A multi-valued measure oftrue fitnesscan also be calcu-
lated as follows. This is defined as the number of valuable
squares above the median, divided by the number of valuable
squares (which is alwaysn/2).

IV. RESULTS

In this section the experimental setup is described for
each algorithm, then the results are presented and compared.
For these experiments the number of games required to
learn an optimal weight vector is measured. Recall from the
discussion above that any weight vector that assigns higher

weights to all valuable squares than to valueless squares
encodes an optimal policy. Note however that a TDL player
that uses such a weight vector will still play sub-optimally
if ǫ, the probability of making a random move, is greater
than zero. Hence, for real world learning there would be an
exploration-exploitation trade-off problem to be solved.For
this paper, we ignore that, and simply measure the number
of games taken to learn an optimal weight vector.

In the graphs below all error bars are shown at one
standard error from the mean.

A. Evolution

We used two types of evolutionary algorithms. The first
was a standard1 + 9 evolution strategy (ES), run for 1,000
generations where the fitness was measured by the games
won against a random player. Since measuring performance
against a random player leads to a noisy fitness function,
experiments were conducted to study the effects of varying
the number of games played per fitness evaluation. It was
found that increasing this figure invariably meant that more
games (though fewer fitness evaluations) were needed in
order to reach an optimal policy. However, it is important
to note that using this sort of algorithm in the presence
of noise means that the algorithm does not know when
the true optimum has been reached, and it is often reached
and then wandered away from. This wandering away from
the optimum is possible because a sub-optimal player may
still achieve a perfect score against a random player. The
algorithm was not penalised for this, and only the first hitting
time was measured.

The results for standard evolution are shown in figure 2.
The graph only shows board sizes of up to20. The algorithm
failed to reliably learn the optimal policy for larger board
sizes (given the population size and number of generations).
Various values were tried form, the number of games per
fitness evaluation. Best results (in terms of number of games
played to reach the optimum) were obtained withm = 1.
Note that the algorithm scales very poorly (much worse than
linear) with respect to the board size. This is due to the loss
of gradient against the fixed random opponent as the evolved
player improves.

4 8 12 16 20
0

1000

2000

3000

4000

5000

ES

nSquares

nGames

Fig. 2. Number of games against a random player required for standard
evolution to learn the optimal policy, plotted against the number of squares
on the board.

B. Co-evolution

A similar setup was used for co-evolution, except that the
individuals were ranked on their performance in a round-
robin league, and the league winner each time was selected
as the parent. For the co-evolution experiment, each player
played deterministically based on the value of its weight
vector, as explained above. Therefore, the co-evolutionary
learner had the benefit of noise-free learning (the only noise
being in the random mutations made to the weight vectors).
Experiments were made with population sizes of 2, 5, and
10 (in each case using a(1 + (n− 1)) ES.

The results are shown in Figure 3. The number of games
required to reach an optimal weight vector is now approxi-
mately linear in the number of games. Furthermore, the upper
bounds correctly predicted the rank-order of the algorithms.
For smaller population sizes the upper bound is looser.

4 16 28 40 52 64
0

2000

4000

6000

np = 2

np = 5

np = 10

nSquares

nGames

Fig. 3. Number of league games required for co-evolution to learn the
optimal policy, plotted against the number of squares on the board.

C. Temporal Difference Learning

TDL was initially used in self-play mode. The setup was
taken directly from the work on learning Othello by Lucas
and Runarsson [9], as described above in Section II-B, with
ǫ set to 0.1, andα set to 0.2. The results are shown in
Figure 4. TDL offers much more rapid learning for this game
than evolution or co-evolution. To learn optimal play on a

board with64 squares requires only115 games on average,
compared with1, 500 games for the best performing co-
evolution.

4 16 28 40 52 64
0

40

80

120

TDL

nSquares

nGames

Fig. 4. Number of self-play games required to learn the optimal policy
plotted against the number of squares on the board.

Experiments were also made using the TDL player as
before, except playing against a random player, rather than
using self-play. Interestingly, this greatly diminished the
learning ability of the TDL player, unlessǫ was set close
to 1.0. This may be because the player could frequently be
rewarded for the wrong reasons against a random player, and
hence learn a poor policy far removed from the optimum, but
still successful enough to defeat a random player most of the
time.

One of the simple aspects of the Treasure Hunt Game is
that when a counter is placed, it remains unchanged until the
end of the game. This suggests that a reinforcement learning
algorithm that performed only terminal updates rather than
both terminal updates and in-game updates might perform
just as well. An experiment was conducted to test this, but
it took on average170 games to learn the optimal policy for
a 64 square board. This is significantly more than the107
required on average when in-game updates were also used.

D. Results Summary

Table II summarises these results, showing information
rate upper bounds for each method, average number of games
(and standard errors) required to learn optimal strategy for a
game size of64, predicted number of games needed (if the
upper bound was reached), and the ratio of actual number of
games over predicted number of games.

TDL and TDL’ refer to exactly the same algorithm and
the empirical results for these use the same data, but the
calculations use a different information rate upper bound
estimate. The TDL estimate uses in-game and terminal
update rates, whereas TDL’ is based only on the terminal
update.

