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t. Multi-homing is used by Internet Servi
e Provider (ISP) to 
on-ne
t to the Internet via di�erent network providers. This study investigatesthe optimal routing strategy under multi-homing in the 
ase where networkproviders 
harge ISPs a

ording to top-per
entile pri
ing (i.e. based on the θ-th highest volume of tra�
 shipped). We 
all this problem the Top-per
entileTra�
 Routing Problem (TpTRP).Solution approa
hes based on Sto
hasti
 Dynami
 Programming requiredis
retization in state spa
e, whi
h introdu
es a large number of state variables.This is known as the 
urse of dimensionality. To over
ome this we suggested touse Approximate Dynami
 Programming (ADP) to 
onstru
t approximationsof the value fun
tion in previous work, whi
h works ni
ely for medium sizeinstan
es of TpTRP. In this work we keep working on the ADP model, useBézier Curves/Surfa
es to do the aggregation over time. This modi�
ationa

elerates the e�
ien
y of parameter training in the solution of the ADPmodel, whi
h makes the real-sized TpTRP tra
table.Keywords: top-per
entile pri
ing, multi-homing, sto
hasti
, routing poli
y,approximate dynami
 programming, Bézier Curves/Surfa
es1. Introdu
tionInternet Servi
e Providers (ISPs) do not generally have their own network infra-stru
ture to route the in
oming tra�
 of their 
ustomers, but instead use externalnetwork providers. Multi-homing is used by ISPs to 
onne
t to the Internet viamore than one network provider. This te
hnique is 
urrently widely adopted toprovide fault toleran
e and tra�
 engineering 
apabilities [1℄.Traditionally network providers 
harge ISPs based on a 
ombination of �xed
ost and per usage pri
ing. Top-per
entile pri
ing is a relatively new and in
reas-ingly popular pri
ing regime used by network providers to 
harge servi
e providers(although it usually appears as part of a mixed pri
ing strategy), that is qui
klybe
oming established [8℄. In this s
heme, the network provider divides the 
hargeperiod, say a month, into several time intervals with equal, �xed length. Then, itmeasures and evaluates the amount of data (tra�
) sent in these time intervals. Atthe end of the 
harge period, the network provider sele
ts the tra�
 volume of thetop q-per
entile interval as the basis for 
omputing the 
ost. For example, if the
harge period (i.e. 30 days) is divided into 4320 time intervals with the length of 10mins, and if top 5-per
entile pri
ing is used, the 
ost 
omputed by top-per
entilepri
ing is based on the tra�
 volume of the top 216th interval.1



2 ANDREAS GROTHEY, XINAN YANGIt has been dis
ussed (e.g. in [8℄) what the optimal multi-homing routing strate-gies look like under traditional pri
ing regimes and whether they are e
onomi
allyviable. In 
ontrast, very little work has been done on network operation under top-per
entile pri
ing. The deterministi
 problem (in whi
h we assume that we knowall the tra�
 volumes in advan
e) has been analysed in [2℄, where the authors inves-tigate the tra�
 routing problem under a 
ombined pri
ing poli
y � top-per
entilepri
ing and �xed 
ost pri
ing. In the sto
hasti
 
ase, Levy et al. in [7℄ develop aprobabilisti
 model and provide analysis of the expe
ted 
osts, thus demonstratethat multi-homing 
an be e
onomi
al e�
ient under top-per
entile pri
ing thoughthey did not investigate the optimal routing poli
y. On the other hand, Goldenberget al. [4℄ fo
us on the development of smart routing algorithms for optimising both
ost and performan
e for multi-homing users under top-per
entile pri
ing. How-ever, in 
ase where tra�
 volumes are not available in advan
e (sto
hasti
 
ase),the algorithm only depends on the predi
tion of one later time interval's tra�
but the expe
tation of the future 
ost. As a 
on
lusion, to the best of our knowl-edge there is no result dealing with the optimal multi-homing routing poli
y undertop-per
entile pri
ing in the sto
hasti
 
