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COMBINATORIAL VOTING

BY DAVID S. AHN AND SANTIAGO OLIVEROS1

We study elections that simultaneously decide multiple issues, where voters have in-
dependent private values over bundles of issues. The innovation is in considering non-
separable preferences, where issues may be complements or substitutes. Voters face
a political exposure problem: the optimal vote for a particular issue will depend on
the resolution of the other issues. Moreover, the probabilities that the other issues will
pass should be conditioned on being pivotal. We prove that equilibrium exists when
distributions over values have full support or when issues are complements. We then
study large elections with two issues. There exists a nonempty open set of distributions
where the probability of either issue passing fails to converge to either 1 or 0 for all
limit equilibria. Thus, the outcomes of large elections are not generically predictable
with independent private values, despite the fact that there is no aggregate uncertainty
regarding fundamentals. While the Condorcet winner is not necessarily the outcome of
a multi-issue election, we provide sufficient conditions that guarantee the implementa-
tion of the Condorcet winner.

KEYWORDS: Combinatorial voting, multi-issue elections, strategic voting.

1. INTRODUCTION

PROPOSITIONS 1A AND 1B of the 2006 California general election both aimed
to increase funding for transportation improvements.2 Suppose a voter prefers
some increased funding and supports either proposition by itself, but given the
state’s fiscal situation also prefers that both measures fail together than pass
together. She views the propositions as substitutes. However, the ballot does
not elicit her preferences over bundles of transportation measures, but only a
separate up–down vote on each proposition. If she votes up on Proposition 1A
while Proposition 1B passes, she contributes to the undesired passage of both
measures. On the other hand, if Proposition 1B were to fail, she would like to
see Proposition 1A pass to fund some transportation improvements.

How should she vote? Some subtle considerations complicate the answer to
this question. What is the likelihood that she is pivotal on either proposition
or both? The issue here is that there are multiple pivotal events. If she is piv-
otal on some proposition, what is the conditional likelihood that the other will
pass or fail? The issue here is that central strategic conjectures must be ap-
propriately conditioned on the particular pivotal event. The natural model for
these questions is a game of incomplete information. The model begs other

1We thank a co-editor and four anonymous referees for constructive guidance; in particular,
Section 5 is a direct result of their suggestions. We also thank Georgy Egorov, Nenad Kos, Cesar
Martinelli, Tom Palfrey, Ken Shotts, and various seminar participants for helpful comments. We
acknowledge the National Science Foundation for financial support under Grant SES-0851704.

2Proposition 1A dedicated gasoline taxes for transportation improvements, at the exclusion of
other uses, while Proposition 1B issued $20 billion in bonds to fund improvements. Both measures
passed by large margins.
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questions. Does equilibrium exist? What does it look like? Does it exhibit
special properties in large elections? Are equilibrium outcomes predictable?
Are these outcomes ordinally efficient? For elections with nonseparable is-
sues, these basic questions are still unanswered. To our knowledge, this is the
first paper to follow the strategic implications of electoral complementarity or
substitution to their equilibrium conclusions, and makes initial progress in ad-
dressing these concerns.

1.1. An Example

The following example illustrates the strategic delicacy of elections with mul-
tiple issues. There are two issues, say propositions 1 and 2. Each voter’s private
values for the four possible bundles ∅� {1}� {2}, and {1�2} can be represented
as a four-dimensional type θ = (θ∅� θ1� θ2� θ12), where θA denotes the value for
bundle A. Voters’ types are independent and identically distributed with the
discrete distribution

θ =
⎧⎨
⎩
(δ�0�0�1) with probability 1 − 2ε,
(1�0�0�0) with probability ε,
(0�1�0�0) with probability ε,

where δ�ε > 0 are arbitrarily small. With high probability 1 − 2ε, a voter wants
both issues to pass, but slightly prefers both issues to fail than to have either
issue pass alone. With small probability ε, a voter is either type (1�0�0�0) and
wants both issues to fail or type (0�1�0�0) and wants issue 1 to pass alone. In
either case, she is indifferent between her less preferred alternatives. It is a
dominant strategy for type (1�0�0�0) to vote down on both issues and for type
(0�1�0�0) to support issue 1 and vote against issue 2. The question is how type
(δ�0�0�1) should vote.

A natural conjecture is that type (δ�0�0�1) should vote up on both issues in
any large election. Then the conjectured equilibrium strategy s∗ as a function
of types is

s∗(δ�0�0�1)= {1�2}�
s∗(1�0�0�0)= ∅�
s∗(0�1�0�0)= {1}�

where s∗(θ) refers to the issues that type θ supports. When voters play this
strategy, both issues will have majority support in large elections, which is ef-
ficient. The suggested strategy might appear to be incentive compatible, since
(δ�0�0�1) should vote up for either issue when she is confident that the other
issue will pass.

However, the proposed strategy is not an equilibrium in large elections be-
cause the conditional probability that the residual issue passes is starkly dif-
ferent from the unconditional probability. Consider a voter deciding whether
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to support issue 1. She correctly reasons that her support only matters when
she is pivotal for issue 1. When the other votes on issue 1 are split, she is in the
unlikely state of the world where half of the other voters are of type (1�0�0�0),
since this is the only type who vote against issue 1. Moreover, in large elections,
there will be some voters of type (0�1�0�0). Then voters of type (δ�0�0�1)
comprise a strict minority. Since these are the only types who support issue 2,
this voter should conclude that issue 2 will surely fail whenever she is pivotal
for issue 1 in a large election. Therefore, type (δ�0�0�1) should vote down on
issue 1 because she prefers the bundle ∅ yielding utility δ to the bundle {1}
yielding utility 0. In fact, the only equilibrium in weakly undominated strate-
gies is for type (δ�0�0�1) to vote down on both issues, inducing the ex ante
inefficient social outcome of the empty bundle in large elections.3

Finally observe that had δ been equal to 0, then type (δ�0�0�1)= (0�0�0�1)
would have had a dominant strategy to vote up on both issues. In this case, the
suggested strategy where s∗(δ�0�0�1)= {1�2} would be an equilibrium and the
efficient bundle would be implemented in large elections. So a small amount of
nonseparability, that is, a slightly positive δ > 0, is enough to remove efficiency
and change the outcome of the election.

1.2. A Political Exposure Problem

The basic complication for elections with nonseparable issues is the wedge
between the unconditional probability that an issue will pass and the condi-
tional probability when a voter is pivotal on another issue. This resonates with
existing analyses of strategic voting on a single issue with interdependent val-
ues; for example, see Austen-Smith and Banks (1996) or Feddersen and Pe-
sendorfer (1997). In these models, being pivotal provides additional informa-
tion regarding other voters’ signals about an unknown state of the world. The
intuition for the “swing voter’s curse” is analogous to the importance of strate-
gic conditioning in common value auctions for a single item, where it leads to
the winner’s curse and strategic underbidding. In both single-object auctions
and single-issue elections with common values, strategic conditioning com-
plicates information aggregation and efficiency. This is because the expected
value of the object or the proposal is different when the player conditions on
being the winner of the auction or the pivotal voter of the election.

The intuition for multi-issue elections also has a relationship with auction
theory, but with a different branch. Here, the wedge is related to the exposure
problem in combinatorial auctions for multiple items, which exists even with
private values. Suppose two items are sold in separate auctions. Consider a bid-
der with complementary valuations who desires only the bundle of both items.

3A related example on voting over binary agendas is Ordeshook and Palfrey (1988). There,
being pivotal in the first round of a tournament changes the expected winner in later rounds. This
reasoning can lead to inefficient sequential equilibria in their model.
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She must bid in both auctions to have any chance of obtaining this package, but
she should recognize that doing so exposes her to the risk of losing the second
auction while winning the first, forcing her to pay for an undesired single item
bundle. Moreover, the unconditional probability of winning the second auction
is not appropriate in computing her exposure, but rather the conditional prob-
ability of winning the second auction assuming that she wins the first auction.
Likewise, a voter in an election who desires a bundle of two issues to pass, but
does not want either issue to pass alone, faces an exposure problem. In decid-
ing her vote for issue 1, she should consider whether issue 2 will pass, but also
condition this probability on the assumption that she is pivotal on issue 1.

This exposure problem disappears when values are separable across issues,
in which case each issue can be treated like a separate election. However, with
nonseparable preferences, the following intuitions from single-issue elections
break down. First, with one issue, voting sincerely for the preferred outcome
(pass or fail) is a weakly dominant strategy for every voter. In contrast, with
nonseparable preferences, voting sincerely is never an equilibrium. Instead, a
voter’s equilibrium strategy must correctly condition the other voters’ ballots
on the assumption that she is pivotal for some issue. Second, with a single
issue, there is a generic class of distributions over values for which the out-
come is predictable in large elections. We assume independent private values,
so the composition of preferences is known for large electorates. Nevertheless,
with multiples issues and nonseparable preferences, there exists a nontrivial
set of type distributions that generate unpredictable election outcomes. This
aggregate endogenous uncertainty exists despite the fact that there is no ag-
gregate primitive uncertainty in large elections. Third, the Condorcet winner
is always implemented in single-issue elections. With multiple issues, the Con-
dorcet winning bundle can fail to be the outcome of large elections. Instead,
additional assumptions will suffice for implementation of the Condorcet win-
ner.

1.3. Outline

The paper proceeds as follows. Immediately following is a review of related
literature. Section 2 introduces the Bayesian game of voting over multiple is-
sues. Section 3 shows the existence of equilibrium using two arguments. One
is topological and converts the infinite-dimensional fixed point problem over
strategies to a finite-dimensional problem over probabilities regarding which
issues a voter is pivotal for and which issues will pass irrespective of her vote.
This conversion yields later dividends in characterizing equilibrium. The sec-
ond argument assumes complementarity between issues and shows the exis-
tence of a monotone equilibrium, where types with a stronger preference for
passing more issues also vote for more issues. This proof relies on recent gen-
eral monotone existence results due to Reny (2011).

Section 4 presents a nonempty open set of densities that exhibit aggregate
uncertainty regarding the outcome of the election. Even though there is no
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uncertainty regarding the primitives of the model, unpredictability of the out-
comes is required to maintain incentives in equilibrium. This establishes that
predictability of outcomes is not a generic feature of large elections with mul-
tiple issues.

Section 5 uses the limit results to study the relationship between combina-
torial voting and the majority preference relation. While our example demon-
strates that the Condorcet winner is not generally the outcome of the election,
we provide sufficient conditions for implementation of the Condorcet winner.
Finally, we provide results that suggest that ordinal separability of the majority
preference relation is conducive to implementation of the Condorcet winner
and hence to predictability.

Section 6 concludes and reviews open questions. Proofs are collected in the
Appendix.

1.4. Related Literature

Several papers in political science recognize the potential problems intro-
duced by nonseparable preferences over multiple issues. Brams, Kilgour, and
Zwicker (1998) pointed out that the final set of approved issues may not match
any single submitted ballot, which they call the “paradox of multiple elec-
tions.”4 Lacy and Niou (2000) constructed an example with three strategic vot-
ers and complete information where the final outcome is not the Condorcet
winner. An empirical literature in political science documents nonseparable
preferences. A public opinion survey conducted by Lacy (2001) documents
nonseparable preferences by a large portion of respondents across pairs of
policy proposals. Our model enriches this literature in two directions. First,
while existing work focuses on sincere voting, we consider fully rational vot-
ers who vote strategically.5 Second, we introduce uncertainty regarding others’
preferences. Incomplete information is crucial with nonseparable preferences,
since the desired resolution of a particular issue depends on the uncertainty
regarding the resolution of other issues.

A natural application of our model is to simultaneous two-candidate elec-
tions for multiple political offices. Split tickets, such as those supporting a Re-
publican president but a Democratic legislator, are increasingly common and
constitute about a quarter of all ballots in recent presidential elections (Fio-
rina (2003, Figure 2-1)). Fiorina (2003) introduced the idea that voters have
an inherent preference for divided government as a means to moderate pol-
icy choices. In our model, such voters would treat offices as substitutes. These
preferences are studied in political science, where an active area of empirical

4The paradox was extended by Özkal-Sanver and Sanver (2006) and reinterpreted by Saari and
Sieberg (2001).

5The exceptions are the mentioned example by Lacy and Niou (2000) and a single-person
model of sequential survey responses by Lacy (2001).
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investigation is the preponderance of “cognitive Madisonians” who intention-
ally split tickets to check government power. The literature has not reached a
consensus on their importance, but at least some studies conclude that the
number is “small but large enough to affect election outcomes” (Mebane
(2000, p. 37)) or “over 20% of the electorate and maybe largely responsible for
observed patterns of division at the aggregate level” (Lewis-Beck and Nadeau
(2004, p. 97)).

Some papers provide formal models of ticket splitting. Alesina and Rosen-
thal (1996) presented a spatial model where voters split their ticket to moder-
ate policy location. Chari, Jones, and Marimon (1997) presented a fiscal model
where voters split tickets to increase local spending and restrain national taxa-
tion. These motivations provide foundations for nonseparable preferences, but
also restrict the implied preferences and thus the implied predictions; Alesina
and Rosenthal (1996) predicted that all split tickets in a particular election sup-
port the same candidates, while Chari, Jones, and Marimon (1997) predicted
that all split tickets support a conservative president and a liberal legislator.
While we are agnostic about the source of nonseparability, we allow arbitrary
preferences over the composition of government, for example, some voters
may have a desire for unified government, and predict the full spectrum of
split tickets. Finally, the existing models move directly to large elections with a
continuum of voters. While we examine limits as they tend large, the finite elec-
torates in this paper are essential to maintain the political exposure problem
in equilibrium.

Plurality rule over bundles is a potential alternative to combinatorial voting,
especially considering the large theoretical literature on plurality rule. While
more specific comparisons are made as results are presented in the paper, we
now highlight some differences between large elections under combinatorial
rule and plurality rule. We focus on plurality rule as an alternative aggregation
scheme because it shares the same space of ballots or messages as combina-
torial voting.6 As originally observed by Palfrey (1989), limit equilibria of plu-
rality rule typically satisfy Duverger’s law and involve two active candidates.7
These equilibria have qualitatively different features than the limit equilibria
of this model. First, predictability of the outcome is a generic feature of any
Duvergerian equilibrium under plurality rule. There are multiple Duvergerian
equilibria involving different pairs of candidates, but for any fixed equilibrium,
the outcome is determinate for a generic set of type distributions. In contrast,

6In our setting, the set of candidates is the power set 2X of bundles. Combinatorial rule is
not a scoring rule. In particular, combinatorial voting invokes the structure of the power set in
an essential way, while this structure is irrelevant to a scoring rule. Moreover, general scoring
rules require larger message spaces than combinatorial rule. For example, in this environment
approval voting requires that the space of ballots be the power set of the power set or 22X . General
treatments of scoring rules can be found in Myerson and Weber (1993) and Myerson (2002).

7Fey (1997) showed that only the Duvergerian limit equilibria are stable in a variety of senses.
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combinatorial voting can yield unpredictability for an open set of type distri-
butions. Second, plurality rule always has at least one limit equilibrium which
selects a Condorcet winner when the winner exists. As the example shows, com-
binatorial rule can fail to have any limit equilibria which implement the Con-
dorcet winner. Finally, in our view the strategic considerations under plurality
rule are relatively simpler than under combinatorial rule. Once an equilibrium
is fixed, each voter should support whichever of the two active candidates she
prefers. In our model, if the voter assumes that she is pivotal for some issue,
she must then condition her conjecture regarding the residual issues on that
pivot event.