The first thing to note is that the information rates correctly
predict the rank order of the actual games required. Secondly,
all estimates apart from the straight TDL estimate are within
an order of magnitude of the observed number of games
needed, and when it is based on the end-game information

only (TDL’) it becomes the closest estimate. Given how over-
optimistic the straight TDL estimate is, it maybe that a re-
think is required of how the in-game information should be
treated.

V. CONCLUSION

This paper introduced a novel calculation of the up-
per bounds for information gained during game play for
population-based evolutionary learning, and for temporal
difference learning.

Two estimates were developed for TDL: one that con-
siders in-game and terminal information, and one that only
considers terminal (end-game) information. The one that
considers both leads to a terribly over-optimistic estimate
on the Treasure Hunt Game. The terminal-estimate is a good
predictor of the actual information rate achieved by TDL for
this game.

The information rate upper bounds correctly predicted
the rank order of observed information acquisition rates,
suggesting that this framework provides useful insight into
the design of game strategy learning algorithms. In particular,
it provides a limit on the total amount of information that
can be learned within a given number of games. Even
for the simple Treasure Hunt Game a widely used co-
evolutionary algorithm took over 700 games to learn 64 bits
of information. For more complex games the actual learning
rate would most likely be much lower than this.

For both co-evolution and TDL there was a linear rela-
tionship between the number of games required to learn the
optimal strategy for a given board size of Treasure Hunt
Game.

It would be interesting future work to investigate how the
rules of the Treasure Hunt Game can be changed to favour
either TDL or evolution. This may provide valuable insights
into which type of game each class of algorithm is best
suited to learn, and how the algorithms might be modified
or tuned in order to optimise the information rates. Other
important work is to analyse the information rates for more
sophisticated evolutionary algorithms such as CoSyNE [10].

REFERENCES

[1] A. Samuel, “Some studies in machine learning using the game of
checkers,”IBM Journal of Research and Development, vol. 3, pp. 211
– 229, 1959.

[2] D. Michie, “Trial and error,” in In Science Survey, part 2. Penguin,
1961, pp. 129–145.

[3] G. Tesauro, “Temporal difference learning and TD-gammon,”Com-
munications of the ACM, vol. 38, no. 3, pp. 58–68, 1995.

[4] J. Pollack and A. Blair, “Co-evolution in the successfullearning of
backgammon strategy,”Machine Learning, vol. 32, pp. 225–240, 1998.

[5] K. Chellapilla and D. Fogel, “Evolving neural networks to play
checkers without expert knowledge,”IEEE Transactions on Neural
Networks, vol. 10, no. 6, pp. 1382–1391, 1999.

[6] ——, “Evolving an expert checkers playing program without using
human expertise,”IEEE Transactions on Evolutionary Computation,
vol. 5, pp. 422 – 428, 2001.

[7] D. Fogel, Blondie24: playing at the edge of AI. Morgan Kaufmann
Publishers Inc., 2002.

[8] T. P. Runarsson and S. M. Lucas, “Co-evolution versus self-play
temporal difference learning for acquiring position evaluation in small-
board go,” IEEE Transactions on Evolutionary Computation, vol. 9,
pp. 628 – 640, 2005.

[9] S. M. Lucas and T. P. Runarsson, “Temporal difference learning
versus co-evolution for acquiring othello position evaluation,” in IEEE
Symposium on Computational Intelligence and Games, 2006.

[10] F. Gomez, J. Schmidhuber, and R. Miikkulainen, “Accelerated neu-
ral evolution through cooperatively coevolved synapses,”Journal of
Machine Learning Research, vol. 9, pp. 937 – 965, 2008.

[11] C. Shannon, “A mathematical theory of communication,”The Bell
System Technical Journal, vol. 27, pp. 379 – 423, 623 – 656, 1948.

[12] S. J. Louis and J. McDonnell, “Learning with case injected genetic
algorithms,”IEEE Transactions on Evolutionary Computation, vol. 8,
pp. 316 – 328, 2004.

[13] S. J. Louis and C. Miles, “Playing to learn: case-injected genetic
algorithms for learning to play computer games,”IEEE Transactions
on Evolutionary Computation, vol. 9, pp. 669 – 681, 2005.

[14] R. Sutton and A. Barto,Introduction to Reinforcement Learning. MIT
Press, 1998.

Acknowledgements

I thank the anonymous reviewers for their helpful com-
ments on an earlier draft of this paper.

method bg−1 mean (s.e.) pred. ratio
coev (2) 0.500 724 (55) 128 5.7
coev (5) 0.12 2188 (233) 533 4.1
coev (10) 0.037 5223 (276) 1729 3.0

TDL 298 107 (4.5) 0.2 498
TDL’ 1.6 107 (4.5) 40 2.7

TABLE II

COMPARISON OF EXPECTED VERSUS ACTUAL NUMBER OF GAMES REQUIRED TO LEARN OPTIMAL POLICY FOR A 64-SQUARE BOARD.

