APPROXIMATE DYNAMIC PROGRAMMING WITH BEZIER
CURVES/SURFACES FOR TOP-PERCENTILE TRAFFIC
ROUTING

ANDREAS GROTHEY, XINAN YANG
SCHOOL OF MATHEMATICS
COLLEGE OF SCIENCE AND ENGINEERING
THE UNIVERSITY OF EDINBURGH

ABsTrACT. Multi-homing is used by Internet Service Provider (ISP) to con-
nect to the Internet via different network providers. This study investigates
the optimal routing strategy under multi-homing in the case where network
providers charge ISPs according to top-percentile pricing (i.e. based on the 6-
th highest volume of traffic shipped). We call this problem the Top-percentile
Traffic Routing Problem (TpTRP).

Solution approaches based on Stochastic Dynamic Programming require
discretization in state space, which introduces a large number of state variables.
This is known as the curse of dimensionality. To overcome this we suggested to
use Approximate Dynamic Programming (ADP) to construct approximations
of the value function in previous work, which works nicely for medium size
instances of TpTRP. In this work we keep working on the ADP model, use
Bézier Curves/Surfaces to do the aggregation over time. This modification
accelerates the efficiency of parameter training in the solution of the ADP
model, which makes the real-sized TpTRP tractable.

Keywords: top-percentile pricing, multi-homing, stochastic, routing policy,
approximate dynamic programming, Bézier Curves/Surfaces

1. INTRODUCTION

Internet Service Providers (ISPs) do not generally have their own network infra-
structure to route the incoming traffic of their customers, but instead use external
network providers. Multi-homing is used by ISPs to connect to the Internet via
more than one network provider. This technique is currently widely adopted to
provide fault tolerance and traffic engineering capabilities [1].

Traditionally network providers charge ISPs based on a combination of fixed
cost and per usage pricing. Top-percentile pricing is a relatively new and increas-
ingly popular pricing regime used by network providers to charge service providers
(although it usually appears as part of a mixed pricing strategy), that is quickly
becoming established [8]. In this scheme, the network provider divides the charge
period, say a month, into several time intervals with equal, fixed length. Then, it
measures and evaluates the amount of data (traffic) sent in these time intervals. At
the end of the charge period, the network provider selects the traffic volume of the
top g-percentile interval as the basis for computing the cost. For example, if the
charge period (i.e. 30 days) is divided into 4320 time intervals with the length of 10
mins, and if top 5-percentile pricing is used, the cost computed by top-percentile
pricing is based on the traffic volume of the top 216th interval.

1



2 ANDREAS GROTHEY, XINAN YANG

It has been discussed (e.g. in [8]) what the optimal multi-homing routing strate-
gies look like under traditional pricing regimes and whether they are economically
viable. In contrast, very little work has been done on network operation under top-
percentile pricing. The deterministic problem (in which we assume that we know
all the traffic volumes in advance) has been analysed in [2], where the authors inves-
tigate the traffic routing problem under a combined pricing policy — top-percentile
pricing and fixed cost pricing. In the stochastic case, Levy et al. in [7] develop a
probabilistic model and provide analysis of the expected costs, thus demonstrate
that multi-homing can be economical efficient under top-percentile pricing though
they did not investigate the optimal routing policy. On the other hand, Goldenberg
et al. [4] focus on the development of smart routing algorithms for optimising both
cost and performance for multi-homing users under top-percentile pricing. How-
ever, in case where traffic volumes are not available in advance (stochastic case),
the algorithm only depends on the prediction of one later time interval’s traffic
but the expectation of the future cost. As a conclusion, to the best of our knowl-
edge there is no result dealing with the optimal multi-homing routing policy under
top-percentile pricing in the stochastic case.

The purpose of our study is to find the optimal routing strategy in order to allow
the ISP to make full use of the underlying networks with minimum cost, when all
network providers charge the ISP based on the volume of the top g-percentile time
interval’s traffic (pure top-percentile pricing). In the following parts of this paper
we call this problem, the Top-percentile Traffic Routing Problem (TpTRP). The
TpTRP is a stochastic problem, where the ISP can not predict the volume of future
time intervals’ traffic. Instead, we assume that the ISP knows the probabilistic
distributions of every time intervals’ traffic ahead of time.

In [5], the authors have shown that solving the TpTRP as an Stochastic Mixed-
integer Programming (SMIP) problem is intractable for all but extremely small
instances, due to the fact that modelling of the top-percentile cost requires the
introduction of integer variables within the final time stage, which make the prob-
lem non-convex thus hard to solve. On the other hand, we suggested a Stochastic
Dynamic Programming (SDP) model based on a discretization of the state space,
which gives routing policies that outperform all available naive routing policies for
small sized instances. However due to the huge number of states arising from the
discretization of traffic volumes, an effect well known as the curse of dimensionality
prevents the use of the SDP model on larger problem instances. As a modification,
in [6] the authors applied the Approximate Dynamic Programming (ADP) tech-
nique to solve the TpTRP, which allows to work on the continuous state space thus
overcoming the curse of dimensionality introduced by the discretization. With the
ADP model, medium sized TpTRP instances can be solved within reasonable time.