One feature common to both plurality rule and combinatorial rule is that
the distribution of types conditional on being pivotal diverges from the ex ante
distribution of types. Other multi-candidate models with independent private
values and incomplete information also share this feature. The most closely
related in terms of the strategic intuitions are models that have a dynamic ele-
ment to the aggregation. In such models, the wedge between the unconditional
probability of an event and its probability conditional on being pivotal can also
lead to inefficiencies. The earliest example of which we are aware is the treat-
ment of strategic voting on dynamic agendas by Ordeshook and Palfrey (1988);
there the winner between alternatives a and b in the first round faces alterna-
tive c in the second round. With incomplete information, being pivotal for a
against b in the first round can reverse the expected resolution of a vote be-
tween a and c. In particular, as in our initial example, this wedge can prevent
a Condorcet winner from being the final outcome of the tournament. While
a wedge between pivotal and unconditional probabilities appears in existing
work, to our knowledge this paper is the first to observe the wedge between
pivotal and unconditional probabilities in the context of the exposure problem
and nonseparabilities in multi-issue elections.

2. MODEL

There is a finite and odd set of I voters. The voters decide a finite set of
binary issues X , whose power set is denoted X . Each voter i submits a ballot
Ai ∈ X , with x ∈ Ai meaning that i votes “up” on issue x and with y /∈ Ai that
she votes “down” on y . An issue can be a policy referendum which will pass
or fail, or an elected office decided between two political parties where one is
labeled “up.” The social outcome F(A1� � � � �AI) ∈ X is decided by what we
call combinatorial rule:

F(A1� � � � �AI)= {x ∈X : #{i ∈ I :x ∈ Ai} > I/2}�
Each voter knows her own private values over outcomes, but is uncertain

about the others’ values. Her type is drawn from the (normalized) type space
Θi = [0�1]#X , with typical element θi. Then θi(A) denotes type θi’s utility for



96 D. S. AHN AND S. OLIVEROS

all the issues in A passing and all those in its complement failing: so θi’s util-
ity for the profile of ballots (A1� � � � �AI) is θi(F(A1� � � � �AI)). Let Θ =∏

i Θi

denote the space of all type profiles and let Θ−i =∏
j �=i Θj . Voters are identical

ex ante, with their types realized independently from the distribution μ ∈ ΔΘ.
We assume that μ admits a density. When it engenders no confusion, we also
let μ denote the product distribution over the profile of types.

A (pure) strategy si for each voter i is a measurable function si :Θi → X
assigning a ballot to each of her types. The space of strategies for each voter is
Si. The space of strategy profiles is S =∏

i Si, and let S−i =∏
j �=i Sj . Voter i’s ex

ante expected utility for the joint strategy profile s(θ) = (s1(θ1)� � � � � sI(θI)) is
EUi(s) = ∫

Θ
θi(F(s(θ)))dμ.

DEFINITION 1: A strategy profile s∗ is a voting equilibrium if it is a symmetric
Bayesian Nash equilibrium in weakly undominated strategies.

A voter’s values might exhibit certain structural characteristics. For exam-
ple, she might view the issues as complements, as substitutes, or as having no
interaction. These are captured by the following definitions.

DEFINITION 2: θi is supermodular if, for all A�B ∈ X ,

θi(A∪B)+ θi(A∩B)≥ θi(A)+ θi(B)�

θi is submodular if, for all A�B ∈ X ,

θi(A∪B)+ θi(A∩B)≤ θi(A)+ θi(B)�

θi is additively separable if it is both supermodular and submodular.

As mentioned in the Introduction, sincere voting is not an equilibrium when
μ has full support. The result has a simple intuition. Optimal voting is deter-
mined cardinally by utility differences across bundles, while sincere voting is
determined ordinally by the best bundle.

PROPOSITION 1: If each μ admits a density with full support, then sincere vot-
ing, where

s(θ)= arg max
A

θ(A)�

is not a voting equilibrium.

3. EXISTENCE OF EQUILIBRIUM

We begin by proving the existence of voting equilibria. We present topologi-
cal and lattice-theoretic arguments for existence.
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3.1. General Existence of Equilibrium

PROPOSITION 2: Suppose μi admits a density function with full support. There
exists a voting equilibrium s∗.8

The proof lifts the infinite-dimensional problem of finding a fixed point
in the space of strategy profiles to a finite-dimensional space of probabili-
ties. Specifically, the strategically relevant information for voter i is summa-
rized as the set of issues C for which voter i is pivotal and the set of issues
D which will pass irrespective of voter i’s ballot. The outcome of submit-
ting the ballot A is that those issues which she supports and on which she is
pivotal will pass, along with those issues which will pass no matter how she
votes: [A ∩ C] ∪ D. The relevant uncertainty can therefore be summarized as
a probability over the ordered disjoint pairs of subsets of X , which we write as
D = {(C�D) ∈ X × X :C ∩ D = ∅}. Each strategy s ∈ S induces a probability
π(s) ∈ ΔD over D, where ΔD denotes the space of probabilities on D. The
function π :S → ΔD is continuous.9

In turn, each belief P ∈ ΔD over these ordered pairs induces an optimal bal-
lot [σ(P)](θ) ∈ X for type θ, which is the ballot A maximizing the expected
utility

∑
D θ([A ∩ C] ∪ D) · P(C�D). Observe that this expression is a linear

function with coefficients P(C�D) on θ. Then the types for which A is an opti-
mal ballot are those where

∑
D θ(A∩C ∪D) ·P(C�D) ≥∑

D θ([A′ ∩C]∪D) ·
P(C�D), which defines a finite intersection of half-spaces. Small changes in P
induce small geometric changes in these half-spaces. The density assumption
implies that these small geometric changes also have small measure, proving
that σ :ΔD → S is continuous.

Before applying a fixed point theorem, we need to restrict attention to un-
dominated strategies. Consider a weakly undominated strategy s. The induced
probability π(s) that a voter will be pivotal for the issues in C while the is-
sues in D pass is at least as large as the probability that half the other voters
submit C ∪ D while the other half submits D. By the full support assumption,
there is a strictly positive probability any voter submits C, C ∪D, and D in any
weakly undominated strategy. Since types are independent, we conclude that
[π(s)](C�D) is strictly positive because there is some chance that half the vot-
ers submit D while the other half submit C∪D. Then the probabilities induced
by weakly undominated strategies SU live in a compact subsimplex ΔU in the in-
terior of the entire simplex ΔD: π(SU) ⊆ ΔU ⊆ int(ΔD). Since all strategically
relevant events (C�D) have strictly positive probability in ΔU , the induced best

8The full support assumption can be replaced with a weaker assumption that guarantees every
ballot is submitted with positive probability. For example, if for every bundle A there is a positive
measure of types whose unique weakly undominated strategy is to submit the ballot A, then
equilibrium would exist. Alternatively, assuming a set of naive voters who submit the ballot A in
all circumstances would also guarantee an equilibrium among the sophisticated voters.

9The topology on S is defined by the distance d(s� s′)= μ({θ : s(θ) �= s′(θ)}).
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replies must be weakly undominated. The restriction π ◦σ : [ΔU] → SU → [ΔU ]
defines a continuous function from a compact subset of a finite-dimensional
space to itself. By Brower’s theorem, there exists a fixed point P∗ with strictly
positive probabilities on all pairs. Then σ(P∗) is a Bayesian Nash equilibrium
in weakly undominated strategies.

The key insight, moving from the infinite-dimensional space of strategies to
a finite-dimensional space of probabilities, is adapted from Oliveros (2009).
The broad approach of reducing the fixed point problem to a finite simplex
is reminiscent of the distributional approach of Radner and Rosenthal (1982)
and Milgrom and Weber (1985). However, these earlier results are not imme-
diately applicable given the restriction to weakly undominated strategies. As
an important benefit, expressing equilibrium as a fixed point of probabilities
over pivot and passing events enables sharper characterizations of equilibria in
large elections.

3.2. Existence of Monotone Equilibrium

With complementary issues, equilibrium can be sharpened to be monotone
in the increasing differences order: those types who have a stronger prefer-
ence for more issues passing also support more issues. Monotonicity of ballots
with respect to types is useful for empirical identification. Monotonicity justi-
fies the inference that those who are observed to vote for more issues have a
preference for larger bundles. For example, suppose X is a number of political
offices and voting up corresponds to voting for the Republican candidate while
voting down corresponds to voting for the Democratic candidate. If all voters
prefer to have politicians of the same party in government, then we can infer
that those who vote for more Republicans are more right-leaning than those
who vote for fewer Republicans. However, if some voters are concerned with
balancing party representation, that is, if issues are substitutes, then this infer-
ence is no longer justified, as it confounds ideological centrism with a desire
for party balance.

Consider the partial order ≥ on types defined as θ′ ≥ θ if the inequality
θ′(A) − θ′(B) ≥ θ(A) − θ(B) holds for all A ⊇ B. This order captures the
notion that a larger type θ′ has a uniformly stronger preference for more issues
to pass, as the difference in her utility between a larger bundle A and a smaller
bundle B always dominates that difference for a smaller type θ. If up is coded
as a Republican candidate for that office, the difference in utility between a
more Republican (A) and a less Republican (B) legislature is greater for a
right-leaning type θ′ then it is for a left-leaning type θ. The following propo-
sition demonstrates that assuming issues are complementary, that is, that a
more unified legislature is more desirable, suffices for the desired inference
that more ideologically conservative voters will support more Republican can-
didates.
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PROPOSITION 3: Suppose μ admits a density whose support is the set of all
supermodular type profiles. Define the increasing differences order ≥ on Θ by θ′ ≥
θ if

θ′(A)− θ′(B)≥ θ(A)− θ(B) ∀A ⊇ B�

Then there exists a monotone voting equilibrium s∗, where s∗(θ′)⊇ s∗(θ) whenever
θ′ ≥ θ.

Note that the election is not a supermodular game. Sufficiently large strate-
gies by all voters guarantee that no voter is ever pivotal on any issue and elim-
inate the difference in interim utility between any of two strategies. Moreover,
the restriction to weakly undominated strategies is important, since the triv-
ial equilibrium where all types submit the same ballot is monotone. To handle
these considerations, the proof relies on recent monotone existence results by
Reny (2011) that improve earlier theorems by Athey (2001) and McAdams
(2003) by allowing for general orders on types, such as the increasing differ-
ences order, and for restrictions on strategies, such as the exclusion of weakly
dominated strategies.

4. UNPREDICTABILITY

We specialize to the case with two issues for the remainder of the paper.
This section studies the predictability of outcomes in combinatorial elec-

tions. Since the distribution μ over types is fixed, there is no aggregate un-
certainty in large elections about the proportion of types in the population.
Nevertheless, we prove that the outcomes of large elections remain uncertain
for a nontrivial set of type distributions. This unpredictability is not an artifact
of primitive statistical uncertainty, but rather is necessary to maintain incen-
tives in equilibrium.10

The unpredictability of outcomes under combinatorial rule is qualitatively
distinct from the indeterminacy of equilibrium under plurality rule. Under
plurality rule, there are multiple limit equilibria where different pairs of candi-
dates are active. But fixing any equilibrium selection, the outcome is generically
certain. In contrast, the unpredictability of outcomes under combinatorial rule
is not due to multiplicity of equilibria. Rather, for all equilibria the probability
of an issue passing is uniformly bounded away from 0 or 1.

Unpredictability also contrasts nonseparable preferences from separable
preferences in our model. When there is only a single issue or when pref-
erences are separable, predictable outcomes are relatively generic. Excepting

10In a two-period version of their model with aggregate uncertainty regarding the distribu-
tion of preference, Alesina and Rosenthal (1996) predicted uncertain presidential winners for a
nontrivial range of parameters. However, this assumes primitive uncertainty on the distribution
of preferences. The unpredictability disappears in their basic model where the distribution of
preferences is common knowledge.
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knife-edge distributions where voters are equally likely to prefer passing and
failing, the outcome of each issue is certain in large elections. Unpredictability
in election outcomes is therefore difficult to reconcile with a model of cost-
less voting with private separable values. With nonseparable preferences, the
predictability of large elections depends on the type distribution μ.

Given a sequence of strategies, the following definition explains whether an
issue becomes certain to pass or fail at the limit, that is, whether the outcome
of that issue is predictable in large elections.

DEFINITION 3: Consider a sequence of strategies sI → s. Issue 1 is uncondi-
tionally certain to pass (fail) if

P
(

#{i : 1 ∈ s∗
I (θi)}> (<)

I

2

)
→ 1�

If every issue x= 1�2 is either certain to pass or to fail, we write that the set

A= {x ∈ X :x is certain to pass}
is a limit outcome of the election. If an issue x = 1�2 is neither certain to pass
nor to fail, we write that issue x is unpredictable.

We focus on the following set of densities.

EXAMPLE 1: Pick some small ε > 0.11 Consider the class of densities C which
satisfy the following restrictions:

1 − ε

4
<μ(θ12 ≥ θ1 ≥ θ∅ ≥ θ2) <

1
4
�

1 − ε

4
<μ(θ1 ≥ θ∅ ≥ θ2 ≥ θ12) <

1
4
�

1 − ε

4
<μ(θ∅ ≥ θ2 ≥ θ12 ≥ θ1) <

1
4
�

1 − ε

4
<μ(θ2 ≥ θ12 ≥ θ1 ≥ θ∅) <

1
4
�

This class is open and nonempty.12

For all sequences of equilibria for all distributions in C , the probability that
either issue will pass is uniformly bounded away from 0 or 1. In other words,

11In fact, ε can be as large as 1
16 .

12It is open in both the sup and weak convergence topologies.
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even given the exact distribution μ ∈ C and an arbitrarily large number of vot-
ers that are independently drawn from that distribution, an observer would not
be able to predict the outcome of either issue.

PROPOSITION 4: Consider any density in C . For every sequence of equilibria,
both issues are unpredictable.

We now sketch the proof of Proposition 4. Many of the statistical details that
are potentially useful for future applications are included in Appendix A.4.

As the introductory example demonstrated, the conditional probability is
the strategically relevant one and can sharply diverge from the unconditional
probability. A main objective in analyzing combinatorial elections is to connect
the unconditional probabilities, which are of empirical relevance to the analyst,
to the conditional probabilities, which are of strategic relevance to the voters.
An important statistic for equilibrium analysis is the conditional probability
that issue 1 passes when a voter is pivotal for issue 2. Consider the following
definition.

DEFINITION 4: Fix a sequence of strategies sI → s. Issue 1 is conditionally
certain to pass (fail) if:

P
(

#{j �= i : 1 ∈ sI(θj)}> (<)
I − 1

2

∣∣∣∣#{j �= i : 2 ∈ sI(θj)} = I − 1
2

)
(1)

→ 1�

The bundle A ⊆ {1�2} is conditionally certain if x is conditionally certain to pass
at x′ �= x for every x ∈ A and x is conditionally certain to fail at x′ for every
x /∈ A. If each issue is conditionally certain to pass or to fail, then we simply
write that the limit equilibrium exhibits conditional certainty. If it does not ex-
hibit conditional certainty, we write that it exhibits conditional uncertainty.