ase.The purpose of our study is to �nd the optimal routing strategy in order to allowthe ISP to make full use of the underlying networks with minimum 
ost, when allnetwork providers 
harge the ISP based on the volume of the top q-per
entile timeinterval's tra�
 (pure top-per
entile pri
ing). In the following parts of this paperwe 
all this problem, the Top-per
entile Tra�
 Routing Problem (TpTRP). TheTpTRP is a sto
hasti
 problem, where the ISP 
an not predi
t the volume of futuretime intervals' tra�
. Instead, we assume that the ISP knows the probabilisti
distributions of every time intervals' tra�
 ahead of time.In [5℄, the authors have shown that solving the TpTRP as an Sto
hasti
 Mixed-integer Programming (SMIP) problem is intra
table for all but extremely smallinstan
es, due to the fa
t that modelling of the top-per
entile 
ost requires theintrodu
tion of integer variables within the �nal time stage, whi
h make the prob-lem non-
onvex thus hard to solve. On the other hand, we suggested a Sto
hasti
Dynami
 Programming (SDP) model based on a dis
retization of the state spa
e,whi
h gives routing poli
ies that outperform all available naive routing poli
ies forsmall sized instan
es. However due to the huge number of states arising from thedis
retization of tra�
 volumes, an e�e
t well known as the 
urse of dimensionalityprevents the use of the SDP model on larger problem instan
es. As a modi�
ation,in [6℄ the authors applied the Approximate Dynami
 Programming (ADP) te
h-nique to solve the TpTRP, whi
h allows to work on the 
ontinuous state spa
e thusover
oming the 
urse of dimensionality introdu
ed by the dis
retization. With theADP model, medium sized TpTRP instan
es 
an be solved within reasonable time.This work follows the study in [6℄, where we intend to develop an ADP modelbased aggregation algorithm to make the real sized TpTRP problem tra
table.The fo
us of this work is on the investigation of the parameter stru
ture in theoriginal dis
rete ADP model given by [6℄, and the resulting Bézier Curves/Surfa
esaggregation of the original ADP model. In the remainder of this paper, we �rstlygive the parameters of the TpTRP problem and its basi
 SDP modelling elementsin Se
tion 2. In Se
tion 3, we give a brief introdu
tion to the ADP te
hnique andbuild the ADP model. Then we analysis the problem of the 
urrent ADP model andshow how to exploit its spe
ial stru
ture of data to improve it with Bézier Curves
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tion 4. Se
tion 5 gives the numeri
al results and provides a stronger � BézierSurfa
es aggregation model, whi
h makes the real-world sized instan
es tra
table.Finally we give 
on
lusions in Se
tion 6.2. The Top-per
entile Traffi
 Routing ProblemThis se
tion gives a formal des
ription of the TpTRP parameters and de�nes themain modelling elements in the dynami
 programming model formulation.2.1. Notations and Assumptions.Problem parameters.
• I, |I| = n : The set of network providers.
• Γ : The set of time intervals.
• q : The per
entile parameter.
• θ = ⌊|Γ| ∗ q⌋: The index of the top-per
entile time interval.
• ci, i ∈ I : The per unit 
ost 
harged by network provider i on the top-per
entile tra�
.In this work, we assume that all network providers divide the 
harge periodequally into |Γ| time intervals. Network providers use pure top-per
entile pri
ingwith parameter q, namely the 
ost 
harged on the ISP depends solely on the θ-thhighest volume of tra�
 that has been sent to network provider i. It is worthwhileto point out that, under this assumption, the ISP 
an ship several time intervals'tra�
 via a network without being 
harged, provided tra�
 shipped during thetop-per
entile time interval is zero. We also assume that there is no upper boundon the volume of tra�
 that 
an be shipped to ea
h network provider, and no failureo

urring in any network during the 
harge period.
• T τ , τ ∈ Γ : The volume of tra�
 in time interval τ .We assume that before the routing de
ision for period τ is made, T τ (ωτ ) is arandom variable depending on the random event ωτ . When the random event ω̂τbe
omes known, we use T̂ τ = T τ (ω̂τ ) to represent the realisation of T τ .State variables and value fun
tion. In our problem, at the beginning of time interval