This work follows the study in [6], where we intend to develop an ADP model
based aggregation algorithm to make the real sized TpTRP problem tractable.
The focus of this work is on the investigation of the parameter structure in the
original discrete ADP model given by [6], and the resulting Bézier Curves/Surfaces
aggregation of the original ADP model. In the remainder of this paper, we firstly
give the parameters of the TpTRP problem and its basic SDP modelling elements
in Section 2. In Section 3, we give a brief introduction to the ADP technique and
build the ADP model. Then we analysis the problem of the current ADP model and
show how to exploit its special structure of data to improve it with Bézier Curves



ADP WITH BEZIER CURVES/SURFACES FOR TPTRP 3

in Section 4. Section 5 gives the numerical results and provides a stronger — Bézier
Surfaces aggregation model, which makes the real-world sized instances tractable.
Finally we give conclusions in Section 6.

2. THE TOP-PERCENTILE TRAFFIC ROUTING PROBLEM

This section gives a formal description of the TpTRP parameters and defines the
main modelling elements in the dynamic programming model formulation.

2.1. Notations and Assumptions.

Problem parameters.

I,]I| =n : The set of network providers.

I" : The set of time intervals.

q : The percentile parameter.

0 = ||T'| * ¢]: The index of the top-percentile time interval.

¢;,t € I : The per unit cost charged by network provider 7 on the top-
percentile traffic.

In this work, we assume that all network providers divide the charge period
equally into |T'| time intervals. Network providers use pure top-percentile pricing
with parameter ¢, namely the cost charged on the ISP depends solely on the 6-th
highest, volume of traffic that has been sent to network provider ¢. It is worthwhile
to point out that, under this assumption, the ISP can ship several time intervals’
traffic via a network without being charged, provided traffic shipped during the
top-percentile time interval is zero. We also assume that there is no upper bound
on the volume of traffic that can be shipped to each network provider, and no failure
occurring in any network during the charge period.

e 17 7 €T : The volume of traffic in time interval 7.

We assume that before the routing decision for period 7 is made, T7(w") is a
random variable depending on the random event w”. When the random event &7
becomes known, we use 77 = T7(w") to represent the realisation of T7.

State variables and value function. In our problem, at the beginning of time interval
7, we know all the previous realisations of traffic volumes T"',t =1,...,7—1 and
routing decisions 2%, ¢ = 1, ...,7—1. The implied usage 7% = T}(T*, 2%),t =1, ...,7—
1 of network i can be computed. Then a combination of {Tﬂt =1,.,7—1;i =
1,...,n} defines the current state S™ of the system. We use TfT to represent the
j-th highest volume of traffic in T¢,¢ = 1,...,7 — 1 and rewrite S7 = {T5T|z =
1,eamn;j=1,..,7—1}

However, under pure top-percentile pricing policy the cost is solely determined by
the 6-th highest volume of traffic shipped by every network provider, at the end of
the charging period. We can see that at any time interval 7, only traffics which are
greater than the current 6-th volume of traffic can be the 6-th highest in later stages,
thus have an influence on the final cost. Instead, any traffic which is no higher than
the current #-th volume of traffic (namely, traffics Tg’T,j =60+1,...,7—1 at time
interval 7) has no impact on the final cost. Noting this, we delete this redundant
information from the state space, which leads to the state at 7 being described by

ST={T77|i=1,..,n;5=1,...,0}.



4 ANDREAS GROTHEY, XINAN YANG

Namely the dimension of the state space is equal to nf.

The value function V,(S7) represents the expected cost for the ISP, given state
S7 at the beginning of time interval 7 and optimal decisions in all future time
intervals.

Decision variables.
e 27,7 € I' : The routing decision for time interval 7.

In our model, z” is the decision made on the proportional routing of the ‘addi-
tional traffic’ '. Given a state ST = {777}, it is obvious that if we send no more
than Tio’T to provider i then the system will remain in this state for time inter-
val 7 + 1. The additional traffic represents the amount of traffic exceeding Tf’T
that cannot be sent without affecting the current 6-th highest volume of traffic of
any network provider. Making decision on the additional traffic allows us to use
most of every network provider, thus is appropriate. A detailed justification of this
argument is given in [6]. The feasible decision set for time interval 7 is thus,

X" =A{af,25, ., 2|0 <a] <LViel,Y o] =1}
iel
When implementing a decision ", we allocate the random traffic 77 according
to the following rule:

i . i+l N
(1) If Z:l T <17 < Zle’T for some i € I, we send:
1= 1=
o NCWTT — Tf’T to network provider 1 < i < i,

. (N ~
o NEWTT =TT — 3 Tf’T to network provider i + 1,
i=1
o "WTT =0 to network provider ¢ > i+ 1.
(2) 17> S TP7, we send:

i€l
o W T =TT 4 aT(T7 — S TP7) to provider i € 1.
iel
Namely decision z] means we send at most 17, ,, = Tf’T + 2ITaqqa(ST) to

provider ¢ during 7.