When the conditional probabilities converge to 1 or 0, the analysis of limit
equilibria simplifies because optimal ballots are determined from a few ordinal
inequalities. In particular, the equilibrium strategy can be decided issue by is-
sue. For example, if issue 2 is conditionally certain to pass, then a voter should
support issue 1 if and only if she prefers {1�2} to {2}. This is because the prob-
ability of being jointly pivotal for both issues vanishes much more quickly than
the probability of being pivotal for either issue alone, by virtue of the full sup-
port assumption that ensures each ballot is played with strictly positive proba-
bility. However, the conditional probability of an issue passing is defined with
respect to endogenous equilibrium strategies. So the first task in the proof is to
provide primitive conditions that are necessary and sufficient for conditional
certainty.
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As a starting point, suppose that the first voter is pivotal for issue 1. In
this case, the probability that another voter supports issue 1 is exactly: P(1 ∈
s∗(θ)) = 1

2 . So the conditional probability that another voter supports issue 2 is

P(1 ∈ s∗(θ))× P(2 ∈ s∗(θ)|1 ∈ s∗(θ))

+ P(1 /∈ s∗(θ))× P(2 ∈ s∗(θ)|1 /∈ s∗(θ))

= 1
2

× P(2 ∈ s∗(θ)|1 ∈ s∗(θ))+ 1
2

× P(2 ∈ s∗(θ)|1 /∈ s∗(θ))�

If this quantity is strictly greater than 1
2 , then a simple application of the tri-

angular law of large numbers would imply that issue 2 will pass whenever a
voter is pivotal for issue 1, that is, that issue 2 is conditionally certain to pass.
However, a straightforward application is erroneous, because the other votes,
while unconditionally independent, are correlated when a voter is pivotal. The
other votes on issue 1 are drawn without replacement from an urn that con-
tains equal numbers of yes and no votes. If supporting issue 1 and issue 2 are
correlated in the equilibrium strategy, this then induces correlation across the
votes on issue 2.

To handle the statistical dependence, we divide the set of voters into two sub-
samples: the first consists of those who supported issue 1; the second consists
of those who voted against issue 1. Within each subsample, the ballots are in-
dependent, because the dependence was introduced through the split count on
issue 1. Since we assume every voter in the first subsample supported issue 1,
this dependence is removed. We can then apply the law of large numbers to the
first subsample, which is a triangular sequence of binary variables with success
probability approaching P(2 ∈ s∗(θ)|1 ∈ s∗(θ)). In particular, the number of
votes for issue 2, after dividing for the number I−1

2 of voters in the subsample,
will approach the success probability. Similarly, the normalized vote count for
issue 2 in the second subsample of voters that voted against issue 1 approaches
P(2 ∈ s∗(θ)|1 /∈ s∗(θ)). Then the fraction of support for issue 2 in the entire
sample is the average of these two numbers, namely the quantity highlighted
above. Thus, through a more involved argument, the desired implication is in-
deed true.

Given the characterization of best response through ordinal conditions,
some algebra delivers the characterization in Lemma 1, relating conditional
certainty to the primitive distribution μ over types. In particular, the prefer-
ence for {1�2} in relation to its neighboring bundles {1} and {2} determines
whether both issues are conditionally certain to pass.

LEMMA 1: If

μ[θ12 ≥ max{θ1� θ2}]
μ[θ12 ≤ min{θ1� θ2}] > max

{
μ[θ1 ≥ θ12 ≥ θ2]
μ[θ2 ≥ θ12 ≥ θ1] �

μ[θ2 ≥ θ12 ≥ θ1]
μ[θ1 ≥ θ12 ≥ θ1]

}
�(†)
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then there exists a sequence of equilibria s∗
I → s∗ such that {1�2} is conditionally

certain. Moreover, if there exists a sequence of equilibria s∗
I → s∗ such that {1�2}

is conditionally certain, then (†) holds weakly.13

The necessary weak inequality is violated by the construction of C : the frac-
tion μ(θ1≥θ12≥θ2)

μ(θ2≥θ12≥θ1)
is large because the denominator μ(θ1 ≥ θ12 ≥ θ2) is less than ε.

This means that both issues cannot be conditionally certain to pass. Consid-
ering the symmetry of the considered distributions, no outcome can be con-
ditionally certain, so at least one issue must be conditionally uncertain. We
then argue that conditional uncertainty on one issue implies conditional uncer-
tainty on the other. We do this by contradiction. As one case, assume issue 1
is conditionally uncertain while issue 2 is conditionally certain to pass. We can
parameterize the equilibrium decision to support issue 2 by some probability
α ∈ (0�1). In particular, in large elections a type θ will support issue 2 if and
only if

αθ12 + (1 − α)θ2 ≥ αθ1 + (1 − α)θ∅�

This identifies the sets of types who support and oppose issue 2 in large elec-
tions, and the conditional certainty of issue 2 to pass imposes an inequality on
the size of these sets that is parameterized by α. The construction of the set
C provides additional inequalities; for example, the probability that θ12 ≥ θ2

is at most 1
4 + ε. These inequalities turn out to be mutually inconsistent, re-

gardless of the selection of α. The other cases can be argued similarly to also
lead to contradictions. Therefore, conditional uncertainty on one issue must
be accompanied by conditional uncertainty on the other.

This proves that there must be conditional uncertainty on either issue when a
voter is pivotal on the other. But the relevant empirical uncertainty regards the
unconditional uncertainty of the vote count. The final step in the proof links
the two uncertainties: in particular, conditional uncertainty on both issues is
equivalent to unconditional uncertainty on both issues. To begin proving this
equivalence, we reapply the conditioning argument and split the voters into
two subsamples to work around the conditional dependence of the ballots and
allow application of the central limit theorem to the conditional distribution
of the vote count on issue 1. Thus, the conditional vote count on issue 1 can
be approximated by a normal cumulative distribution function. For there to be
conditional uncertainty on issue 1, the conditional probability that a random
voter supports issue 1 when there is a split on issue 2 must converge to 1

2 at a
rate faster than

√
I − 1:

√
I − 1

∣∣∣∣12μ(1 ∈ s∗
I (θ)|2 ∈ s∗

I (θ))+ 1
2
μ(1 ∈ s∗

I (θ)|2 /∈ s∗
I (θ))− 1

2

∣∣∣∣<∞�

13Consideration of the bundle {1�2} is without loss of generality, since any bundle can be ex-
pressed as {1�2} through appropriately reinterpreting up and down.
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Otherwise the distribution function will collapse too quickly and will be degen-
erately 0 or 1 at 1

2 . A similar rate of convergence must hold for the conditional
probability of supporting issue 2 given a split on issue 1.

To move from the conditional probabilities to the unconditional probabili-
ties, observe that the unconditional probability of a voter supporting issue 1 can
be written as a convex combination of the two conditional probabilities given
her vote, either up or down, on issue 2. This can also be viewed as a linear
equation. A similar linear equation can be written for the unconditional prob-
ability of a voter supporting issue 2 as a function of conditional probabilities.
Jointly, the pair defines a system of two linear equations with two unknowns,
namely the unconditional probabilities. The coefficients of the system are given
by the conditional probabilities. The resulting solutions for the unconditional
probabilities imply that root convergence to 1

2 for both conditional probabili-
ties is equivalent to root convergence to 1

2 for both unconditional probabilities.
In fact, conditional uncertainty on both issues is the only case where this con-
version is possible, because this guarantees that the coefficients of the linear
system are finite.

In general, characterizing unconditional uncertainty and limit outcomes
faces two obstacles. First, a full characterization of the relevant limits would
involve not only deciding whether there is convergence of equilibrium proba-
bilities, but also controlling the rate of this convergence. Moreover, while is is
relatively easier to control the conditional uncertainty of an issue, we are ulti-
mately interested in the unconditional uncertainty. There is a tight connection
between these concepts when both issues are uncertain, but this connection is
lost in all other cases. For example, we cannot rule out the possibility that both
issues are unconditionally certain while a single issue is conditionally uncertain.

In the example, the majority preference ranking exhibits two key features.
First, a Condorcet cycle exists. Second, the majority preference is not ordinally
separable. A majority prefers issue 2 to pass if issue 1 were to pass (μ(θ12 ≥
θ1) >

1
2 ), but also prefer issue 2 to fail if issue 1 were to fail (μ(θ∅ ≥ θ2) >

1
2 ). We explore the extent to which transitivity and separability of the majority
preference ensure predictability in Section 5.

5. CONDORCET ORDERS AND COMBINATORIAL RULE

In this section, we examine the Condorcet consistency of majority rule with
two issues. We make two remarks at the outset. Since we assume indepen-
dent private values, any Vickrey–Clarke–Groves mechanism will implement
the utilitarian outcome in dominant strategies. However, the communication
demands and the implied transfers of such mechanisms are often impractica-
ble. Considering mechanisms without transfers (such as in combinatorial or
plurality rule), implementing the Condorcet winner, when it exists, is a stan-
dard objective.
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Second, a distinguishing feature of combinatorial rule is its dependence on
the structure of the power set of bundles. This manifests itself in the earlier
characterizations, which all appeal exclusively to the relationship between a
bundle and its neighboring bundles (those that differ on exactly one issue).
Consequently, the more useful concept is not whether {1�2} is the Condorcet
winner, but whether {1�2} is preferred by a majority to both {1} and {2}. For
example, when Lemma 1 characterizes whether {1�2} is conditionally certain
to pass, the value of the empty set θ∅ is unmentioned. Again, this is because the
probability of being pivotal for both issues simultaneously vanishes at a much
faster rate than the probability of being pivotal for either issue alone.

We now define the Condorcet order, or majority rule preference. The max-
imal and minimal bundles of this order are the Condorcet winner and loser.
In addition, in combinatorial voting, local comparisons with neighboring bun-
dles are particularly important. So we also define a local Condorcet winner as
a bundle which is preferred by a majority to its neighbors; an analogous notion
defines a local Condorcet loser.

DEFINITION 5: The Condorcet order �C on X is defined by A �C B if μ(θA ≥
θB) >

1
2 .14 The bundle A ∈ X is a Condorcet winner A �C B for all B �=A. It is a

local Condorcet winner if A �C B whenever B �= A�X \A. The bundle A ∈ X is
a Condorcet loser if B �C A for all B �= A. It is a local Condorcet loser if B �C A
whenever B �=A�X \A.

A minimal criterion for ordinal efficiency is that when a Condorcet loser
exists, it is not the outcome of the election. When a Condorcet loser exists, it
cannot be a limit outcome of plurality rule for any sequence of equilibria. For
combinatorial voting, the Condorcet loser is generically not a limit outcome.

PROPOSITION 5: If A is a local Condorcet loser and �C is complete, then A is
not a limit outcome.

Proposition 5 proves that a Condorcet loser cannot be the determinate out-
come of the election. However, it remains open whether a Condorcet loser can
have strictly positive probability of being enacted; Proposition 5 only proves
that this probability is strictly less than 1.

The Condorcet criterion for ordinal efficiency is that an electoral mechanism
implements the Condorcet winner whenever such a winner exists. Under plu-
rality rule, there exists some limit equilibrium of plurality rule that selects the
Condorcet winner. However, plurality rule also yields other equilibria which
fail to pass the Condorcet winner, for example, when the Condorcet winner is

14The inequality θA ≥ θB is weak to maintain notational consistency with the rest of the paper.
Given the density assumption on μ, it is equivalent to the strict version, that is, A �C B if and
only if μ(θA > θB) >

1
2 .
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not one of the two active candidates. This logic for inefficiency similarly rid-
dles combinatorial rule, where some limit equilibria can miscoordinate on the
wrong outcome. But more troublingly, combinatorial voting can also fail to
yield any limit equilibrium that selects the Condorcet winner. So combinato-
rial rule generates other factors beyond miscoordination which can preclude
ordinal efficiency.

We now provide conditions that suffice for implementation of the Condorcet
winner, and hence for predictability. These results suggest that a quasisepara-
ble and transitive majority ranking might imply predictability, but the general
conjecture remains open. The difficulties in proving the general result are simi-
lar to those in completely characterizing limit outcomes in this model: the need
to control rates of convergence and the need to pass these rates from condi-
tional to unconditional probabilities.

The first result provides sufficient inequalities on the type distribution to
implement the Condorcet winner.

PROPOSITION 6: If {1�2} is a local Condorcet winner and

μ(θ12 ≥ θ1) >
μ(θ2 ≥ θ12 ≥ θ1)

μ(θ1 ≥ θ12 ≥ θ2)+μ(θ2 ≥ θ12 ≥ θ1)
�

μ(θ12 ≥ θ2) >
μ(θ1 ≥ θ12 ≥ θ2)

μ(θ1 ≥ θ12 ≥ θ2)+μ(θ2 ≥ θ12 ≥ θ1)
�

then {1�2} is a limit outcome.

To interpret the inequalities, consider the quantity on either side. On the
left hand side is the statistical electoral advantage that {1�2} enjoys against its
neighbor {1} or {2}. The right hand side is a ratio which measures, conditional
on {1�2} being between its neighbors, the likelihood that the most preferred
bundle among them is the opposite neighbor. This ratio is close to 1 if, for
example, the likelihood that θ2 ≥ θ12 ≥ θ1 is much larger than θ2 ≥ θ12 ≥ θ1.
This reflects a local asymmetry across the bundle {1�2} and its neighbors. So
two factors will make the sufficient inequalities more likely to carry:

(i) Local electoral advantage, that is, a large proportion of the population
favors the bundle {1�2} to either of its neighbors (this increases the quantities
on the left hand sides).

(ii) Local symmetry, that is, the distribution of rankings treats the two
neighbors as nearly identical (this decreases the quantities on the right hand
sides).

Proposition 6 is actually a special case of the following more generally useful
result.

LEMMA 2: Suppose {1�2} is a local Condorcet winner. If issue 1 (or issue 2) is
conditionally certain to pass, then {1�2} is a limit outcome.
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Contrapositively, Lemma 2 implies that for the Condorcet winner to fail, it
must be the case that both issues conditionally disagree with the winner. Propo-
sition 6 follows from this implication because the inequalities suffice for both
issues to be conditionally certain to pass. This is stronger than required: having
either issue conditionally certain to pass would ensure Condorcet consistency.

Recall that Example 1, which is an open set of distributions with unpre-
dictable election outcomes, had two features. The first is the lack of a Con-
dorcet winner. The second is that the Condorcet order was not separable; a
majority preferred issue 2 to pass if issue 1 were to pass, but also preferred
issue 2 if issue 1 were to fail. We now examine whether excluding these two
pathologies, cyclicity and nonseparability of the Condorcet order, generates
predictability.15 We first introduce an ordinal definition of separability, since
the cardinal notion of additive separability is not sensible for the majority rank-
ing.

DEFINITION 6: A binary relation � on X is quasiseparable if

A� A∩B ⇐⇒ A∪B � B�16

Quasiseparability means that the preference for issue 1 to pass is independent
of the resolution of issue 2 and vice versa. When �C is a quasiseparable weak
order, conditional certainty of any bundle, even a bundle that is not the Con-
dorcet winner, is sufficient for the Condorcet winner to be the outcome of the
election.

PROPOSITION 7: Suppose �C is quasiseparable and there is conditional cer-
tainty on both issues. If {1�2} is the Condorcet winner, then both issues are condi-
tionally certain to pass and {1�2} is a limit outcome.17

While conditional certainty is not a statement on primitives, the hypothesis
of Proposition 7 can be converted to primitive statements through the charac-
terization in Lemma 1.