τ , we know all the previous realisations of tra�
 volumes T̂ t, t = 1, ..., τ − 1 androuting de
isions xt, t = 1, ..., τ−1. The implied usage T̂ t
i = T t

i (T̂ t, xt), t = 1, ..., τ−

1 of network i 
an be 
omputed. Then a 
ombination of {T̂ t
i |t = 1, ..., τ − 1; i =

1, ..., n} de�nes the 
urrent state Sτ of the system. We use T̂ j,τ
i to represent the

j-th highest volume of tra�
 in T̂ t
i , t = 1, ..., τ − 1 and rewrite Sτ = {T̂ j,τ

i |i =
1, ..., n; j = 1, ..., τ − 1}.However, under pure top-per
entile pri
ing poli
y the 
ost is solely determined bythe θ-th highest volume of tra�
 shipped by every network provider, at the end ofthe 
harging period. We 
an see that at any time interval τ , only tra�
s whi
h aregreater than the 
urrent θ-th volume of tra�
 
an be the θ-th highest in later stages,thus have an in�uen
e on the �nal 
ost. Instead, any tra�
 whi
h is no higher thanthe 
urrent θ-th volume of tra�
 (namely, tra�
s T̂ j,τ

i , j = θ + 1, ..., τ − 1 at timeinterval τ) has no impa
t on the �nal 
ost. Noting this, we delete this redundantinformation from the state spa
e, whi
h leads to the state at τ being des
ribed by
Sτ = {T̂ j,τ

i |i = 1, ..., n; j = 1, ..., θ}.



4 ANDREAS GROTHEY, XINAN YANGNamely the dimension of the state spa
e is equal to nθ.The value fun
tion Vτ (Sτ ) represents the expe
ted 
ost for the ISP, given state
Sτ at the beginning of time interval τ and optimal de
isions in all future timeintervals.De
ision variables.

• xτ , τ ∈ Γ : The routing de
ision for time interval τ .In our model, xτ is the de
ision made on the proportional routing of the `addi-tional tra�
' 1. Given a state Sτ = {T̂ j,τ
i }, it is obvious that if we send no morethan T̂ θ,τ

i to provider i then the system will remain in this state for time inter-val τ + 1. The additional tra�
 represents the amount of tra�
 ex
eeding T̂ θ,τ
ithat 
annot be sent without a�e
ting the 
urrent θ-th highest volume of tra�
 ofany network provider. Making de
ision on the additional tra�
 allows us to usemost of every network provider, thus is appropriate. A detailed justi�
ation of thisargument is given in [6℄. The feasible de
ision set for time interval τ is thus,

χτ = {xτ
1 , xτ

2 , ..., xτ
n|0 ≤ xτ

i ≤ 1, ∀i ∈ I,
∑

i∈I

xτ
i = 1}.When implementing a de
ision xτ , we allo
ate the random tra�
 T τ a

ordingto the following rule:(1) If ĩ

∑

i=1

T̂ θ,τ
i ≤ T̂ τ <

ĩ+1
∑

i=1

T̂ θ,τ
i for some ĩ ∈ I, we send:

• newT τ
i = T̂ θ,τ

i to network provider 1 ≤ i ≤ ĩ,
• newT τ

i = T̂ τ −
ĩ

∑

i=1

T̂ θ,τ
i to network provider ĩ + 1,

• newT τ
i = 0 to network provider i > ĩ + 1.(2) If T̂ τ ≥

∑

i∈I

T̂ θ,τ
i , we send:

• newT τ
i = T̂ θ,τ

i + xτ
i (T̂ τ −

∑

i∈I

T̂ θ,τ
i ) to provider i ∈ I.Namely de
ision xτ

i means we send at most T τ
i,add = T̂ θ,τ

i + xτ
i TAdd(S

τ ) toprovider i during τ .3. Approximate Dynami
 Programming ModelGiven the de�nitions of state representation and feasible de
ision set, the Tp-TRP 
an be solved by dynami
 programming. Starting from the �nal time stage,the expe
ted future 
ost and optimal routing de
ision for all possible states 
anbe 
omputed by stepping ba
kwards though time. However, traditional dynami
programming is only appli
able for dis
rete state spa
es. The dis
retization of thestate spa
e 
ombined with the large dimension of the state spa
e will result in alarge number of states, whi
h prevents large sized instan
es being solved.To avoid this problem, we have suggested an ADP model in [6℄. It repla
es thelook-up table representation of the value fun
tion by a 
ontinuous regression model,thus redu
es the number of parameters required to be estimated. During everyiteration, we follow a new sample path and make routing de
isions a

ording to1The additional tra�
 is de�ned as: TAdd(Sτ , T τ ) = max{T̂ τ −
P

i∈I

T̂
θ,τ
i , 0}.



ADP WITH BÉZIER CURVES/SURFACES FOR TPTRP 5the 
urrent value fun
tion estimation, then update the regression model iterativelywith a sto
hasti
 gradient algorithm until the value fun
tion estimation 
onverges.This makes the pro
ess more e�
ient as it fo
uses on the states whi
h are morelikely to be visited as well as signi�
antly redu
ing the number of parameters inthe model.3.1. ADP model. The basi
 Approximate Dynami
 Programming algorithm issummarised below [9℄:Step 0. Initialisation:Step 0a. Build a initial value fun
tion approximation V̄
(0)
τ (Sτ ) for all time in-tervals τ .Step 0b. Choose an initial state S1

(1).Step 0
. Set m = 1.Step 1. Choose a sample path ω(m) = (ω1
(m), ..., ω

|Γ|
(m)).Step 2. For τ = 0, 1, 2, ..., |Γ| do:Step 2a. Solve(3.1) v̂(m)

τ = min
xτ∈χτ

(Eωτ∈Ωτ V̄
(m−1)
τ+1 (Sτ+1|Sτ

(m), ω
τ , xτ )).Step 2b. Update the value fun
tion approximation V̄

(m−1)
τ (Sτ ) with the valueof v̂

(m)
τ .Step 2
. Compute Sτ+1

(m) (Sτ
(m), ω

τ
(m), x̂

τ ), where x̂τ is the optimal solution of(3.1).Step 3. If we have not met our stopping rule, let m = m + 1 and go to step 1.Spe
i�
ally, we approximate the value fun
tion by linear regression model inStep 0a:(3.2) V̄τ (Sτ ) = βτ
0 +

∑

i∈I

∑

1≤j≤θ

βτ
i,j T̂

j,τ
i ,whi
h means that we suppose the value fun
tion 
hanges linearly with every entryof the state variable. The update used in Step 2b is derived from the sto
hasti
gradient algorithm and given by:(3.3) β(m) = β(m−1) − αm−1[V̄

(m−1)
τ (Sτ ) − v̂(m)

τ ]∇β(m−1) V̄ (m−1)
τ (Sτ ),where the updating stepsize αm is de�ned by the M
Clain's formula (ᾱ is a spe
i�edparameter):

αMC
m =

αMC
m−1

(1 + αMC
m−1 − ᾱ)

.The de
ision problem given in Step 2a is built with the `
urrent' estimation ofparameters β(m−1), namely parameters updated with the previous m−1 iterations.Due to the requirement of reordering entries in state variable after a new tra�
is allo
ated, the dynami
 step from one time interval to the next (in Step 2a) is