3. APPROXIMATE DyYNAMIC PROGRAMMING MODEL

Given the definitions of state representation and feasible decision set, the Tp-
TRP can be solved by dynamic programming. Starting from the final time stage,
the expected future cost and optimal routing decision for all possible states can
be computed by stepping backwards though time. However, traditional dynamic
programming is only applicable for discrete state spaces. The discretization of the
state space combined with the large dimension of the state space will result in a
large number of states, which prevents large sized instances being solved.

To avoid this problem, we have suggested an ADP model in [6]. It replaces the
look-up table representation of the value function by a continuous regression model,
thus reduces the number of parameters required to be estimated. During every
iteration, we follow a new sample path and make routing decisions according to

IThe additional traffic is defined as: Tagq(S™,T™) = max{T7 — 3 177", 0}.
i€l



ADP WITH BEZIER CURVES/SURFACES FOR TPTRP 5

the current value function estimation, then update the regression model iteratively
with a stochastic gradient algorithm until the value function estimation converges.
This makes the process more efficient as it focuses on the states which are more
likely to be visited as well as significantly reducing the number of parameters in
the model.

3.1. ADP model. The basic Approximate Dynamic Programming algorithm is
summarised below [9]:

Step 0. Initialisation:
Step Oa. Build a initial value function approximation VT(O)(ST) for all time in-
tervals 7.
Step 0Ob. Choose an initial state S(ll).
Step Oc. Set m = 1.
Step 1. Choose a sample path w,,) = (w(lm), ...,wm)).
Step 2. For 7 =0,1,2,...,|T| do:
Step 2a. Solve

(3.1) o = min (Bureor VI (S7HIST,), 07 27)).

Step 2b. Update the value function approximation VT(mfl)(ST) with the value
of 8™,

Step 2c. Compute S(TJ)l(S(Tm),w(Tm),aA:T), where &7 is the optimal solution of
(3.1).
Step 3. If we have not met our stopping rule, let m =m + 1 and go to step 1.

Specifically, we approximate the value function by linear regression model in
Step Oa:

(3:2) V(S =65 +> Y BT,

iel 1<5<0

which means that we suppose the value function changes linearly with every entry
of the state variable. The update used in Step 2b is derived from the stochastic
gradient algorithm and given by:

(3.3) B =80 — a4 [VIMTI(ST) — 00V gon - VMU (ST,

where the updating stepsize ., is defined by the McClain’s formula (@ is a specified
parameter):

MC
aMC _ am—l
" (14 M — @)

The decision problem given in Step 2a is built with the ‘current’ estimation of
parameters 3"~1) namely parameters updated with the previous m — 1 iterations.
Due to the requirement of reordering entries in state variable after a new traffic
is allocated, the dynamic step from one time interval to the next (in Step 2a) is



6 ANDREAS GROTHEY, XINAN YANG

non-trivial. As a result, the decision problem in Step 2a is non-convex, which makes
it difficult to solve to global optimality. (a detailed discussion on this issue is given
in [6]). Thus in the ADP model we suggested to solve the decision problem by a
simple discretization of the decision space, i.e., generating several discrete decisions
(for example ™ = 0.0,0.1,0.2...1.0), and finding the best one by enumeration.

As the stochastic gradient algorithm typically converges rapidly at the beginning
and then vibrates with noise, in this work we check for convergence of the ADP
model by evaluating the mean cost over blocks of iterations (e.g. blocks of every
100 iterations). Once we observe the mean cost changes mainly with noise instead
of decreasing / increasing rapidly, we stop and treat the current model as converged
model. This forms the stopping criterion in Step 3.

3.2. Problem size. As shown in formula (3.2), for every time interval 7 we set a
single value function estimation V, to approximate V,. With this ‘discrete’ ADP
model (where the regression parameters are discrete in time), TpTRP instances
up to 86 periods can be trained (achieving convergence of the § weights) within
reasonable time (see Table 1). However, for larger sized instances it is still hard.
Though the curse of dimensionality is avoided in the discrete ADP model, the speed
of achieving convergence depends on the number of parameters to estimate. From
Table 1 we can see that the number of regression parameters required in the discrete
ADP model grows quadratically with the number of time intervals. This means it
will take several hours to achieve convergence for the 432-period model.

Ind Parameters No. of 8s Convergence
) T 0 I'| I'(0I +1) | Tterations Time
Ins.2 43 43 3 2 301 200,000 99.674s
Ins.2 86 86 5 2 946 500,000 515.743s
Ins.2 432 432 22 2 19440 - -
Ins.2 4320 | 4320 216 2 1870560 - -

Table 1: Size of the ADP model and its regression information

To solve this problem, we suggest to aggregate the regression coefficients 3]
(which are currently discrete in 7) and 3] ; (which are currently discrete in directions
i, 7 and 7) over time intervals, namely to replace the 57, B7; by functions Bo(T)
Bi,;(T) to reduce the number of parameters to estimate.