There are two observations in proving Proposition 7. This first observation
is that if the Condorcet ranking is quasiseparable and {1�2} is the Condorcet
winner, then its complement ∅ must be the Condorcet loser. The second ob-
servation is that a Condorcet loser cannot be conditionally certain. Then since

15An open question is whether the existence of a Condorcet winner, by itself, implies pre-
dictability. Note that this is different than the question of Condorcet consistency; in the introduc-
tory example, the Condorcet winner {1�2} fails but the outcome of ∅ is still predictable.

16This is equivalent to the relation being quasi-submodular and quasi-supermodular in the set
containment order.

17We cannot conclude that the Condorcet winner is the unique limit outcome because there
could be other limit equilibria without conditional certainty.
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both issues cannot be conditionally certain to fail, one issue must be condition-
ally certain to pass. However, in the proof of Proposition 7, this was shown to
be enough to insure that {1�2} is conditionally certain whenever it is a Con-
dorcet winner.

What is particularly appealing about the equilibria implied in Proposition 7
is that they require little strategic sophistication by the voters. This is because
the conditional and unconditional outcomes of the issues are equivalent. So if
a voter submits her optimal ballot assuming that the residual issue will pass or
fail according to sincere poll data, then she will be submitting her equilibrium
ballot.

One condition that pairs with quasiseparability to ensure Condorcet consis-
tency is common knowledge of supermodularity. So if all voters agree that the
issues are complements, then a quasiseparable �C suffices to make the Con-
dorcet winner a limit outcome of the election. In this case, we can also con-
clude that the Condorcet winner is the unique outcome of the election, across
all limit equilibria.

PROPOSITION 8: Suppose �C is quasiseparable and the support of μ is the set
of supermodular (or submodular) types. If A is a Condorcet winner, then A is the
unique limit outcome.

Consider the supermodular case. If either {1} or {2} is the Condorcet winner,
supermodularity by itself, without quasiseparability, ensures Condorcet consis-
tency. If {1�2} is the Condorcet winner, then quasiseparability of the majority
ranking implies that its complement ∅ is the Condorcet loser. So {1} �C ∅, that
is, μ(θ1 ≥ θ∅) > 1

2 . Under supermodularity, we prove that this inequality im-
plies that issue 1 is (unconditionally) certain to pass. A symmetric argument
proves that issue 2 is also certain to pass. Thus {1�2} is the limit outcome of
the election. An analogous argument applies when ∅ is the winner.

One attractive consequence of supermodularity is the uniqueness of the
Condorcet winner as the outcome of the election. When the majority ranking
is quasiseparable and issues are complementary, combinatorial voting avoids
the coordination problems that are endemic to plurality rule.

6. CONCLUSION

This paper introduced and analyzed a model of elections with nonseparable
preferences over multiple issues. We provided topological and lattice-theoretic
proofs for the existence of equilibrium. Predictable outcomes are not a generic
feature of large elections. While the Condorcet winner is not generally the
outcome of the multi-issue elections, we provided sufficient conditions for its
implementation. We conclude by posing some open questions.

Multi-issue elections induce a political exposure problem that is analogous
to the exposure problem in multiunit auctions. The political exposure problem
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was at the core of our strategic analysis. We assumed that voters understand
this exposure and that they correctly condition the exposure on being pivotal
for some issue. Alternative assumptions regarding the strategic sophistication
of voters will generate different predictions.

An unsettled question is whether the existence of a Condorcet winner im-
plies predictability. We were not able to construct a distribution with both a
Condorcet winner and unpredictability; neither were we able to prove that
the existence of a Condorcet winner guarantees predictability. Relatedly, does
quasiseparability of the majority ranking imply Condorcet consistency? We re-
ported several results that suggest a positive answer, but were unable to pro-
vide a general proof.

Our results regarding predictability and ordinal efficiency were restricted
to the setting with two issues. While two issues were enough to construct the
negative counterexamples, it remains open whether our positive results have
analogs with three or more issues. We suspect that there is an extension of
our methods—comparing bundles that are connected in the set-containment
lattice—to more general settings.

In conjunction with existing results on plurality rule, our findings provide an
initial comparison of combinatorial voting and plurality rule. Plurality rule al-
ways has an equilibrium which selects a Condorcet winner, but the multiplicity
of equilibria introduces a coordination problem. Like plurality rule, combi-
natorial voting can also yield multiple equilibria. More distinctively, however,
combinatorial voting can fail to have any equilibria which implement the Con-
dorcet winner. On the other hand, in some cases the Condorcet winner is the
unique limit outcome across equilibria of combinatorial rule, eliminating the
coordination problem altogether. Our general understanding of the compari-
son is still incomplete.

The worst-case distributions for combinatorial voting can be very inefficient.
Why is the institution so pervasive despite its theoretical inefficiency? We took
the set of issues on the ballot as exogenous. In reality, the set of referendums
or initiatives is a consequence of strategic decisions by political agents. For
example, a new substitute measure can be introduced to siphon votes away
from an existing measure or two complementary policies can be bundled as a
single referendum. The ubiquity of combinatorial voting might be due to the
considered introduction or bundling of issues. If agents anticipate the electoral
consequences of their decisions, our model provides a first step in the analysis
of strategic ballot design.

APPENDIX

A.1. Proof of Proposition 2

Note that, contrary to the order of presentation in the main text, we prove
Proposition 1 immediately after the proof of Proposition 2.
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We first verify that every undominated strategy assigns an open set of types
to each ballot. Additive separability is too strong for this purpose because the
set of additively separable types is Lebesgue null. This motivates the following
weaker notion of separability:

DEFINITION 7: The type θ is quasiseparable if

θ(A) ≥ [>]θ(A∩B) ⇐⇒ θ(A∪B) ≥ [>]θ(B)�
When θ is quasiseparable, the voter’s preference for whether any issue x is

voted up or down is invariant to which of the other issues in A\ {x} pass or fail.
The following observation was also made by Lacy and Niou (2000, Result 4).

LEMMA 3: Suppose θ is quasiseparable and A∗(θ) = arg maxA∈X θ(A) is
unique. Then s(θ)=A∗(θ) whenever s is weakly undominated.

PROOF: Suppose θ is quasiseparable and A∗ = A∗(θ) is unique. We first
prove that if x ∈ A∗, then s is weakly dominated whenever x /∈ s(θ). Since
θ(A∗) > θ(A∗ \ {x}), we have θ({x}) > θ(∅). Consider any strategy s where
x /∈ s(θ). Compare this to the strategy s′(θ) = s(θ) ∪ {x} for θ and equal to s
for all other types. Now, for any fixed ballot profile A−i for the other voters,
either i is pivotal for issue x or is not. If not, then the same set of issues passes
under both strategies, so there is no loss of utility to θ. If she is pivotal on x,
then the set of issues F(s(θ)�A) ∪ {x} passes, which leaves her strictly better
off by quasiseparability. So s is weakly dominated.

Similarly, if x /∈ A∗, then s is weakly dominated whenever x ∈ s(θ). There-
fore, A∗ = s(θ) for every weakly undominated strategy s. Q.E.D.

We now begin the proof of existence. We endow each voter’s strategy space
Si with the topology induced by the distance d(si� s

′
i) = μi({θi : si(θi) �= s′

i(θi)})
and endow the space of strategy profiles S with the product topology.18 For a
fixed strategy profile s, let the function Gs−i = (G

s−i

0 �G
s−i
+ ) :Θ−i → X × X be

defined by

G
s−i

0 (θ−i)=
{
x ∈X : #{j �= i :x ∈ sj(θj)} = I − 1

2

}
�

that is, the set of issues where voter i is pivotal, and

G
s−i
+ (θ−i)=

{
x ∈X : #{j �= i :x ∈ sj(θj)}> I − 1

2

}
�

18To be precise, this is defined over equivalence classes of strategies whose differences are μi

null.
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that is, the set of issues which pass irrespective of voter i’s ballot. Then, for type
θi, her utility for a fixed ballot profile (A1� � � � �AI) is θi([Ai ∩ G

A−i

0 ] ∪ G
A−i
+ ),

that is, the union of two sets: first, the set of issues where she is pivotal and she
votes up; second, the set of issues which are passed irrespective of her ballot.
Let D ⊆ X × X denote the space of ordered disjoint pairs of sets of issues,
D = {(C�D) ∈ X × X :C ∩ D = ∅}. For a type θi, her expected utility for a
strategy profile s is∑

(C�D)∈D

θi([si ∩C] ∪D)×μ−i([Gs−i]−1(C�D))�

An important observation is that the type’s expected utility for a ballot de-
pends only on her belief about for which issues she will be pivotal and
which issues will pass irrespective of her ballot. Let ΔD denote the proba-
bility distributions over D. For P�P ′ ∈ ΔD, define the sup metric ‖P − P ′‖ =
max(C�D)∈D |P(C�D)− P ′(C�D)|.

Define the probability πi(s) ∈ ΔD by

[πi(s)](C�D) = μ−i([Gs−i]−1(C�D))�(2)

In words, [πi(s)](C�D) is the probability, from voter i’s perspective, that she
will be pivotal on the issues in C and that the issues in D will pass no matter
how she votes, given that the strategy s is being played by the other voters. Fix
(C�D) ∈ D. If sj is weakly undominated, by Lemma 3 there exists some qua-
siseparable type θj for whom sj(θj)=D. Moreover, these conditions are satis-
fied in an open neighborhood UD of θi. By the full support assumption, there
is some strictly positive probability μj(U

D) > 0 of a type for j with sj(U
D)= D

and, similarly, μC∪D
j of a set of types UC∪D for which sj(U

C∪D) = C ∪ D. Enu-
merate I \ {i} = {j1� � � � � jI−1}. By independence of μ across voters, for any
weakly undominated strategy profile, the joint probability that D is submitted
for the first I−1

2 other voters and C ∪ D is submitted by the second I−1
2 other

voters is at least

Li(C�D) =
(I−1)/2∏
k=1

μD
jk

×
I−1∏

k=(I+1)/2

μC∪D
jk

> 0�

Thus [πi(s)](C�D) ≥ Li(C�D) for all (C�D) ∈ D, whenever s is weakly un-
dominated. Let

L= min{Li(C�D) : i ∈ I� (C�D) ∈ D}
and define the compact convex subset of probabilities

ΔU =
{
P ∈ ΔD : min

(C�D)∈D
P(C�D) ≥L

}
�
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Letting SU denote the space of weakly undominated strategy profiles, we can
consider the function πi :SU → ΔU . By independence of μ,

[πi(s)](C�D) = μ−i([Gs−i]−1(C�D))

=
∑

{A−i∈X I−1 : G
A−i
i =(C�D)}

μ−i({θ−i : s−i(θ−i) =A−i})

=
∑

{A−i∈X I−1 : G
A−i
i =(C�D)}

[∏
j �=i

μj

({θj : sj(θj)= [A−i]j}
)]
�

The last expression is a sum of products of probabilities μj({θj : sj(θj) =
[A−i]j}) which, considered as functions dependent on SU , are immediately con-
tinuous in the defined topology on SU . Hence πi is continuous. Then the func-
tion π :SU → [ΔU ]I defined by π(s) = (π1(s)� � � � �πI(s)) is continuous.

Fix a belief Pi ∈ ΔU . Then the set of types for voter i for which it is optimal
to submit the ballot Ai is defined by

Ai(Pi) =
⋂
A′

i∈X

{
θi :

∑
D

θi([Ai ∩C] ∪D)× Pi(C�D)

≥
∑

D

θi([A′
i ∩C] ∪D)× Pi(C�D)

}
�

Fix an enumeration X = {A1� � � � �A|X |} and define the function σi :ΔD → S
as follows. Let A0 denote the set of types which are not quasiseparable or do
not have a unique arg maxA∈X θi(A). For all θi ∈ Ak(Pi) \ [A0 ∪ · · · ∪ Ak−1],
let [σi(Pi)](θi) = Ak.19 Since Pi is in the interior of ΔD, σi(Pi) is not weakly
dominated: σi(Pi) ∈ SU

i . Observe that the set of types θi which play Ai is a
convex polytope (with open and closed faces).

We now prove that σi :ΔU → SU
i is continuous. Since Pi ∈ ΔU is strictly

bounded away from zero, the set of types which have multiple optimal bal-
lots given belief Pi is of strictly lower dimension than Θi, hence is μi null since
μi admits a density. Then μi(Ai(Pi) \ [σ(Pi)]−1(Ai))= 0, so it suffices to show
that μi(Ai(Pi)) is continuous in Pi. Fix ε > 0. The set Ai(Pi) is nonempty,
since there exists a nonempty neighborhood of quasiseparable types which
submit Ai in any undominated strategy. By outer regularity of μi, the prob-
ability of the closed set Ai(Pi) is arbitrarily well approximated by the proba-
bilities of its neighborhoods (cf. Parthasarathy (1967, Theorem 1.2)), that is,

19This construction is to avoid ambiguous assignments on the μi-null set of types with multiple
optimal ballots given Pi . Alternatively, one can consider the space S modulo differences of μ
measure zero, in which case the ambiguous assignment is irrelevant.
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there exists some δ neighborhood of Ai(Pi), denoted Uδ[Ai(Pi)], such that
μi(Uδ[Ai(Pi)]) < μi(Ai(Pi)) + ε. Moreover, there exists a sufficiently small
γ > 0 such that if, for all A′

i ∈ X ,∑
D

θi([Ai ∩C] ∪D)× Pi(C�D)

≥
∑

D

θi([A′
i ∩C] ∪D)× Pi(C�D)− γ�

then θi ∈ Uδ[Ai(Pi)], because both sides of the inequality are continuous in
θi. Suppose ‖Pi − P ′

i‖ < γ/2. The difference in expected utility for any action
across the two probabilities is bounded by γ/2, since values were normalized
to live in the unit interval. Then fixing θi ∈ Ai(P

′
i ), that is, a type θi for whom

Ai is optimal given conjecture P ′
i , we have, for all A′

i ∈ X ,∑
D

θi([Ai ∩C] ∪D)× Pi(C�D)

≥
∑

D

θi([Ai ∩C] ∪D)× P ′
i (C�D)− γ/2

≥
∑

D

θi([A′
i ∩C] ∪D)× P ′

i (C�D)− γ/2

≥
∑

D

θi([A′
i ∩C] ∪D)× Pi(C�D)− γ�

So Ai(P
′
i ) is contained in Uδ[Ai(Pi)]. Then μi(Ai(P

′
i ) \ Ai(Pi)) ≤

μi(Uδ[Ai(Pi)] \Ai(Pi)) < ε. Similarly, there exists a sufficiently small distance
γ′ > 0 such that if |Pi − P ′

i | < γ′, then μi(Ai(Pi) \Ai(P
′
i )) < ε. But

μi

({
θi : [σi(Pi)](θi) �= [σi(P

′
i )](θi)

})
≤
∑
Ai∈X

μi(Ai(Pi)ΔAi(P
′
i ))

=
∑
Ai∈X

(
μi(Ai(P

′
i ) \Ai(Pi))+μi(Ai(Pi) \Ai(P

′
i ))
)

< 2|X |ε
whenever ‖Pi − P ′

i‖ < min{γ/2�γ′}. So the function σ : [ΔU]I → SU defined by
σ(P1� � � � �PI) = (σ1(P1)� � � � �σI(PI) is continuous.