6 ANDREAS GROTHEY, XINAN YANGnon-trivial. As a result, the de
ision problem in Step 2a is non-
onvex, whi
h makesit di�
ult to solve to global optimality. (a detailed dis
ussion on this issue is givenin [6℄). Thus in the ADP model we suggested to solve the de
ision problem by asimple dis
retization of the de
ision spa
e, i.e., generating several dis
rete de
isions(for example xτ = 0.0, 0.1, 0.2...1.0), and �nding the best one by enumeration.As the sto
hasti
 gradient algorithm typi
ally 
onverges rapidly at the beginningand then vibrates with noise, in this work we 
he
k for 
onvergen
e of the ADPmodel by evaluating the mean 
ost over blo
ks of iterations (e.g. blo
ks of every
100 iterations). On
e we observe the mean 
ost 
hanges mainly with noise insteadof de
reasing / in
reasing rapidly, we stop and treat the 
urrent model as 
onvergedmodel. This forms the stopping 
riterion in Step 3.3.2. Problem size. As shown in formula (3.2), for every time interval τ we set asingle value fun
tion estimation V̄τ to approximate Vτ . With this `dis
rete' ADPmodel (where the regression parameters are dis
rete in time), TpTRP instan
esup to 86 periods 
an be trained (a
hieving 
onvergen
e of the β weights) withinreasonable time (see Table 1). However, for larger sized instan
es it is still hard.Though the 
urse of dimensionality is avoided in the dis
rete ADP model, the speedof a
hieving 
onvergen
e depends on the number of parameters to estimate. FromTable 1 we 
an see that the number of regression parameters required in the dis
reteADP model grows quadrati
ally with the number of time intervals. This means itwill take several hours to a
hieve 
onvergen
e for the 432-period model.Parameters No. of βs Convergen
eInd.

Γ θ I Γ(θI + 1) Iterations TimeIns.2_43 43 3 2 301 200,000 99.674sIns.2_86 86 5 2 946 500,000 515.743sIns.2_432 432 22 2 19440 - -Ins.2_4320 4320 216 2 1870560 - -Table 1: Size of the ADP model and its regression informationTo solve this problem, we suggest to aggregate the regression 
oe�
ients βτ
0(whi
h are 
urrently dis
rete in τ) and βτ

i,j (whi
h are 
urrently dis
rete in dire
tions
i, j and τ) over time intervals, namely to repla
e the βτ

0 , βτ
i,j by fun
tions β0(τ),

βi,j(τ) to redu
e the number of parameters to estimate.4. Time-Aggregated ADP ModelTo guide the 
hoi
e of good approximating fun
tions β0(τ), βi,j(τ), �rstly wehave a look at the optimal βτ
0 , βτ

i,j for an example of the dis
rete ADP model (forthe detail of this ADP model please refer to [6℄).Figure 4.1 shows how the optimal βτ
0 , βτ

i,j vary with time τ for the 86-periodInstan
e 2 (for instan
e parameters see Table 1). Every point shows an estimationof β0, βi,j at some time point τ in the trained model. It is obvious that everysingle β0, βi,j has its time varying pattern, whi
h is smooth (or near smooth) thus
an be approximated with less parameters. The purpose of this study is to repla
ethe dis
rete values βτ
0 , βτ

i,j by approximating fun
tion β0(τ), βi,j(τ) with a smallnumber of parameters, whi
h are updated by the normal ADP iteration.
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(
) Converged regression 
oe�
ients βτ
2,j in 86-period Instan
e 2Figure 4.1: Tra�
 distribution used in testing instan
es4.1. Bézier Curve. In this work we suggest to use Bézier Curves approximatingfun
tions. Bézier 
urves were widely publi
ised in 1962 by the Fren
h engineerPierre Bézier, who used them to design automobile bodies [3℄. A Bézier Curve isa parametri
 
urve that is frequently used to produ
e 
urves whi
h appear reason-ably smooth. Mathemati
ally, Bézier Curves approximate polynomials depend on
ertain 
ontrol points. Given a large enough number of properly sele
ted 
ontrolpoints, any smooth fun
tion 
an be approximated by Bézier Curve to arbitrarya

ura
y.The Bézier Curve of degree K 
an be generated as follows. Given 
ontrol points

P0,P1, ...,PK, the Bézier Curve is the set of points satisfying:
B(u) =

K
P

k=1

„

K

k

«

(u)k(1 − u)K−k
Pk

= (1 − u)K
P0 +

„

K

1

«

(1 − u)K−1uP1 + ...