4. TIME-AGGREGATED ADP MODEL

To guide the choice of good approximating functions Go(7), 8;;(7), firstly we
have a look at the optimal 7, 8] ; for an example of the discrete ADP model (for
the detail of this ADP model please refer to [6]).

Figure 4.1 shows how the optimal 57, 37, vary with time 7 for the 86-period
Instance 2 (for instance parameters see Table 1). Every point shows an estimation
of By, Bi; at some time point 7 in the trained model. It is obvious that every
single (o, Bi,; has its time varying pattern, which is smooth (or near smooth) thus
can be approximated with less parameters. The purpose of this study is to replace
the discrete values 37, 37, by approximating function Bo(T), B ;(T) with a small
number of parameters, which are updated by the normal ADP iteration.



ADP WITH BEZIER CURVES/SURFACES FOR TPTRP 7

(a) Converged regression coefficients 3j in 86-period Instance 2

®

oo+ o+

> > >
oo+ o+

> PP

>
-
>

2 et

ey M
1 .
. iy iy
oD -l
-1 -1
0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80

T T

(b) Converged regression coefficients B ; in 86- (¢) Converged regression coefficients 3 ; in 86-
period Instance 2 period Instance 2

Figure 4.1: Traffic distribution used in testing instances

4.1. Bézier Curve. In this work we suggest to use Bézier Curves approximating
functions. Bézier curves were widely publicised in 1962 by the French engineer
Pierre Bézier, who used them to design automobile bodies [3]. A Bézier Curve is
a parametric curve that is frequently used to produce curves which appear reason-
ably smooth. Mathematically, Bézier Curves approximate polynomials depend on
certain control points. Given a large enough number of properly selected control
points, any smooth function can be approximated by Bézier Curve to arbitrary
accuracy.

The Bézier Curve of degree K can be generated as follows. Given control points
Py, Py, ..., Pk, the Bézier Curve is the set of points satisfying:

B =% (§ ) @ia- 0

k=1
=(1—-u)fPo+ ( [1( ) 1 —uw) X tuPy + ...

K
ot < K—1 ) (1= w)(w) " Pre1 +u P, u € [0, 1],

where ( ka > is the binomial coefficient.



8 ANDREAS GROTHEY, XINAN YANG

4.2. An example. In our model, we use Bézier Curves in (7, §)-space to estimate
the regression parameters 3; ;(7). Given a (fixed) set of T-components of the control

points {f'i’fj, k =1,..,K} and parameters @Ifj, the Bézier Curve model for 3; ;(7)
is

(o )= (e ().

k=1
With this model, in order to find §; ;(7), for any given 7 we need to solve a Kth

degree polynomial equation to find its root u, € [0,1], then calculate the value of
Bi,; (1) with u,.

10 T

B

Eh Bezier Curve estimation }
8 *  control points

7k 4
6 4
5F 4

(=8
4+ 4
3t 4
*
2F 4
ir ‘//\——
OF * % *
1 L L L L L L L L
0 10 20 30 40 50 60 70 80

Figure 4.2: Comparison of original discrete values and the Bézier Curve approximation
with K =5

Figure 4.2 shows an example of how the 5-degree Bézier Curve works in the
estimation of (1 3(7), taken from the instance shown in Figure 4.1. We can see
that for the given choice of {ﬁfj,k = 1,..,K}, the 5-degree Bézier Curve can
approximate the discrete set of 3] 5 reasonably well by a continuous curve. This
means we can replace the original discrete regression model (with 86 coefficients
to estimate: (5,7 = 1, ...,86) by a continuous function with only 5 parameters
(ﬂf?,, k=1,...,5) to estimate. This reduces the size of the problem, thus speeding
up the convergence of the ADP model.

4.3. ADP-Bézier-Curve model. Now we describe the aggregated ADP-Bézier-
Curve algorithm we use in this work.

Initialisation — Step Oa. For the simplicity and generality of the model, in this
work we use the Bézier Curve model with fixed values {#*,k = 1,..., K}, while
updating values {ﬂﬁj,k = 1,.., K} iteration by iteration. Note that the set of



ADP WITH BEZIER CURVES/SURFACES FOR TPTRP 9

{ﬂﬁj, k=1,.., K} is dependent on indexes i and j while {#* k = 1,..., K'} is not.
Given K control points, as initialisation we set {#¥,k = 1,..., K} equally among
the charging period [0, |T'[]:

k

~k
==I'k=1,..,K
T K| |7 Y Y )

and all the unknown ﬂfj are initialised to 0.
Asthe set {#%,k =1, ..., K} does not change with the iterations, we can calculate
the solutions u, of polynomial equations:

T:f(f)wwaﬂmK%k

k=1
before the updating scheme, to find the root u, € [0,1] for all time intervals 7.