Then the composition π ◦ σ : [ΔU ]I → SU → [ΔU ]I is continuous and hence
yields a fixed point (P∗

1 � � � � �P
∗
I ) by Brower’s theorem. Then s∗ = σ(P∗

1 � � � � �P
∗
I )

is, by construction, a best response to itself, hence the desired equilibrium in
weakly undominated strategies.
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A.2. Proof of Proposition 1

We maintain the notation from the proof of Proposition 2. Let s0 denote the
sincere voting profile, where s0

i (θi) ∈ arg maxA θi(A). By full support assump-
tion, for all A and i, there is a strictly positive measure of types θi, where the
sincere ballot is A. Hence the induced probability P0

i = πi(s
0) is in the interior

of ΔD. Therefore, P0
i (C�D) > 0. Consider θi with θi(∅) = 1 and θi({1}) = 0,

and θi(A)= 1 − δ whenever A �= ∅� {1}. When 2 ∈C and D = {1},
θi

([{2} ∩C] ∪ {1})− θi([∅ ∩C] ∪ {1})= θi({1�2})− θi({1})= 1 − δ�

For all other (C�D), the difference θi([{2}∩C]∪D)−θi([∅∩C]∪D) is either
0 or −δ. Since P0

i has full support, we have∑
D

θi

([{2} ∩C] ∪D
)× P0

i (C�D) >
∑

D

θi([∅ ∩C] ∪D)× P0
i (C�D)

for sufficiently small δ > 0. So submitting the ballot {2} is a strictly better reply
than the sincere ballot ∅ for this θi. This property is maintained in a neighbor-
hood of θi, so by the full support assumption, sincere voting is not a best reply
for a strictly positive measure of types.

A.3. Proof of Proposition 3

We use recent results due to Reny (2011). Namely, we verify the assumptions
of Theorems 4.1 and 4.2, which we summarize in the following statement.20

THEOREM 1—Reny (2011): Suppose that the following statements hold:
G.1. Θ is a complete separable metric space endowed with a measurable partial

order.
G.2. μ assigns probability zero to any Borel subset of Ti having no strictly or-

dered points.
G.3. A is a compact locally complete metric semilattice.
G.4. u(·� θ) :A→ R is continuous for every θ ∈Θ.
Let C be a join-closed, piecewise-closed, and pointwise-limit-closed subset of

pure strategies containing at least one monotone pure strategy, such that the in-
tersection of C with i’s set of monotone best replies is nonempty whenever every
other player j employs a monotone pure strategy in C. Then there exists a symmet-
ric monotone (pure strategy) equilibrium in which each player i’s pure strategy is
in C.

We first show that the election is weakly quasisupermodular and obeys single
crossing in ≥, which will be useful later.

20We consider appropriately symmetrized statements of these results.
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LEMMA 4: The voting game is weakly quasisupermodular in actions, that is,∫
Θ−1

θ(A� s(θ−1))dμ−1 ≥
∫
Θ−1

θ(A∩B� s(θ−1))dμ−1

�⇒
∫
Θ−1

θ(A∪B� s(θ−1))dμ−1 ≥
∫
Θ−1

θ(A� s−1(θ−1))dμ−1�

PROOF: We show that supermodularity in outcomes of the ex post utilities
implies weak quasisupermodularity in actions of the interim utilities. So sup-
pose the hypothesis inequality holds. Carrying the notation from the proof of
Proposition 2, this can be rewritten as

∑
C�D∈D

θ([A∩C] ∪D)× [π(s)](C�D)

≥
∑

C�D∈D

θ([A∩B ∩C] ∪D)× [π(s)](C�D)�

Applying supermodularity of θ to the sets [A∩C] ∪D and [B ∩C] ∪D, then
∑

C�D∈D

[
θ([A∩C] ∪D)− θ([A∩B ∩C] ∪D)

]× [π(s)](C�D) ≥ 0

implies
∑

C�D∈D

[
θ
([(A∪B)∩C] ∪D

)− θ([A∩C] ∪D)
]× [π(s)](C�D) ≥ 0�

which can be rewritten as the desired conclusion. Q.E.D.

LEMMA 5: The voting game satisfies weak single crossing in ≥, that is, if θ′ ≥ θ
and A′ ⊇A, then∫

Θ−1

θ
(
F(A′� s(θ−1))

)
dμ−1 ≥

∫
Θ−1

θ
(
F(A� s(θ−1))

)
dμ−i

�⇒
∫
Θ−1

θ′(F(A′� s(θ−1))
)
dμ−1 ≥

∫
Θ−1

θ′(F(A� s(θ−1))
)
dμ−1

for any profile s−i of monotone strategies by the other voters.

PROOF: Suppose θ′ ≥ θ and fix a monotone symmetric strategy profile s.
Suppose A′ ⊇A. Then F(A′� s(θ−1)) ⊇ F(A� s(θ−i)) for any θ−i ∈Θ−i. By con-
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struction of the partial order ≥,

θ′(F(A′� s(θ−1))
)− θ′(F(A� s(θ−1))

)
≥ θ

(
F(A′� s(θ−1))

)− θ
(
F(A� s(θ−1))

)
�

This inequality is preserved by integration:∫
Θ−1

θ′(F(A′� s(θ−1))
)
dμ−1 −

∫
Θ−1

θ′(F(A� s(θ−1))
)
dμ−1

≥
∫
Θ−1

θ
(
F(A′� s(θ−1))

)
dμ−1 −

∫
Θ−1

θ
(
F(A� s(θ−1))

)
dμ−1�

Then if ∫
Θ−1

θ
(
F(A′� s(θ−1))

)
dμ−1 ≥

∫
Θ−1

θ
(
F(A� s(θ−1))

)
dμ−1�

the inequality implies∫
Θ−1

θ′(F(A′� s(θ−1))
)
dμ−1 ≥

∫
Θ−1

θ′(F(A� s(θ−1))
)
dμ−1�

Q.E.D.

We can now check the assumptions in Reny’s theorem. The technical con-
ditions G.1–G.4 are straightforward to verify. We restrict attention to a space
of strategies which will induce weakly undominated best responses. Let R be
the subset of strategies such that (μ almost surely (μ-a.s.)) if θ is quasisepa-
rable and A∗(θ) = arg maxA∈X θ(A) is unique, then s(θ) = A∗(θ). This space
is join-closed, pointwise-limit-closed, and piecewise-closed because it is the in-
tersection of two measurable order inequalities (cf. Reny (2011, Remark 4)).
To see this, let

f (θ) =
⎧⎨
⎩
A∗(θ)� if θ is quasiseparable and

A∗(θ) = arg maxA∈X θ(A) is unique,
∅� otherwise,

and, similarly,

g(θ) =
⎧⎨
⎩
A∗(θ)� if θ is quasiseparable and

A∗(θ) = arg maxA∈X θ(A) is unique
X� otherwise.

In addition, R= {s ∈ S : f (θ)⊆ s(θ)⊆ g(θ)�μ-a.s.}.
We next show that there exists a monotone strategy in R. Define the strategy

s(θ)=
⋃
θ′≤θ

f (θ′)�
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By construction, s is monotone. Now suppose θ′ ≥ θ are quasiseparable with
respective unique maximizers A∗(θ′) and A∗(θ′). By repeated application of
quasiseparability, we have

θ(A∗(θ)∪A∗(θ′))− θ(A∗(θ′)) ≥ 0�

Considering the definition of ≥,

θ′(A∗(θ′)∪A∗(θ))− θ′(A∗(θ′))≥ 0�

Since A∗(θ′) is the unique maximizer of θ′, this forces A∗(θ′)∪A∗(θ) =A∗(θ′),
that is, A∗(θ′) ⊇ A∗(θ). So if θ′ is separable and has a unique maximizer
A∗(θ′), then f (θ′)⊇ f (θ) for all θ ≤ θ′. Hence s(θ′)=A∗(θ). So s ∈R.

Finally, we prove that any monotone strategy in R will induce a monotone
best reply in R. Since R is a superset of the weakly undominated strategies,
clearly for any symmetric strategy profile s of the other voters, there is some
element of R which is a best response. Moreover, any best reply to a strategy
profile from R must be weakly undominated. This is because the quasisepara-
ble types with unique maximizer A constitute a relatively open subset of the su-
permodular types, so every ballot has positive probability for each voter by the
full support assumption. Standard lattice arguments show that weak quasisu-
permodularity and weak single crossing imply that the pointwise join of each
type’s best replies in weakly undominated strategies constitutes a monotone
best reply itself; for example, see the proof of Corollary 4.3 in Reny (2011).
Since R is join-closed, this monotone best reply lives in R. So there exists an
equilibrium in strategies in R and by construction, this equilibrium must be in
weakly undominated strategies.

A.4. Asymptotic Results

LEMMA 6: Consider a sequence of equilibrium strategies s∗
I → s∗. If issue 2 is

conditionally certain to pass, then

1 ∈ s∗(θ) ⇐⇒ θ12 ≥ θ2�
21

PROOF: Recall from the proof of Proposition 2 that for a fixed electorate
size I, the expression (2) for [π(s)](C�D) reflects the probability induced by
strategy profile s that voter i will be pivotal on the issues in C and the issues in
D will pass irrespective of her vote. For ease of notation, let P∗

I = π(s∗
I ) in the

election with I voters.

21While this lemma is written for the two-issue case, a similar result holds for the general case:
Let A be the issues on X \ x that are conditionally certain to fail. Then x ∈ s∗(θ) if and only if
θA∪{x} ≥ θA. The authors or an earlier working version of this paper can be consulted for details.
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Consider a pair of ballots A and A′ with 1 ∈ A and 1 /∈ A′. The incentive
condition for A being a better reply than A′ (for type θ) to s∗

I is∑
C�D∈D

P∗
I (C�D) · θ([A∩C] ∪D) ≥

∑
C�D∈D

P∗
I (C�D) · θ([A′ ∩C] ∪D)�(3)

However, if 1 /∈ C, we have C ∩ {1} ∪ D = C ∩ A′ ∪ D, the only relevant com-
ponents of the sums on both sides of this inequality are∑

C�D∈D : 1∈C
P∗
I (C�D) · θ([A∩C] ∪D)

≥
∑

C�D∈D:1∈C
P∗
I (C�D) · θ([A′ ∩C] ∪D)�

Dividing both sides by
∑

(C�D):1∈C P
∗
I (C�D) > 0, we can replace the uncondi-

tional probabilities P∗
I with the conditional probabilities P∗

I (C�D|1 ∈C):∑
C�D∈D:1∈C

P∗
I (C�D|1 ∈ C) · θ([C ∩A] ∪D)(4)

≥
∑

C�D∈D:1∈C
P∗
I (C�D|1 ∈C) · θ([C ∩A′] ∪D)�

We can rewrite the left hand side as∑
C�D∈D:1∈C

P∗
I (C�D|1 ∈ C) · θ([C ∩A] ∪D)

= P∗
I ({1}� {2}|1 ∈ C) · θ12

+
∑

C�D:1∈C�D �={2}
P∗
I (C�D|1 ∈ C) · θ([C ∩A] ∪D)�

Similarly rewriting the right hand side, the incentive inequality (4) can be
rewritten as

P∗
I ({1}� {2}|1 ∈C) · θ12 +

∑
C�D:1∈C�D �={2}

P∗
I (C�D|1 ∈ C) · θ([C ∩A] ∪D)

≥ P∗
I ({1}� {2}|1 ∈ C) · θ2

+
∑

C�D:1∈C�D �={2}
P∗
I (C�D|1 ∈ C) · θ([C ∩A′] ∪D)�

This is rearranged as

θ12 ≥ θ2 +ΔI�(5)
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where

ΔI =

∑
C�D:1∈C�D �={2}

P∗
I (C�D|1 ∈ C)[θi([C ∩A′] ∪D)− θi([C ∩A] ∪D)]

P∗
I ({1}� {2}|1 ∈ C)

�

If |θ12 − θ2| > ΔI for all x ∈ X , then A is a better reply than A′ if and only
if θ12 ≥ θ2. But since the only assumption is that 1 ∈ A and 1 /∈ A′, this is also
equivalent to 1 being included in the best reply. Observe that the set of types
for which |θ12 − θ2| >ΔI for all x ∈ X is of full Lebesgue measure at the limit,
since ΔI → 0. Invoking the density assumption, this set approaches probability
1 at the limit. Q.E.D.

LEMMA 7: Let x′ �= x. There exists αx ∈ [0�1] such that

x ∈ s∗(θ) ⇐⇒ αxθ12 + (1 − αx)θx ≥ αxθx′ + (1 − αx)θ∅�

PROOF: Without loss of generality, consider the case x = 2. Let

αI = P
(

#{j �= i : 1 ∈ s∗
I (θk)}> I − 1

2

∣∣∣∣#{j �= i : 2 ∈ s∗
I (θk)} = I − 1

2

)

and

βI = P
(

#{j �= i : 1 ∈ s∗
I (θk)}< I − 1

2

∣∣∣∣#{j �= i : 2 ∈ s∗
I (θk)} = I − 1

2

)
�

By the full support assumption, the conditional probability of being pivotal on
issue 1 when pivotal on issue 2 vanishes, so αI +βI → 1.

Fix a voter i with type θ and consider a ballot A ⊆ {1} which does not in-
clude 2. The incentive condition for {2} ∪A being a better reply than A to the
strategy s∗

I is

αIθ12 +βIθ2 + (1 − αI −βI)θ2∪A ≥ αIθ1 +βIθ∅ + (1 − αI −βI)θA�

Passing to a subsequence if necessary, there exists an α such that αI → α. The
incentive inequality can be rewritten as

αθ12 + (1 − α)θ2 ≥ αθ1 + (1 − α)θ∅ +ΔI�

where

ΔI = [αI − α](θ1 − θ12)+ [βI − (1 − α)](θ∅ − θ2)

+ [1 − αI −βI](θA − θ2∪A)�

However, ΔI → 0. From here, we can replicate the arguments that conclude
the proof of Lemma 6 to conclude that, at the limit, the set of types which
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support issue 2 is characterized by the inequality

αθ12 + (1 − α)θ2 ≥ αθ1 + (1 − α)θ∅� Q.E.D.

LEMMA 8: Let s∗
I → s∗. If

μ(y ∈ s(θ)|x ∈ s(θ)) > (<)μ(y /∈ s(θ)|x /∈ s(θ))�(�)

then y is conditionally certain to pass (fail) at x. Moreover, if y is conditionally
certain to pass (fail) at x, then (�) holds weakly.

PROOF: Without loss of generality, suppose voter I is pivotal on issue 1
and consider whether issue 2 is conditionally certain to pass or fail. Let XIi

k

(I = 1�3� � � �; i = 1� � � � � I − 1; k = 1�2) denote the triangular array of in-
dicator functions on the events {θi :k ∈ s∗

I (θi)}. While XIi
2 are uncondition-

ally rowwise independent, this independence is broken once we condition on
voter I being pivotal on issue 1. This precludes a straightforward application
of the law of large numbers to the array and the proof requires more deli-
cacy.

The basic logic is to split the sample of I − 1 other voters into two sub-
samples: those I−1

2 who voted for issue 1 and those I−1
2 who did not. Within

each subsample, the votes on issue k are conditionally identical and inde-
pendent because the votes on issue 1 are fixed. However, by exchangeabil-
ity, the particular identity of voters in each subsample is irrelevant, so we
can proceed without loss of generality by assuming the first half of other
voters constitute the first subsample, while the remainder constitute the sec-
ond.

Formally, consider the arrays of rowwise independent binary random vari-
ables

YIi =
{

1 with probability μ(2 ∈ sI(θi)|1 /∈ sI(θI)),
0 with probability μ(2 /∈ sI(θi)|1 /∈ sI(θI))

and

ZIi =
{

1 with probability μ(2 ∈ sI(θi)|1 ∈ sI(θI)),
0 with probability μ(2 /∈ sI(θi)|1 ∈ sI(θI)).

We first prove that the distribution of
∑I−1

i=1 X
Ii
2 conditional on

∑I−1
i=1 X

Ii
1 =

I−1
2 is identical to the distribution of the sum

(I−1)/2∑
i=1

YIi +
(I−1)/2∑
i=1

ZIi�
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Suppressing the I superscript for the size of the electorate and fixing any inte-
ger n yields

P

(
I−1∑
i=1

Xi
2 = n

∣∣∣∣
I−1∑
i=1

Xi
1 = I − 1

2

)

=
∑

A⊂I−1:#A=(I−1)/2

[
P

(∑
i∈A

Xi
2 = 0

∣∣∣∣
I−1∑
i=1

Xi
1 = I − 1

2

)

× P

(
I−1∑
i=1

Xi
2 = n

∣∣∣∣∑
i∈A

Xi
1 = 0�

∑
j /∈A

X
j
1 = I − 1

2

)]
�

By exchangeability across voters, the particular identities of the voters in the set
A who voted down on issue 1 is irrelevant. In other words, we can assume with-
out loss of generality that the first I−1

2 other voters included 1 in their ballots
and the last I−1

2 other voters excluded 1 from their ballots. The prior expression
is, therefore, equal to

=
∑

A⊂I−1:#A=(I−1)/2

[
P

(
(I−1)/2∑
i=1

Xi
2 = 0

∣∣∣∣
I−1∑
i=1

Xi
1 = I − 1

2

)

× P

(
I−1∑
i=1

Xi
2 = n

∣∣∣∣
(I−1)/2∑
i=1

Xi
1 = 0�

I−1∑
j=(I+1)/2

X
j
1 = I − 1

2

)]

= P

(
I−1∑
i=1

Xi
2 = n

∣∣∣∣
(I−1)/2∑
i=1

Xi
1 = 0�

I−1∑
j=(I+1)/2

X
j
1 = I − 1

2

)

=
(I−1)/2∑
m=0

[
P

(
(I−1)/2∑
i=1

Xi
2 =m

∣∣∣∣
(I−1)/2∑
i=1

Xi
1 = 0

)

× P

(
I−1∑

j=(I+1)/2

X
j
2 = n−m

∣∣∣∣
I−1∑

j=(I+1)/2

X
j
1 = I − 1

2

)]

=
(I−1)/2∑
m=0

[
P

(
(I−1)/2∑
i=1

YIi =m

)
P

(
(I−1)/2∑
i=1

ZIi = n−m

)]

= P

(
(I−1)/2∑
i=1

YIi +
(I−1)/2∑
i=1

ZIi = n

)
�
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We now show that the normalized sum
∑I−1

i=1 XIi
2

I−1 conditional on
∑I−1

i=1 X
Ii
1 = I−1

2

converges in probability to 1
2μ(2 ∈ s∗

I (θ)|1 ∈ s∗
I (θ)) + 1

2μ(2 ∈ s∗
I (θ)|1 /∈ s∗

I (θ)).
We can apply the strong law of large numbers for triangular arrays to YIi and
ZIi to conclude that(

I − 1
2

)−1 (I−1)/2∑
i=1

YIi → μ(2 ∈ s∗
I (θi)|1 /∈ s∗

I (θi))

and (
I − 1

2

)−1 (I−1)/2∑
i=1

ZIi → μ(2 ∈ s∗
I (θi)|1 ∈ s∗

I (θi))

almost surely, hence in distribution. By the continuous mapping theorem, the
sum

1
2

(
I − 1

2

)−1 (I−1)/2∑
i=1

YIi + 1
2

(
I − 1

2

)−1 (I−1)/2∑
i=1

ZIi(6)

converges in distribution to the constant

1
2
μ(2 ∈ s∗

I (θ)|1 ∈ s∗
I (θ))+ 1

2
μ(2 ∈ s∗

I (θ)|1 /∈ s∗
I (θ))�

As show in the previous paragraph, since the conditional distribution of
∑I−1

i=1 XIi
2

I−1
shares the distribution of (6), it also converges in distribution to the same
constant. As convergence in distribution to a constant implies convergence in
probability, this delivers the desired conclusion.

To conclude the proof, suppose μ(2 ∈ s(θ)|1 ∈ s(θ)) > μ(2 /∈ s(θ)|1 /∈ s(θ));
the argument for the opposite strict inequality is symmetric. Then

μ(2 ∈ s(θ)|1 ∈ s(θ)) > μ(2 /∈ s(θ)|1 /∈ s(θ))�

μ(2 ∈ s(θ)|1 ∈ s(θ))+ 1 −μ(2 /∈ s(θ)|1 /∈ s(θ)) > 1�

μ(2 ∈ s(θ)|1 ∈ s(θ))+μ(2 ∈ s(θ)|1 /∈ s(θ)) > 1�

1
2
μ(2 ∈ s(θ)|1 ∈ s(θ))+ 1

2
μ(2 ∈ s(θ)|1 /∈ s(θ)) >

1
2
�

Let E = 1
2μ(2 ∈ s(θ)|1 ∈ s(θ))+ 1

2μ(2 ∈ s(θ)|1 /∈ s(θ)) and pick a strictly posi-
tive δ < E − 1

2 . By the previous paragraph, the probability that the normalized
vote count on issue 2, conditional on voter I being pivotal on 1, is greater than
E − δ > 1

2 approaches 1. Thus, the conditional probability that 2 passes con-
verges to 1.
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The necessity of the weak inequality follows from the contraposition of the
sufficiency claim, that is, if y is conditionally certain to pass, then it is not con-
ditionally certain to fail. Q.E.D.

We now restate Lemma 1 from the text.

LEMMA 1: If

μ[θ12 ≥ max{θ1� θ2}]
μ[θ12 ≤ min{θ1� θ2}] > max

{
μ[θ1 ≥ θ12 ≥ θ2]
μ[θ2 ≥ θ12 ≥ θ1] �

μ[θ2 ≥ θ12 ≥ θ1]
μ[θ1 ≥ θ12 ≥ θ1]

}
�(†)

then there exists a sequence of equilibria s∗
I → s∗ such that {1�2} is conditionally

certain. Moreover, if there exists a sequence of equilibria s∗
I → s∗ such that {1�2}

is conditionally certain, then (†) holds weakly.

PROOF: We first prove the sufficiency of the strict inequality. So let

Θ12 = {θ :θ12 ≥ max{θ1� θ2}}�
Θ1 = {θ :θ1 ≥ θ12 ≥ θ2}�
Θ2 = {θ :θ2 ≥ θ12 ≥ θ1}�
Θ∅ = {θ :θ12 ≤ min{θ1� θ2}}�

These four sets of types cover Θ. Since μ has full support and admits a density,
these sets have strictly positive probability but null pairwise intersections. By
assumption,

μ(Θ12)

μ(Θ∅)
> max

{
μ(Θ1)

μ(Θ2)
�
μ(Θ2)

μ(Θ1)

}
�

Let

Pn =
{
P ∈ ΔU :P(x�x′|x ∈C)≥ 1 − 1

n
�∀x= 1�2

}
�

Recall that P(C�D) is the probability that an anonymous voter is pivotal on
the issues in C and that the issues in D will pass irrespective of her ballot. Let
A ⊂ {x′} and consider A′ = {x} ∪ A. The incentive condition for A′ being a
better reply than A given the belief P ∈ Pn over pivotal and passing events is

θ12 ≥ θx +Δn(θ)�

where

Δn(θ) = P(x�∅|x ∈C)[θ∅ − θx] + P({1�2}�∅|x ∈C)[θA − θA′ ]
P(x�x′|x ∈C)

�
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Observe that Δn(θ) → 0 as n → ∞. Let Θn = {θ : |θ12 − θx| > Δn} and notice
that μ(Θn) → 1. As n→ ∞, the proportion of types in Θ12 which include 1 and
2 in their optimal ballots covers the entire subset Θ12, while the proportion of
types in Θ \ Θ12 which include x becomes null. Similarly arguing for Θ1�Θ2,
and Θ0, we have

σI(Pn)→ s�

where sA(θA) = A for all θA ∈ ΘA, for any sequence of selections Pn ∈ Pn.
Then

μ([σI(P)](θ) = {1�2})
μ([σI(P)](θ) = ∅)

− max
{
μ([σI(P)](θ)= {1})
μ([σI(P)](θ)= {2})�

μ([σI(P)](θ)= {2})
μ([σI(P)](θ)= {1})

}
�

which is arbitrarily close to

μ(Θ12)

μ(Θ∅)
− max

{
μ(Θ1)

μ(Θ2)
�
μ(Θ2)

μ(Θ1)

}
> 0

for any P ∈ Pn as n→ ∞. So there exists some n0 such that if n > n0, then

μ([σI(P)](θ) = {1�2})
μ([σI(P)](θ) = ∅)

> max
{
μ([σI(P)](θ)= {1})
μ([σI(P)](θ)= {2})�

μ([σI(P)](θ)= {2})
μ([σI(P)](θ)= {1})

}

for all P ∈ Pn.
So let n > n0 and consider the sequence of strategies sI = σI(P) for any

P ∈ Pn. Fix I and let μA = μ([σI(P)](θ)=A). Then

μ12

μ∅
>

μ1

μ2
�

μ12μ2 >μ∅μ1�

μ12(μ2 +μ∅) > μ∅(μ1 +μ12)�

μ12

μ1 +μ12
>

μ∅
μ2 +μ∅

�

μ
(
2 ∈ [σI(P)](θ)|1 ∈ [σI(P)](θ)

)
>μ

(
2 /∈ [σI(P)](θ)|1 /∈ [σI(P)](θ)

)
�
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A symmetric condition identifies when issue 2 is conditionally certain to pass.
By Lemma 6 (see also the remark immediately following the proof), for I suf-
ficiently large, the probability πI(σI) satisfies

[
πI(σI(P))

]
(x�x′|x ∈C)≥ 1 − 1

n

for x = 1�2. This means for sufficiently large I > I0, the image [π ◦ σI](Pn) ⊆
Pn. It therefore admits a fixed point P∗

I ∈ Pn which defines an equilibrium s∗
I ,

for all sufficiently large I > I0(n).
Finally, define n(I)= max{n : I > I0(n)}∨I. Observe that as I → ∞, we have

n(I) → ∞. For each I, select a fixed point P∗
I ∈ [π ◦ σ](Pn(I)). The induced

equilibrium strategy s∗
I satisfies

μ
(
σ∗

I (θ)|1 ∈ [σI(P)](θ)
)
>μ

(
2 /∈ [σI(P)](θ)|1 /∈ [σI(P)](θ)

)
�

By Lemma 6, the set {1�2} is conditionally certain. Also, recalling the construc-
tion, s∗

I → s∗, where s∗(ΘA)=A.
We now prove the necessity of the weak inequality. Suppose each issue is

conditionally certain to pass. In particular, 2 is conditionally certain to pass
at 1. By Lemma 8,

μ[2 ∈ s∗(θi)|1 ∈ s∗(θi)] ≥ μ[2 /∈ s∗(θi)|1 /∈ s∗(θi)]�
For notational convenience, let μ∗

A = μ({θi : s∗(θi)= A}). Since 2 is condition-
ally certain to pass at 1, we have

μ∗
12

μ∗
12 +μ∗

1

≥ μ∗
∅

μ∗
∅ +μ∗

2

�

μ∗
12(μ

∗
∅ +μ∗

2)≥ μ∗
∅(μ

∗
12 +μ∗

1)�

μ∗
12μ

∗
2 ≥ μ∗

∅μ
∗
1�

μ∗
12

μ∗
∅

≥ μ∗
1

μ∗
2

�

Symmetrically, since 1 is conditionally certain to pass at 2,

μ∗
12

μ∗
∅

≥ μ∗
2

μ∗
1

�

The prior two inequalities imply

μ∗
12

μ∗
∅

≥ max
{
μ∗

1

μ∗
2

�
μ∗

2

μ∗
1

}
�(7)
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By Lemma 6, we have

x ∈ s∗(θi) ⇐⇒ θi({1�2})≥ θ({x′})�
Thus

s∗(θ) =

⎧⎪⎪⎨
⎪⎪⎩

{1�2}� if θ12 ≥ max{θ1� θ2} ,
{1}� if θ1 ≥ θ12 ≥ θ2,
{2}� if θ2 ≥ θ12 ≥ θ1,
∅� if θ12 ≤ min{θ1� θ2}.

Substituting these cases into condition (7) delivers the result. Q.E.D.

LEMMA 9: The following conditions are equivalent:
(i) Inequality (†) in Lemma 1.

(ii) μ(θ12 ≥ θ1|θ2 ≥ θ12) > μ(θ1 ≥ θ12|θ12 ≥ θ2) and μ(θ12 ≥ θ2|θ1 ≥ θ12) >
μ(θ2 ≥ θ12|θ12 ≥ θ1).

(iii) μ(θ12 ≥ θ1) > μ(θ2 ≥ θ12 ≥ θ1)/(μ(θ1 ≥ θ12 ≥ θ2) + μ(θ1 ≥ θ12 ≥ θ2))
and μ(θ12 ≥ θ2) > μ(θ1 ≥ θ12 ≥ θ2)/(μ(θ1 ≥ θ12 ≥ θ2)+μ(θ1 ≥ θ12 ≥ θ2)).

Moreover, the weak versions of these conditions are equivalent.

PROOF: We first prove that (i) and (ii) are equivalent. Observe that the
equality

μ(θ12 ≥ max{θ1� θ2})= μ(θ12 ≥ θ2 ≥ θ1)+μ(θ12 ≥ θ1 ≥ θ2)

holds. This can be rewritten as

μ(θ12 ≥ max{θ1� θ2})+μ(θ2 ≥ θ12 ≥ θ1)

= μ(θ2 ≥ θ12 ≥ θ1)+μ(θ12 ≥ θ2 ≥ θ1)+μ(θ12 ≥ θ1 ≥ θ2)�

This is equivalent to

μ(θ12 ≥ max{θ1� θ2})= μ(θ12 ≥ θ1)−μ(θ2 ≥ θ12 ≥ θ1)�

Reasoning analogously, we obtain the four equalities

μ(θ12 ≥ max{θ1� θ2}) = μ(θ12 ≥ θ1)−μ(θ2 ≥ θ12 ≥ θ1)

= μ(θ12 ≥ θ2)−μ(θ1 ≥ θ12 ≥ θ2)�

μ(θ12 ≤ min{θ1� θ2}) = μ(θ12 ≤ θ1)−μ(θ2 ≤ θ12 ≤ θ1)

= μ(θ12 ≤ θ2)−μ(θ1 ≤ θ12 ≤ θ2)�
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Then condition (i) can be rewritten as the two inequalities

μ(θ12 ≥ θ2)−μ(θ1 ≥ θ12 ≥ θ2)

μ(θ12 ≤ θ2)−μ(θ1 ≤ θ12 ≤ θ2)
>

μ(θ1 ≥ θ12 ≥ θ2)

μ(θ2 ≥ θ12 ≥ θ1)
�(8)

μ(θ12 ≥ θ1)−μ(θ2 ≥ θ12 ≥ θ1)

μ(θ12 ≤ θ1)−μ(θ2 ≤ θ12 ≤ θ1)
>

μ(θ2 ≥ θ12 ≥ θ1)

μ(θ1 ≥ θ12 ≥ θ2)
�(9)

Inequality (8) can be expressed as any of the equivalent inequalities

μ(θ12 ≥ θ2)

μ(θ1 ≥ θ12 ≥ θ2)
>

μ(θ12 ≤ θ2)

μ(θ1 ≤ θ12 ≤ θ2)
�

μ(θ2 ≥ θ12 ≥ θ1)

μ(θ1 ≥ θ12 ≥ θ2)
>

1 −μ(θ12 ≥ θ2)

μ(θ12 ≥ θ2)
�

μ(θ2 ≥ θ12 ≥ θ1)

μ(θ2 ≥ θ12)
>

μ(θ1 ≥ θ12 ≥ θ2)

μ(θ12 ≥ θ2)
�

μ(θ12 ≥ θ1|θ2 ≥ θ12) > μ(θ1 ≥ θ12|θ12 ≥ θ2)�

This is the first inequality in condition (ii). Similarly, inequality (9) can be
rewritten as the second inequality in condition (ii).