Decision problem — Step 2a. At time interval 7, we need to solve the decision
problem based on the current value function estimation to generate the optimal
routing decision for this time interval’s traffic. In the ADP-Bézier-Curve model,
the value function estimation (3.2) is still assumed to be a linear regression function
of state variables. The only difference from before is that the regression parameters

7 ;S, are now approximated by Bézier Curves (4.1). Thus to get the current value
function estimation (3.2), we firstly need to calculate all the current estimation

(estimation after m — 1 iterations) of the . j values using:

K3

K
wn AT =30 ) el

k=1
Updating scheme — Step 2b. The parameter update in Step 2b. now becomes:

ky(m) _ ok, (m—1) S(m=1) gry _ ~(m) 5(m=1) a7 (m—1)
ﬂi,j —ﬂi,j —Oém—l[V-r (S )—’U-,— ]VBE,T;_U -rK (S )Vﬁf';;.(m_l)ﬂi,j

k (UT)k(l _U'T)K_ka
forall k=1,.., K.

Thus in the aggregated ADP model every time we get a sample estimation of
the value function 9, (V7 € [0,|T'|]), we can update all ﬂﬁj,k =1,..., K at once,
which accelerate the convergence speed significantly.

= " = [T 05T - o) 17

5. NUMERICAL RESULTS

5.1. Test Problems. In this section we discuss the numerical results of applying
the ADP-Bézier-Curve algorithm. We start by the TpTRP instances with 86-period
from [6]. For clarity, we firstly characterise and index these instances which are
examined in the later part of this section.

Table 2 summarises the instances used. In all instances, we assume that we
divide the modelling region into 86 time intervals and charges are based on the
time interval with the 5th (¢ = 5%) highest volume of traffic. In all cases we use
2 network providers (n = 2) with costs ¢; = 10,¢co = 12. The instances differ by
the assumptions made on the random traffic. In instance 2 and 4 the traffic in
every period follows the same uniform (U(6000,14000) in Instance 2) or normal



10 ANDREAS GROTHEY, XINAN YANG

Index | Parameters Stochastic Information
N n distribution time dependency
Ins.2 | 86 5 2 U (6000, 14000) iid.
Ins.3 | 86 5 2 uniform see Fig. 5
Ins.4 | 86 5 2 | truncated N(10000,10°) iid.
Ins.5 | 86 5 2 truncated normal see Fig. 6

Table 2: List of TpTRP Instances

volumey volumey

14000) 14000]

} -
- } -
; } } ;
- ;

° 1 2 3 a4 5 6 7 a 9 10 timeinterval 1 2 a 4 5 3 7 B 9 10 timeinterval

(a) Upper and lower bounds for uniform dis- (b) Mean and 99.7% (£30) confidence re-
tributions in Ins.3 gion for normal distributions in Tns.5

Figure 5.1: Traffic distribution used in testing instances

(N(10000,10°) in Instance 4) distribution. Instance 3 and 5 on the other hand,
use traffic distributed according to a time varying uniform or normal distribution.
The parameter for this time varying pattern is displayed in Figures 5.1. Note that
Instances 4 and 5 use a truncated normal distribution in which traffic outside the
99.7% (+30) confidence region is projected onto the boundary of the region to avoid
negative traffic volumes.

5.2. Numerical results on 86-period TpTRP instances. In this section we
evaluate the ADP-Bézier-Curve model by testing it on several instances with 86 pe-
riods. For every testing instance we build its own ADP-Bézier-Curve model, train
this model with random scenarios until it converges, then test the resulting routing
policy on a simulation of 1,000,000 random scenarios taken from the original dis-
tribution. The routing policy given by this model is indicated by ADPRP_BC in
the following tables. All the results are compared with the original discrete ADP
model developed in [6], and three naive routing policies summarised below:

e SRP - Single-homing Routing Policy, i.e. send everything to the cheapest
network provider provider 1;

e TMRP - Trivial Multi-homing Routing Policy, i.e. send randomly 6 — 1
traffics to the expensive provider and all the rest to the cheaper one. In
this way the ISP is only charged by the cheapest network provider, but uses
the free time intervals of all network providers;

e DRP - Deterministic Routing Policy, i.e. assuming we know all traffics in
advance. The optimal routing policy (as proved in [5]) is to send the § — 1
highest traffics to the expensive provider and the rest to the cheaper one.
Note that as we assume that we have full knowledge of the traffic ahead in



ADP WITH BEZIER CURVES/SURFACES FOR TPTRP 11

time, the DRP is not implementable. It provides us with lower bound on
all the stochastic routing policies.
Table 3 shows the comparison of mean cost of implementing several routing
policies, where K indicates the number of control points in the ADP-Bézier-Curve
model.