We now prove that (ii) and (iii) are equivalent. First observe that the first
inequality in (ii) is equivalent to the second inequality in (iii) through the steps

μ(θ2 ≥ θ12 ≥ θ1)

μ(θ2 ≥ θ12)
>

μ(θ1 ≥ θ12 ≥ θ2)

μ(θ12 ≥ θ2)
�

μ(θ12 ≥ θ2)

μ(θ2 ≥ θ12)
>

μ(θ1 ≥ θ12 ≥ θ2)

μ(θ2 ≥ θ12 ≥ θ2)
�

μ(θ2 ≥ θ12)

μ(θ12 ≥ θ2)
<

μ(θ2 ≥ θ12 ≥ θ2)

μ(θ1 ≥ θ12 ≥ θ2)
�

1 −μ(θ12 ≥ θ2)

μ(θ12 ≥ θ2)
<

μ(θ2 ≥ θ12 ≥ θ2)

μ(θ1 ≥ θ12 ≥ θ2)
�

1
μ(θ12 ≥ θ2)

− 1 <
μ(θ2 ≥ θ12 ≥ θ2)

μ(θ1 ≥ θ12 ≥ θ2)
�

1
μ(θ12 ≥ θ2)

<
μ(θ2 ≥ θ12 ≥ θ2)+μ(θ1 ≥ θ12 ≥ θ2)

μ(θ1 ≥ θ12 ≥ θ2)
�

μ(θ12 ≥ θ2) >
μ(θ1 ≥ θ12 ≥ θ2)

μ(θ2 ≥ θ12 ≥ θ2)+μ(θ1 ≥ θ12 ≥ θ2)
�

Similarly, the second inequality in condition (ii) is equivalent to the first in-
equality in condition (iii). Q.E.D.
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A.5. Proof of Proposition 4

Suppose ε < 1
16 . Let μ be any density in the class described in Example 1. We

first prove that there must exist at least a single issue which exhibits conditional
uncertainty.

LEMMA 10: For any density in C , there is no sequence of equilibria that exhibits
conditional certainty.

PROOF: To see that {1�2} cannot be conditionally certain, observe that

μ(θ12 ≥ max{θ1� θ2})
μ(θ12 ≤ min{θ1� θ2}) ≤

1
4

+ ε

1
4

− ε

�

For small ε, this ratio approximates 1. On the other hand,

μ(θ2 ≥ θ12 ≥ θ1)

μ(θ1 ≥ θ12 ≥ θ2)
≥

1
2

− ε

ε
�

For small ε, this ratio becomes arbitrarily large. This precludes the required
inequality of the necessity direction of Lemma 1 for A = {1�2}. An entirely
similar argument proves that the inequality also fails for A = {1}� {2}�∅. By
Lemma 1, there cannot be an equilibrium with conditional certainty. Q.E.D.

By Lemma 10, we can assume that there is some issue with conditional un-
certainty. We now prove that this implies that the other issue must also be
conditionally uncertain.

LEMMA 11: For every density in C , all convergent sequences of equilibria exhibit
conditional uncertainty on both issues.

PROOF: The proof shows that assuming one issue is conditionally certain
while the other is conditionally uncertain leads to a contradiction. So either
both issues are conditionally certain or both issues are conditionally uncertain.
By Lemma 10, it must be the latter case. We now demonstrate that if issue 1
is conditionally uncertain, then issue 2 cannot be conditionally certain to pass.
The other cases can be argued symmetrically.

So suppose issue 2 is conditionally certain to pass. Recall that μ∗
A denotes

the probability that an anonymous voter submits the ballot A when playing the
limit strategy s∗. Since 2 is conditionally certain to pass, then μ∗

12
μ∗∅

≥ μ∗
1

μ∗
2
� Since

1 is conditionally uncertain, it is not conditionally certain to fail. We therefore
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conclude μ∗
12

μ∗∅
≥ μ∗

2
μ∗

1
. So we have the inequality

μ∗
12

μ∗
∅

≥ max
{
μ∗

1

μ∗
2

�
μ∗

2

μ∗
1

}
�(10)

In view of Lemmas 6 and 7, there exists some α ∈ (0�1) such that the limit
strategy in terms of type is described by

s∗(θ) =

⎧⎪⎪⎨
⎪⎪⎩

{1�2}� if θ12 ≥ θ2 and αθ12 + (1 − α)θ2 ≥ αθ1 + (1 − α)θ∅,
{1}� if θ12 ≥ θ2 and αθ12 + (1 − α)θ2 ≤ αθ1 + (1 − α)θ∅,
{2}� if θ12 ≤ θ2 and αθ12 + (1 − α)θ2 ≥ αθ1 + (1 − α)θ∅,
∅� if θ12 ≤ θ2 and αθ12 + (1 − α)θ2 ≤ αθ1 + (1 − α)θ∅.

Let

φ12(α)= μ(αθ12 + (1 − α)θ2 ≥ αθ1 + (1 − α)θ∅|θ12 ≥ θ1 ≥ θ∅ ≥ θ2)�

φ∅(α)= μ(αθ12 + (1 − α)θ2 ≥ αθ1 + (1 − α)θ∅|θ∅ ≥ θ2 ≥ θ12 ≥ θ1)�

Observe that since μ has full support and admits a density, φ12 and φ∅ are
increasing and continuous functions with φ12(0) = φ∅(0) = 0 and φ12(1) =
φ∅(1)= 1.

Now we can rewrite the limit probability of voting for both issues as

μ∗
12 = μ(θ12 ≥ θ2) ·μ(αθ12 + (1 − α)θ2 ≥ αθ1 + (1 − α)θ∅|θ12 ≥ θ2)

≤ μ(θ12 ≥ θ1 ≥ θ∅ ≥ θ2)

×μ(αθ12 + (1 − α)θ2 ≥ αθ1 + (1 − α)θ∅|θ12 ≥ θ1 ≥ θ∅ ≥ θ2)

+ ε

= 1
4
φ12(α)+ ε�

Likewise, the limit probability of voting down on both issues can be rewritten
as

μ∗
∅ = μ(θ12 ≤ θ2) ·μ(αθ12 + (1 − α)θ2 ≤ αθ1 + (1 − α)θ∅|θ2 ≥ θ12)

≥ μ(θ1 ≥ θ∅ ≥ θ2 ≥ θ12)

×μ(αθ12 + (1 − α)θ2 ≤ αθ1 + (1 − α)θ∅|θ1 ≥ θ∅ ≥ θ2 ≥ θ12)

+μ(θ∅ ≥ θ2 ≥ θ12 ≥ θ1)

×μ(αθ12 + (1 − α)θ2 ≤ αθ1 + (1 − α)θ∅|θ∅ ≥ θ2 ≥ θ12 ≥ θ1)

+μ(θ2 ≥ θ12 ≥ θ1 ≥ θ∅)

×μ(αθ12 + (1 − α)θ2 ≤ αθ1 + (1 − α)θ∅|θ2 ≥ θ12 ≥ θ1 ≥ θ∅)
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= μ(θ1 ≥ θ∅ ≥ θ2 ≥ θ12)

+μ(θ∅ ≥ θ2 ≥ θ12 ≥ θ1)(1 −φ∅(α))

≥ 1
4

+ 1
4
(1 −φ∅(α))− ε�

so

μ∗
12

μ∗
∅

≤
1
4
φ12(α)+ ε

1
4

+ 1
4
(1 −φ∅(α))− ε

�(11)

Inequality (10) provides that μ∗
12

μ∗∅
≥ μ∗

2
μ∗

1
, so (11) implies

μ∗
2

μ∗
1

≤
1
4
φ12(α)+ ε

1
4

+ 1
4
(1 −φ∅(α))− ε

�(12)

Inequality (10) provides that μ∗
12

μ∗∅
is larger than a fraction and its reciprocal, so

we have μ∗
12

μ∗∅
≥ 1. Therefore, (11) also implies

1
4
φ12(α)+ ε ≥ 1

4
+ 1

4
(1 −φ∅(α))− ε�(13)

φ12(α)≥ 2 −φ0(α)− 8ε�

φ12(α) > 1 − 8ε�

Arguing symmetrically,

1
4
φ12(α)+ ε ≥ 1

4
+ 1

4
(1 −φ∅(α))− ε�(14)

φ12(α)≥ 2 −φ0(α)− 8ε�

φ0 ≥ 2 −φ12(α)− 8ε�

φ0(α) > 1 − 8ε�

We can rewrite the limit probability of voting only for issue 2 as

μ∗
2 = μ(θ12 ≤ θ2) ·μ(αθ12 + (1 − α)θ2 ≥ αθ1 + (1 − α)θ∅|θ12 ≥ θ2)

≥ μ(θ1 ≥ θ∅ ≥ θ2 ≥ θ12)

×μ(αθ12 + (1 − α)θ2 ≥ αθ1 + (1 − α)θ∅|θ1 ≥ θ∅ ≥ θ2 ≥ θ12)
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+μ(θ∅ ≥ θ2 ≥ θ12 ≥ θ1)

×μ(αθ12 + (1 − α)θ2 ≥ αθ1 + (1 − α)θ∅|θ∅ ≥ θ2 ≥ θ12 ≥ θ1)

+μ(θ2 ≥ θ12 ≥ θ1 ≥ θ∅)

×μ(αθ12 + (1 − α)θ2 ≤ αθ1 + (1 − α)θ∅|θ2 ≥ θ12 ≥ θ1 ≥ θ∅)

= μ(θ∅ ≥ θ2 ≥ θ12 ≥ θ1)φ∅(α)+μ(θ2 ≥ θ12 ≥ θ1 ≥ θ∅)

≥ 1
4
φ0(α)+ 1

4
− ε�

Similarly, rewriting the probability of voting only for issue 1 yields

μ∗
1 ≤ 1

4
(1 −φ12(α))+ ε�

So

μ∗
2

μ∗
1

≥
1
4
φ0(α)+ 1

4
− ε

1
4
(1 −φ12(α))+ ε

�(15)

Combining (12) and (15),

1
4
φ12(α)+ ε

1
4

+ 1
4
(1 −φ∅(α))− ε

≥
1
4
φ0(α)+ 1

4
− ε

1
4
(1 −φ12(α))+ ε

�

This can be rewritten as

(φ12(α)+ 4ε)(1 −φ12(α)+ 4ε)≥ (φ0(α)+ 1 − 4ε)(2 −φ0(α)− 4ε)�(16)

At the same time, recalling earlier inequalities,

φ12(α)+ 4ε < 1 + 4ε

< 2 − 12ε (since ε < 1
16 )

<φ0(α)+ 1 − 4ε (by (14))

and

1 −φ12(α)+ 4ε < 1 − (1 − 8ε)+ 4ε (by (13))

= 12ε

< 1 − 4ε (since ε < 1
16 )

< 2 −φ0(α)− 4ε�
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But the prior two series of inequalities contradict (16), since they imply the left
hand side of (16) is the product of strictly smaller positive quantities than those
in the product on the right hand side of (16). Q.E.D.

We now prove that if there is conditional uncertainty on both issues, then
there is unconditional uncertainty on both issues. Given Lemma 11, this will
suffice to show that there is unconditional uncertainty on both issues for every
density in C .

For notational ease, we now define

μI(x|x′)= μ(x ∈ sI(θi)|x′ ∈ sI(θi))

and

μI(x|¬x′)= μ(x ∈ sI(θi)|x′ /∈ sI(θi))�

Let

μI(x) = μ(x ∈ sI(θi))�

LEMMA 12: Issue x is conditionally uncertain if and only if

lim
I→∞

∣∣√(I − 1)(μI(x|x′)+μI(x|¬x′)− 1)
∣∣<∞�

PROOF: Take x = 2; the case x = 1 is identical. Recall the two arrays de-
fined in the proof of Lemma 8, rowwise independent binary random vari-
ables YIi and ZIi whose success probabilities are μ(2 ∈ sI(θi)|1 ∈ sI(θI))
and μ(2 ∈ sI(θi)|1 /∈ sI(θI)). In that proof, we demonstrated that the condi-
tional distribution of the vote count on issue 2 is equal to the distribution of∑(I−1)/2

i=1 YIi + ∑(I−1)/2
i=1 ZIi. Let W Ii = YIi + ZIi. As YIi and ZIi are mutually

independent, the array W Ii defines a rowwise independent array of random
variables. We can write that

P
(

#{j �= i : 2 ∈ s∗
I (θj)}> I − 1

2

∣∣∣∣#{j �= i : 1 ∈ s∗
I (θj)} = I − 1

2

)

= P

(
(I−1)/2∑
i=1

W Ii >
I − 1

2

)
�

Recalling the definition of the binary random variables YIi(θ) and ZIi(θ),
we have that

E(W Ii)= μI(2|1)+μI(2|¬1)
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and

Var(W Ii)= μI(2|1)[1 −μI(2|1)] +μI(2|¬1)[1 −μI(2|¬1)]�
Applying the central limit theorem for triangular arrays,

P

⎛
⎜⎜⎜⎜⎜⎝

(I−1)/2∑
i=1

W Ii −
(
I − 1

2

)
[μI(2|1)+μI(2|¬1)]

√(
I − 1

2

)(
μI(2|1)[1 −μI(2|1)] +μI(2|¬1)[1 −μI(2|¬1)])

< y

⎞
⎟⎟⎟⎟⎟⎠(17)

−→ �(y)�

where � denotes the standard normal cumulative distribution function.
The conditional probability that issue i fails is P(

∑(I−1)/2
i=1 W Ii < I−1

2 ). By ma-
nipulation of (17), this converges to

�

(
1
2

·
√
(I − 1)(1 − (μI(2|1)+μI(2|¬1)))√

μI(2|1)[1 −μI(2|1)] +μI(2|¬1)[1 −μI(2|¬1)]
)
�

Therefore, limI→∞ |√(I − 1)(μI(2|1) + μI(2|¬1) − 1)| < ∞ is necessary and
sufficient for issue 2 to be conditionally uncertain. Q.E.D.

LEMMA 13: Issue x is unconditionally uncertain if and only if limI→∞ |√I(μI
k−

1
2)|<∞.

PROOF: Define the binary random variable

V Ii =
{

1 with probability μI(x),
0 with probability 1 −μI(x),

with mean μI(x) and variance μI(x)(1 − μI(x)). The probability that issue k
will pass (fail) is

P

(
I∑

i=1

V Ii
k > (<)

I

2

)
�

Arguing as in the proof of Lemma 12, we have that the asymptotic (uncondi-
tional) probability that issue x will pass is equal to

�

( √
I

(
1
2

−μI(x)

)
√
μI(x)(1 −μI(x))

)
�
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Therefore,

lim
I→∞

∣∣∣∣√I

(
1
2

−μI(x)

)∣∣∣∣< ∞

is necessary and sufficient for unconditional uncertainty. Q.E.D.