Ind. SRP TMRP ADPRP ADPRP BC DRP

133595.05+3.13
132739.81+£2.77 131727.00+2.60
132809.52+2.68

Ins.2 86 135404.34+£1.98 135181.68+£2.08 132902.35+2.71

Ins.2 216 135945.63+1.19 135749.17+1.25 - 133212.44+1.71 132258.12+1.60

Tns.2 432 135935.061+0.84 135727.89+0.88 - 132965.84+1.28 132054.59+1.15

129980.79+4.65
128400.82+3.85 126686.15+3.64
129645.63+3.67

Ins.3_86 132585.06£3.00 131588.78+£3.35 129071.224+3.57

Ins.3 216 133663.71+£1.77 132838.35+1.98 - 130575.08+1.98 127902.03+2.27

Ins.3 432 133770.80+1.24 132930.47+1.39 - 129602.03+1.88 127826.36+1.60

114614.44+2.52
113631.76+2.16 112833.05+1.84
113680.34+2.11

Ins.4_86 116104.124+2.22 115904.52+2.24 113892.97+2.46

Ins.4 216 116549.93+1.44 116319.57+£1.46 - 113952.68+1.37 113091.56+1.18

Ins.4:432 116454.96+1.02 116212.32+1.03 - 113844.214+1.07 112898.464+0.83

123850.12+2.95
122405.06+2.72 119310.87+1.97
120497.46+2.22

Ins.5_86 123039.58+2.33 122175.78+2.40 121002.27+2.38

Ins.5 216 123705.80+1.50 122906.99+1.54 - 120918.74+1.40 119876.40+1.25

mmmuwaamuwuamawuumawx

Ins.5 432 123720.58+1.05 122900.68+1.08 - 120906.23+1.32 119804.31+0.87

Table 3: Comparison of mean cost (+ s.d.) of discrete ADPRP and ADP with Bézier
Curve

Generally speaking, the routing policy generated by the ADP-Bézier-Curve model
performs well. In almost all cases the ADPRP_BC routing policy outperforming
the trivial routing policies, sometimes even better than the ADPRP. Specifically,
the ADPRP_ BC with K = 4 works fine for Instance 2, 3 and 4, while K = 5
seems better for Instance 5. With the best selection of K, mean costs given by
ADPRP BC can be (in most cases) even less than the ADPRP generated with the
discrete ADP model.

In addition to the comparison with other routing policies, it is also worthwhile
to point out that the performance of ADP-Bézier-Curve model is not necessarily
getting better with the number of control points K, though it should be true in our
expectation. Look at the results for the 86-period instances, we can see that the
ADPRP BC with K = 5 might be a little worse than the one with K = 4. This is
because no matter how many control point we use in the Bézier Curve model, we
always set their 7-components equidistant within the charging period. This might
make the position of control points in the larger model worse than the ones in the
smaller model in the approximation of function shape, especially in cases when K
is small. Nevertheless, generally speaking the performance of ADP-Bézier-Curve
model is getting better with K, though with some noises due to the equidistant
setting up of control points.

Table 4 compares the statistics on solution time of the ADP-Bézier-Curve model
with the original discrete ADP model with four 86-period instances. The columns
denoted by Gs show the number of regression parameters to be estimated in either
model. We can see that the ADP-Bézier-Curve model reduces this value by a factor
of around 20 for the 86-period instances. In addition to this, in the ADP-Bézier-
Curve model the number of (s increases linearly with the instance size (given the



12 ANDREAS GROTHEY, XINAN YANG
Ind. ADP discrete ADP BC
Bs Iterations Time T/1 K [Bs [Iterations Time T/1

3 32 3,000 6.952s 0.0023s
Ins.2 86 946 500,000 515.743s 0.0010s | 4 42 6,000 13.689s 0.0023s
B 5 52 6,000 14.743s 0.0025s
Ins.2 216 4968 - - - 4 90 4,000 62.285s 0.0156s
Ins.2 432 | 19440 - - - 4 180 3,000 252.951s  0.0843s
3 32 3,000 6.051s 0.0020s
Ins.3 86 946 800,000 748.245s8 0.0009s | 4 42 5,000 10.016s 0.0020s
B 5 52 5,000 10.305s 0.0021s
Ins.3 216 4968 - - - 4 90 3,000 38.535s 0.0128s
Ins.3 432 | 19440 - - - 4 180 3,000 211.739s  0.0706s
3 32 4,000 96.594s 0.0241s
Ins.4 86 946 1,800,000 13590.433s  0.0076s | 4 42 6,000 158.715s  0.0265s
5 52 7,000 187.663s  0.0268s
Ins.4 216 4968 - - - 4 90 7,000 836.776s  0.1195s
Ins.4 432 | 19440 - - - 4 180 4,000 2349.898s 0.5875s
3 32 4,000 70.995s 0.0177s
Ins.5 86 946 2,000,000 14351.873s  0.0072s | 4 42 4,000 73.869s 0.0185s
5 52 5,000 93.914s 0.0188s
Ins.5 216 4968 - - - 5 112 6,000 732.712s  0.1221s
Ins.5 432 | 19440 - - - 5 225 3,000 1810.346s  0.6034s

Table 4: Comparison of running time of ADPRP and ADPRP_BC

same number of control points used), as opposed to quadratically in the discrete
ADP model. Consequentially, the ADP-Bézier-Curve model can be trained in a
fraction of the time required for the discrete ADP model, despite the fact that a
single iteration (given in column T/I) takes around twice the time longer than the
discrete ADP model.

Results of mean cost and running time on larger instances are summarised in
Table 3 and 4 as well. We can see with the current ADP-Bézier-Curve model,
TpTRP instances up to 216 periods can be solved within reasonable time (around
10 mins). However, for larger instances (e.g. 432-period) the running time is still
long (though the routing policies generated performs equally well), which prevents
the application of the ADP-Bézier-Curve model to larger problems.

5.3. Two dimensional approximation with Bézier Surface. From Table 4
we can see that although the number of control points (K) stays the same with
increasing problem size, the number of s still increases linearly with 6. For real
sized instances which possesses n = 2 network providers, |T'| = 4320 time intervals
and 6 = 215, it requires K - n(f + 2) = 434K regression parameters. Thus for
larger instances, the current ADP-Bézier-Curve model is still not compact enough
to be efficient. To reduce the problem size further, in this section we extend the
aggregation to two dimensions with Bézier Surfaces.

The higher dimensional Bézier Curve is called a Bézier Surface. Figure 5.2 gives a
two dimensional view of Figure 4.1(b), which shows how the 7 ; change in direction
7 and j (j is the index of traffic while traffic volumes are in non-decreasing order).
Comparing with Figure 4.1(b), we see that the surface is smooth in j-direction as
well, thus should be well approximated with less than 6 parameters.

In this part, we intend to approximate the surface shown in Figure 5.2 with a
Bézier Surface, and then integrate it into the ADP model. We call this model, the
ADP-Bézier-Surface model. The control points in the Bézier Surface model are now
defined as (1,7, 3) and given by a (fixed) coordinate (7F,;7) in (7, 5)-space and a

2



ADP WITH BEZIER CURVES/SURFACES FOR TPTRP 13

Figure 5.2: Converged regression coefficients 7 ; in 86-period Instance 2

corresponding parameter 65”. Assuming that we set K 7-components of control
points {#¥.k = 1,..., K} and R Jj-components of control points {j},r =1,...,R},

the Bézier Surface approximation to 5;(7, ) is given by

M;j) =§I_(j”§_jl(l,§><u7>k<1—uaf<’C(f)(vjm—vj)“ 5Jk ,

< Ik( > (ur)E(1 — u ) K% #F = 7 and
. R R r R—r Or .

vj € [0,1] is the root of 21 , ()" (1 —v;) =7 g7 = 4.

Similarly to the ADP-Bézier-Curve model, we fix the values of {#% k =1,

and {j’", r=1,..., R} for all iterations:

K
where u, € [0,1] is the root of equation >
k=1

e



14

and iteratively update the values of ﬂf” (which are initialised to 0) to approximate

ANDREAS GROTHEY, XINAN YANG

Bi(7,7). The updating formulation is thus:

ﬁkvra(m)

(2

_ ﬁf,r,(m—l) . amil[VT(m—l)(ST) .

— ﬁf,’{’,(?ﬂ*l) _ Ozm_l[‘Z—(mil)(ST) _

(%

o™l

(4
Jj=

1

o)

(Ven v snyv grin—n B

.3

(m—1)

)]

)= (@ () -t

for all

k=1,..K;r=1,...,R.

Numerical results on instances with 432 periods are shown in Table 5 and 6.

Ind.

SRP

TMRP

ADPRP BC

ADPRP BS

DRP

Ins.2 432
Ins.3 432
Ins.4_ 432
Ins.5_ 432

135935.06+0.84
133770.80+1.24
116454.96+£1.02
123720.58+1.05

135727.894+0.88
132930.47+1.39
116212.324+1.03
122900.68+1.08

132965.84+1.28
129602.03+1.88
113844.214+1.07
120906.23+1.32

132931.12+1.26
129964.61+1.75
113829.03+1.05
120934.344+1.20

132054.59+1.15
127826.36+1.60
112898.46+0.83
119804.314+0.87

Table 5: Comparison of mean cost (+ s.d.) of ADPRP_BC and ADPRP_BS on 432-

period instances

Ind. | K Bs Iterations Time T/1 K R (s Iterations Time T/1
Ins.2 432 4 180 3,000 252.951s 0.0843s 4 3 28 1,000 90.013s 0.0900s
Ins.3 432 4 180 3,000 211.739s 0.0706s 4 3 28 1,000 75.648s 0.0756s
Ins.4_ 432 4 180 4,000 2349.898s 0.5875s 4 3 28 1,000 684.169s 0.6842s
Ins.5:432 5 225 3,000 1810.346s 0.6034s 5 3 35 1,000 752.156s 0.7522s
Table 6: Comparison of running time of ADPRP_BC and ADPRP_BS on 432-period

instances

We can see that the routing policies generated with the ADP-Bézier-Surface
model can be compared with their counterparts of ADP-Bézier-Curve model, which
are all better than any naive routing policy. However, Table 6 shows the ADP-
Bézier-Surface model saves about 2/3 of the training time of the model, thus making
the TpTRP instances with 432 periods solvable within reasonable time.

5.4. Real-sized Instances. Though we make the above aggregation to reduce the
number of regression parameters, it is still hard to solve the real-sized problem with
the current ADP-Bézier-Surface model. We can see from Table 6 that the number of
iterations we need to train the model is significantly reduced from the original ADP
model. The only problem left is the long running time it requires to go through
every iteration, where we have to solve |I'| (in real-sized instances is 4320) decision
problems and then update the value function estimation.