LEMMA 14: There is unconditional uncertainty for both issues if and only if
there is conditional uncertainty for both issues.

PROOF: Let

xI = μI(1)�

yI = μI(2)�

and

aI = μI(1|2)�
bI = μI(1|¬2)�

cI = μI(2|1)�
dI = μI(2|¬1)�

We have a system of two equations with two unknowns, xI and yI :

xI = aIyI + bI(1 − yI)�(18)

yI = cIxI + dI(1 − xI)�(19)

The corresponding solutions for x and y are

xI = (aI − bI)dI + bI

1 − (aI − bI)(cI − dI)
�(20)

yI = (cI − dI)bI + dI

1 − (cI − dI)(aI − bI)
�(21)

We first prove that if there is conditional uncertainty on both issues, then
there must be unconditional uncertainty on both. Subtracting 1

2 from both sides
in equations (20) and (21) yields, after some manipulation,

xI − 1
2

= 1
2
(bI − aI)(1 − (cI + dI))+ (1 − (aI + bI))

1 − (aI − bI)(cI − dI)
�(22)

yI − 1
2

= 1
2
(dI − cI)(1 − (aI + bI))+ (1 − (cI + dI))

1 − (cI − dI)(aI − bI)
�(23)
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By Lemma 12, conditional uncertainty on both issues means

lim
I→∞

√
I|1 − (aI + bI)|<∞

and

lim
I→∞

√
I|1 − (cI + dI)|< ∞�

Since 1− (aI −bI)(cI −dI) is uniformly bounded away from 0 and |(aI −bI)| is
bounded by 1, this suffices to show that limI→∞

√
I|xI − 1

2 | and limI→∞
√
I|xI −

1
2 | given the expressions in (22) and (23) are both finite. By Lemma 13, this
implies unconditional uncertainty on both issues.

We finally show that unconditional uncertainty on both issues implies condi-
tional uncertainty on both. Equations (18) and (19) imply

xI − yI = (aI + bI − 1)yI + 2aI

(
1
2

− yI

)
�

yI − xI = (cI + dI − 1)xI + 2cI
(

1
2

− xI

)
�

These can be rewritten as

(aI + bI − 1)yI =
(
xI − 1

2

)
+ 2

(
1
2

− aI

)(
1
2

− yI

)
�

(cI + dI − 1)xI =
(
yI − 1

2

)
+ 2

(
1
2

− cI
)(

1
2

− xI

)
�

By Lemma 13, unconditional uncertainty on both issues yields that
limI→∞

√
I| 1

2 − xI | and limI→∞
√
I| 1

2 − yI| are both finite. Since both | 1
2 − aI |

and | 1
2 − cI| are bounded by 1

2 , it suffices to show that

lim
I→∞

√
I|aI + bI − 1|yI <∞�

By Lemma 12, this implies issue 1 is conditionally uncertain. Similarly, issue 2
is also conditionally uncertain. Q.E.D.

A.6. Proof of Proposition 5

We begin by proving a useful implication of conditional certainty.

LEMMA 15: If {1�2} is conditionally certain, then

μ(θ12 ≥ θ1)μ(θ12 ≥ θ2)≥ μ(θ1 ≥ θ12)μ(θ2 ≥ θ12)�
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PROOF: Suppose that {1�2} is conditionally certain. By Lemmas 1 and 9, we
know that

μ(θ12 ≥ θ1|θ2 ≥ θ12)≥ μ(θ1 ≥ θ12|θ12 ≥ θ2)�(24)

μ(θ12 ≥ θ2|θ1 ≥ θ12)≥ μ(θ2 ≥ θ12|θ12 ≥ θ1)(25)

hold. Observe that

μ(θ12 ≥ θ1|θ2 ≥ θ12)= μ(θ2 ≥ θ12|θ12 ≥ θ1)× μ(θ12 ≥ θ1)

μ(θ2 ≥ θ12)
�

We can then rewrite (24) as

μ(θ2 ≥ θ12|θ12 ≥ θ1)× μ(θ12 ≥ θ1)

μ(θ2 ≥ θ12)

≥ μ(θ12 ≥ θ2|θ1 ≥ θ12)× μ(θ1 ≥ θ12)

μ(θ12 ≥ θ2)
�

This is equivalent to

μ(θ1 ≥ θ12)μ(θ2 ≥ θ12)

μ(θ12 ≥ θ1)μ(θ12 ≥ θ2)
≤ μ(θ2 ≥ θ12|θ12 ≥ θ1)

μ(θ12 ≥ θ2|θ1 ≥ θ12)
�(26)

Moreover, (25) implies that

μ(θ2 ≥ θ12|θ12 ≥ θ1)

μ(θ12 ≥ θ2|θ1 ≥ θ12)
≤ 1�(27)

Together, (26) and (27) imply

μ(θ1 ≥ θ12)μ(θ2 ≥ θ12)

μ(θ12 ≥ θ1)μ(θ12 ≥ θ2)
≤ 1�

which is the desired conclusion. Q.E.D.

Without loss of generality, assume A = ∅ is the local Condorcet loser. First
observe that if both issues are conditionally uncertain, Lemma 14 implies that
there is no unconditionally certain bundle. In particular, ∅ cannot be uncondi-
tionally certain.

We next argue that if either issue is conditionally certain to fail, then ∅ can-
not be unconditionally certain. So suppose issue 1 is conditionally certain to
fail. Then Lemma 6 implies 2 ∈ s∗(θ) if θ2 > θ∅. However, since ∅ is a local
Condorcet loser, μ(θ2 > θ∅) > 1

2 . By the strong law of large numbers for trian-
gular arrays, this means issue 2 is unconditionally certain to pass. A symmetric
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argument holds if issue 2 is conditionally certain to fail. So we can now assume
without loss of generality that there is at least one issue that is conditionally
certain to pass and that the other issue is either conditionally certain to pass
or is conditionally uncertain. Consider the case where issue 1 is conditionally
certain to pass; the argument for issue 2 is identical.

Case 1. Issue 2 is conditionally certain to pass. Then {1�2} is conditionally
certain. Now, by way of contradiction, suppose ∅ is unconditionally certain. So
μ(1 ∈ s∗(θ)) ≤ 1

2 . By Lemma 6, μ(θ1 ≥ θ12) ≥ 1
2 ≥ μ(θ12 ≥ θ1) because issue 2

is conditionally certain to pass. Symmetrically, we can also conclude μ(θ2 ≥
θ12)≥ 1

2 ≥ μ(θ12 ≥ θ2). Then

μ(θ1 ≥ θ12)μ(θ2 ≥ θ12)≥ μ(θ12 ≥ θ1)μ(θ12 ≥ θ2)�

At the same time, the fact that {1�2} is conditionally certain also implies,
through Lemma 15, that

μ(θ1 ≥ θ12)μ(θ2 ≥ θ12)≤ μ(θ12 ≥ θ1)μ(θ12 ≥ θ2)�

The only way to maintain the prior two inequalities is for μ(θ1 ≥ θ12) = 1
2 and

μ(θ1 ≥ θ12)= 1
2 . But then the Condorcet ranking �C is incomplete, contradict-

ing the hypothesis that �C is complete.
Case 2. Issue 2 is conditionally uncertain. Recall (22) from the proof of

Lemma 14:

√
Iμ(1 ∈ s∗

I (θ))− 1
2

= 1
2

√
I(bI − aI)(1 − (cI + dI))+ √

I(1 − (aI + bI))

1 − (aI − bI)(cI − dI)
�

where

aI = μ(1 ∈ s∗
I (θ)|2 ∈ s∗

I (θ))�

bI = μ(1 ∈ s∗
I (θ)|2 /∈ s∗

I (θ))�

cI = μ(2 ∈ s∗
I (θ)|1 ∈ s∗

I (θ))�

dI = μ(2 ∈ s∗
I (θ)|1 /∈ s∗

I (θ))�

By Lemma 12, we have lim
√
I(1 − (cI +dI)) <∞ since issue 2 is conditionally

uncertain. Similarly, lim
√
I(1 − (aI + bI))= ∞. Since 1 − (aI − bI)(cI − dI) is

uniformly bounded away from 0, this suffices to prove
√
Iμ(1 ∈ s∗

I (θ)) − 1
2 →

∞. Then by Lemma 13, we conclude that issue 1 is unconditionally certain to
pass. This suffices to show that the empty set cannot be unconditionally certain.
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A.7. Proof of Proposition 6

Begin by observing that, by Lemmas 1 and 9, both issues are conditionally
certain to pass. Then the proposition follows directly from Lemma 2, which we
recall here.

LEMMA 2: Suppose {1�2} is a local Condorcet winner. If issue 1 (or issue 2) is
conditionally certain to pass, then {1�2} is the limit outcome.

PROOF: There are five cases to consider.
Case 1. {1�2} is conditionally certain. Since issue 2 is conditionally certain to

pass, by Lemma 6, 1 ∈ s∗(θ) whenever θ12 ≥ θ2. But since {1�2} is a local Con-
dorcet winner, μ(θ12 ≥ θ2) >

1
2 , that is, μ(1 ∈ s∗(θ)) > 1

2 . Then, by the strong
law of large numbers for triangular arrays, issue 1 is unconditionally certain to
pass. A similar argument establishes that issue 2 is also unconditionally certain
to pass. Thus {1�2} is unconditionally certain.

Case 2. The bundle {1} is conditionally certain. By Lemma 15, we have

μ(θ1 ≥ θ12)μ(θ1 ≥ θ∅)≥ μ(θ12 ≥ θ1)μ(θ∅ ≥ θ1)�(28)

Since {1�2} is a local Condorcet winner, we know that μ(θ12 ≥ θ1) >
1
2 , so

μ(θ1 ≥ θ12) < μ(θ12 ≥ θ1)�(29)

To maintain the inequality (28), it must be that

μ(θ1 ≥ θ∅) > μ(θ∅ ≥ θ1)�(30)

However, (29) and Lemma 6 imply that μ(1 ∈ s∗(θ)) > 1
2 . By the strong law of

large numbers for triangular arrays, issue 1 is unconditionally certain to pass.
Similarly, (30) and Lemma 6 imply that issue 2 is also unconditionally certain
to pass.

Case 3. The bundle {2} is conditionally certain. This case can be argued simi-
larly to Case 2.

Case 4. Issue 1 is conditionally certain to pass and issue 2 is conditionally un-
certain. The argument for Case 1 in Proposition 5 can be replicated verbatim
to demonstrate that issue 1 is unconditionally certain to pass. A symmetric ar-
gument demonstrates that issue 2 is also unconditionally certain to pass.

Case 5. Issue 2 is conditionally certain to pass and issue 1 is conditionally un-
certain. This case can be argued similarly to Case 4. Q.E.D.

A.8. Proof of Proposition 7

We first record a straightforward but useful implication of quasiseparability.

LEMMA 16: Suppose �C is quasiseparable. If {1�2} is a Condorcet winner, then
its complement ∅ is a Condorcet loser.
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PROOF: Without loss of generality, suppose {1�2} is a Condorcet winner.
Then {1�2} �C {1}. By quasiseparability of �C , we have {2} �C ∅. Similarly,
{1�2} �C {2} implies {1} �C ∅. Moreover, since {1�2} is a Condorcet winner,
we have {1�2} �C ∅. Therefore, ∅ is a Condorcet loser. Q.E.D.

To prove the proposition, without loss of generality consider the case where
{1�2} is the Condorcet winner. Since ∅ is the Condorcet loser, then it cannot
be conditionally certain. To see this, observe that the necessary inequalities
in part (iii) of Lemma 9 are impossible because both μ(θ∅ ≥ θ1) and μ(θ∅ ≥
θ2) are strictly less than 1

2 , while one of the ratios on the right hand sides of
the inequality must be weakly greater than 1

2 . But since there is conditional
certainty on both issues and ∅ is not conditionally certain, one of the issues
must be conditionally certain to pass. Then by Lemma 2, this implies that {1�2}
is conditionally certain.

A.9. Proof of Proposition 8

We prove the case when types are supermodular; the argument for the sub-
modular case then follows by relabeling up to down on the second issue. We
begin with a preliminary observation.

LEMMA 17: Suppose the support of μ is the set of supermodular types. Then for
x= 1�2,

μ(θx ≥ θ∅)≤ μ(x ∈ s∗(θ)) ≤ μ(θx′ ≤ θ12)�

PROOF: Consider the case where x = 1. By Lemma 7, there exist α ∈ [0�1]
such that

μ(1 ∈ s∗(θ)) = μ(αθ12 + (1 − α)θ1 ≥ αθ2 + (1 − α)θ∅)

= μ(α[θ12 + θ∅ − θ1 − θ2] ≥ θ∅ − θ1)

= μ((1 − α)[θ1 + θ2 − θ12 − θ∅] ≥ θ2 − θ12)�

Supermodularity implies that

θ12 + θ∅ − θ1 − θ2 ≥ 0�(31)

This provides the inequality

μ(1 ∈ s∗(θ)) = μ(α[θ12 + θ∅ − θ1 − θ2] ≥ θ∅ − θ1)

≥ μ(0 ≥ θ∅ − θ1)

= μ(θ1 ≥ θ∅)�
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Inequality (31) also provides the inequality

μ(1 ∈ s∗(θ)) = μ((1 − α)[θ1 + θ2 − θ12 − θ∅] ≥ θ2 − θ12)

≤ μ(θ12 ≥ θ2)

= μ(θ12 ≥ θ2)� Q.E.D.

We now record the following implications of Lemma 17:

μ(1 ∈ s∗(θ)) ≥ μ(θ1 ≥ θ∅)�(32)

μ(2 ∈ s∗(θ)) ≥ μ(θ2 ≥ θ∅)�(33)

μ(1 ∈ s∗(θ)) ≤ μ(θ2 ≤ θ12)�(34)

μ(2 ∈ s∗(θ)) ≤ μ(θ1 ≤ θ12)�(35)

We now argue by cases that the Condorcet winning bundle A is a limit out-
come of the election and that it is the unique limit outcome.

Case 1. A = {1}. Since {1} is the Condorcet winner, μ(θ1 ≥ θ∅) > 1
2 . By (32),

we have that issue 1 is unconditionally certain to pass. Again since {1} is the
Condorcet winner, μ(θ1 ≥ θ12) >

1
2 . So by (35), it must be that issue 2 is uncon-

ditionally certain to fail.
Case 2. A = {2}. This argument is nearly identical to Case 1, using (34) and

(33).22

Case 3. A = {1�2}. Since {1�2} is the Condorcet winner, we have {1�2} �C
{2}. By quasiseparability, {1} �C ∅. Recalling the definition of the Condorcet
order, we have μ(θ1 ≥ θ∅) > 1

2 . But using (32), this implies μ(1 ∈ s∗(θ)) > 1
2 .

Appealing to the strong law of large numbers for triangular arrays, this implies
issue 1 is unconditionally certain to pass. Quasiseparability of �C similarly im-
plies {2} �C ∅, that is, μ(θ2 ≥ θ∅) > 1

2 . Using (33), this similarly implies issue 2
is unconditionally certain to pass. Thus {1�2} is the only limit outcome.

Case 4. A = ∅. This argument is nearly identical to Case 3, using (34) and
(35).
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