As an alternative, we can simplify the solution step by reducing the time to
solve decision problems. Instead of solving the decision problem for every time
interval, for the real-sized problem we solve one decision problem for every 10 time
intervals and use this decision for all these 10 time intervals. As the regression
parameters change smoothly with time, this simplification will not introduce large
errors. Numerical results (tested on 100 random scenarios) are shown in Table 7
and 8.



ADP WITH BEZIER CURVES/SURFACES FOR TPTRP 15
Ind. SRP TMRP ADPRP BS DRP
Ins.2 4320 136012.25+27.86 135812.07+£29.09 133550.22+£34.52 132029.70£39.71
Ins.3_ 4320 133900.08+38.82 133075.17+£42.18 130901.60+£41.23 127857.37+£46.14
Ins.4 4320 116477.31+32.59 116228.23+33.36 114042.22434.89 112820.29424.56
Ins.5 4320 123733.71+28.14 122892.62+33.26 120994.18+32.10 119768.49+24.52

Table 7: Comparison of mean cost (£ s.d.) of ADPRP BS on 4320-period instances

Ind. [ K R (s Iterations Time T/I
Ins.2 4320 4 6 52 300 2036.554s 6.7885s
Ins.3_4320 4 6 52 300 1527.347s 5.0912s
Ins.4 4320 4 6 52 350 3801.735s 10.8621s
Ins.5 4320 5 6 65 400 3741.024s 9.3526

Table 8: Comparison of running time of ADPRP_BS on 4320-period instances

With the ADP-Bézier-Surface model and a simple decision aggregation step,
real-sized TpTRP instances are solvable, providing very good routing policy for
all four instances with different distributions. Due to the small number of control
points we used in the ADP-Bézier-Surface model, it can be trained after several
hundred of iterations within around 1 hour, while calculating the optimal routing
policy from the trained model for a given set of observed traffic required 5 — 10
seconds, comparable to one training iteration. Indeed, while applying the trained
model as a routing oracle, the § update can be left in place at (virtually) no extra
cost to continually improve the model.

6. CONCLUSIONS AND FUTURE WORKS

In this work, we achieved to modify the original discrete ADP model for the
TpTRP by aggregating regression coefficients 3 over both time interval 7 and index
of traffic order j with Bézier Surfaces. This reduces the number of parameters
in the ADP model, thus drastically improves the model. The TpTRP instances
up to 432-period are tractable with this ADP-Bézier-Surface model, giving routing
policies which perform better than all naive routing policies.

For real-size problem (which possesses 4320 time intervals, network providers
charge the ISP based on the 216th highest volume of shipped traffic), we developed
a way to aggregate decision problems, thus accelerate the speed of going through
every single iteration and make it solvable with the ADP-Bézier-Surface model.

REFERENCES

[1] M. BaagNnuLo, A. GARCIA-MARTINEZ, J. RODRIGUEZ, AND A. AzcOrrA, The case for source
address dependent routing in multihoming, Lecture Notes In Computer Science, 3266 (2004),
pp. 237 246.

[2] M. CuarDY, A. OUuoroU, AND T. VANDONSELAAR, Optimization of interconnoction strategy
in top-percentile pricing framework, technical report, Orange Labs, France Telecom, 38-40 rue
du général Leclerc, BP 92130, Issy-les-Moulineaux, 2009.

[3] J. Cuor anp G. ELkaim, Bézier curves for trajectory guidance, World Congress on Engineer-
ing and Computer Science, WCECS 2008, San Francisco, CA, Oct.22-24 (2008).

[4] D. GoupenBERG, L. Qru, H. Xir, Y. YanG, AND Y. 7ZHANG, Optimizing cost and per-
formance for multihoming, ACM SIGCOMM Computer Communication Review, 34 (2004),
pp. 79-92.



16 ANDREAS GROTHEY, XINAN YANG

[5] A. GroTHEY AND X. YaNg, Top-percentile traffic routing problem by dynamic programming,
Technical Report ERGO-09-006, School of Mathematics, University of Edinburgh, Edinburgh
EH9 3J7, Scotland, UK, March 2009.

[6] A. GroTHEY AND X. YANG, Solving the top-percentile traffic routing problem by approzimate
dynamic programming, Technical Report ERGO-10-003, School of Mathematics, University of
Edinburgh, Edinburgh EH9 3JZ, Scotland, UK, Feb 2010.

[7] J. Levy, H. LEVvY, AND Y. KaHANA, Top percentile network pricing and the economics of
multi-homing, Annals of Operations Research, 146 (2006), pp. 153 167.

[8] A. Opryzko, Internet pricing and the history of communications, Computer Networks, 36
(2001), pp. 493 517.

[9] W. PowerLL, Approzimate Dynamic Programming - Solving the Curses of Dimensionality,
John Wiley & Suns, New Jersey, 2007.