... +

„

K

K − 1

«

(1 − u)(u)K−1
PK−1 + uK

PK, u ∈ [0, 1],where (

K
k

) is the binomial 
oe�
ient.



8 ANDREAS GROTHEY, XINAN YANG4.2. An example. In our model, we use Bézier Curves in (τ, β)-spa
e to estimatethe regression parameters βi,j(τ). Given a (�xed) set of τ -
omponents of the 
ontrolpoints {τ̂k
i,j , k = 1, ..., K} and parameters βk

i,j , the Bézier Curve model for βi,j(τ)is
(

τ
β̄i,j(τ)

)

=

K
∑

k=1

(

K
k

)

(u)k(1 − u)K−k

(

τ̂k
i,j

βk
i,j

)

.(4.1)With this model, in order to �nd βi,j(τ), for any given τ we need to solve a Kthdegree polynomial equation to �nd its root uτ ∈ [0, 1], then 
al
ulate the value of
βi,j(τ) with uτ .
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Bezier Curve estimation
control points

Figure 4.2: Comparison of original dis
rete values and the Bézier Curve approximationwith K = 5Figure 4.2 shows an example of how the 5-degree Bézier Curve works in theestimation of β1,3(τ), taken from the instan
e shown in Figure 4.1. We 
an seethat for the given 
hoi
e of {τ̂k
i,j , k = 1, ..., K}, the 5-degree Bézier Curve 
anapproximate the dis
rete set of βτ

1,3 reasonably well by a 
ontinuous 
urve. Thismeans we 
an repla
e the original dis
rete regression model (with 86 
oe�
ientsto estimate: βτ
1,3, τ = 1, ..., 86) by a 
ontinuous fun
tion with only 5 parameters(βk

1,3, k = 1, ..., 5) to estimate. This redu
es the size of the problem, thus speedingup the 
onvergen
e of the ADP model.4.3. ADP-Bézier-Curve model. Now we des
ribe the aggregated ADP-Bézier-Curve algorithm we use in this work.Initialisation � Step 0a. For the simpli
ity and generality of the model, in thiswork we use the Bézier Curve model with �xed values {τ̂k, k = 1, ..., K}, whileupdating values {βk
i,j , k = 1, ..., K} iteration by iteration. Note that the set of
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{βk

i,j, k = 1, ..., K} is dependent on indexes i and j while {τ̂k, k = 1, ..., K} is not.Given K 
ontrol points, as initialisation we set {τ̂k, k = 1, ..., K} equally amongthe 
harging period [0, |Γ|]:
τ̂k =

k

K
|Γ|, k = 1, ..., K,and all the unknown βk

i,j are initialised to 0.As the set {τ̂k, k = 1, ..., K} does not 
hange with the iterations, we 
an 
al
ulatethe solutions uτ of polynomial equations:
τ =

K
∑

k=1

(

K
k

)

(uτ )k(1 − uτ )K−k τ̂kbefore the updating s
heme, to �nd the root uτ ∈ [0, 1] for all time intervals τ .De
ision problem � Step 2a. At time interval τ , we need to solve the de
isionproblem based on the 
urrent value fun
tion estimation to generate the optimalrouting de
ision for this time interval's tra�
. In the ADP-Bézier-Curve model,the value fun
tion estimation (3.2) is still assumed to be a linear regression fun
tionof state variables. The only di�eren
e from before is that the regression parameters
βτ

i,js, are now approximated by Bézier Curves (4.1). Thus to get the 
urrent valuefun
tion estimation (3.2), we �rstly need to 
al
ulate all the 
urrent estimation(estimation after m − 1 iterations) of the βτ
i,j values using:

β̄
(m−1)
i,j (τ) =

K
∑

k=1

(

K
k

)

(uτ )k(1 − uτ )K−kβ
k,(m−1)
i,j .(4.2)Updating s
heme � Step 2b. The parameter update in Step 2b. now be
omes:

β
k,(m)
i,j = β

k,(m−1)
i,j − αm−1[V̄

(m−1)
τ (Sτ ) − v̂

(m)
τ ]∇

β̄
(m−1)
i,j

V̄
(m−1)
τ (Sτ )∇

β
k,(m−1)
i,j

β̄
(m−1)
i,j

= β
k,(m−1)
i,j − αm−1[V̄

(m−1)
τ (Sτ ) − v̂

(m)
τ ] · T̂ j,τ

i ·

(

K
k

)

(uτ )k(1 − uτ )K−k,for all k = 1, ..., K.Thus in the aggregated ADP model every time we get a sample estimation ofthe value fun
tion v̂τ (∀τ ∈ [0, |Γ|]), we 
an update all βk
i,j , k = 1, ..., K at on
e,whi
h a

elerate the 
onvergen
e speed signi�
antly.5. Numeri
al results5.1. Test Problems. In this se
tion we dis
uss the numeri
al results of applyingthe ADP-Bézier-Curve algorithm. We start by the TpTRP instan
es with 86-periodfrom [6℄. For 
larity, we �rstly 
hara
terise and index these instan
es whi
h areexamined in the later part of this se
tion.Table 2 summarises the instan
es used. In all instan
es, we assume that wedivide the modelling region into 86 time intervals and 
harges are based on thetime interval with the 5th (q = 5%) highest volume of tra�
. In all 
ases we use

2 network providers (n = 2) with 
osts c1 = 10, c2 = 12. The instan
es di�er bythe assumptions made on the random tra�
. In instan
e 2 and 4 the tra�
 inevery period follows the same uniform (U(6000, 14000) in Instan
e 2) or normal



10 ANDREAS GROTHEY, XINAN YANGParameters Sto
hasti
 InformationIndex
|Γ| θ n distribution time dependen
yIns.2 86 5 2 U(6000, 14000) i.i.d.Ins.3 86 5 2 uniform see Fig. 5Ins.4 86 5 2 trun
ated N(10000, 106) i.i.d.Ins.5 86 5 2 trun
ated normal see Fig. 6Table 2: List of TpTRP Instan
es

time interval1 2 3 4 5 6 7 8 9 10

6000

8000

10000

12000

14000

volume

0(a) Upper and lower bounds for uniform dis-tributions in Ins.3 6000

0

8000

10000

12000

1 2 3 4 8 105 6 7 time interval

14000

volume

9(b) Mean and 99.7% (±3σ) 
on�den
e re-gion for normal distributions in Ins.5Figure 5.1: Tra�
 distribution used in testing instan
es(N(10000, 106) in Instan
e 4) distribution. Instan
e 3 and 5 on the other hand,use tra�
 distributed a

ording to a time varying uniform or normal distribution.The parameter for this time varying pattern is displayed in Figures 5.1. Note thatInstan
es 4 and 5 use a trun
ated normal distribution in whi
h tra�
 outside the
99.7% (±3σ) 
on�den
e region is proje
ted onto the boundary of the region to avoidnegative tra�
 volumes.5.2. Numeri
al results on 86-period TpTRP instan
es. In this se
tion weevaluate the ADP-Bézier-Curve model by testing it on several instan
es with 86 pe-riods. For every testing instan
e we build its own ADP-Bézier-Curve model, trainthis model with random s
enarios until it 
onverges, then test the resulting routingpoli
y on a simulation of 1, 000, 000 random s
enarios taken from the original dis-tribution. The routing poli
y given by this model is indi
ated by ADPRP_BC inthe following tables. All the results are 
ompared with the original dis
rete ADPmodel developed in [6℄, and three naive routing poli
ies summarised below:

• SRP - Single-homing Routing Poli
y, i.e. send everything to the 
heapestnetwork provider � provider 1;
• TMRP - Trivial Multi-homing Routing Poli
y, i.e. send randomly θ − 1tra�
s to the expensive provider and all the rest to the 
heaper one. Inthis way the ISP is only 
harged by the 
heapest network provider, but usesthe free time intervals of all network providers;
• DRP - Deterministi
 Routing Poli
y, i.e. assuming we know all tra�
s inadvan
e. The optimal routing poli
y (as proved in [5℄) is to send the θ − 1highest tra�
s to the expensive provider and the rest to the 
heaper one.Note that as we assume that we have full knowledge of the tra�
 ahead in



ADP WITH BÉZIER CURVES/SURFACES FOR TPTRP 11time, the DRP is not implementable. It provides us with lower bound onall the sto
hasti
 routing poli
ies.Table 3 shows the 
omparison of mean 
ost of implementing several routingpoli
ies, where K indi
ates the number of 
ontrol points in the ADP-Bézier-Curvemodel.Ind. SRP TMRP ADPRP K ADPRP_BC DRP3 133595.05±3.13Ins.2_86 135404.34±1.98 135181.68±2.08 132902.35±2.71 4 132739.81±2.77 131727.00±2.605 132809.52±2.68Ins.2_216 135945.63±1.19 135749.17±1.25 - 4 133212.44±1.71 132258.12±1.60Ins.2_432 135935.06±0.84 135727.89±0.88 - 4 132965.84±1.28 132054.59±1.153 129980.79±4.65Ins.3_86 132585.06±3.00 131588.78±3.35 129071.22±3.57 4 128400.82±3.85 126686.15±3.645 129645.63±3.67Ins.3_216 133663.71±1.77 132838.35±1.98 - 4 130575.08±1.98 127902.03±2.27Ins.3_432 133770.80±1.24 132930.47±1.39 - 4 129602.03±1.88 127826.36±1.603 114614.44±2.52Ins.4_86 116104.12±2.22 115904.52±2.24 113892.97±2.46 4 113631.76±2.16 112833.05±1.845 113680.34±2.11Ins.4_216 116549.93±1.44 116319.57±1.46 - 4 113952.68±1.37 113091.56±1.18Ins.4_432 116454.96±1.02 116212.32±1.03 - 4 113844.21±1.07 112898.46±0.833 123850.12±2.95Ins.5_86 123039.58±2.33 122175.78±2.40 121002.27±2.38 4 122405.06±2.72 119310.87±1.975 120497.46±2.22Ins.5_216 123705.80±1.50 122906.99±1.54 - 5 120918.74±1.40 119876.40±1.25Ins.5_432 123720.58±1.05 122900.68±1.08 - 5 120906.23±1.32 119804.31±0.87Table 3: Comparison of mean 
ost (± s.d.) of dis
rete ADPRP and ADP with BézierCurveGenerally speaking, the routing poli
y generated by the ADP-Bézier-Curve modelperforms well. In almost all 
ases the ADPRP_BC routing poli
y outperformingthe trivial routing poli
ies, sometimes even better than the ADPRP. Spe
i�
ally,the ADPRP_BC with K = 4 works �ne for Instan
e 2, 3 and 4, while K = 5seems better for Instan
e 5. With the best sele
tion of K, mean 
osts given byADPRP_BC 
an be (in most 
ases) even less than the ADPRP generated with thedis
rete ADP model.In addition to the 
omparison with other routing poli
ies, it is also worthwhileto point out that the performan
e of ADP-Bézier-Curve model is not ne
essarilygetting better with the number of 
ontrol points K, though it should be true in ourexpe
tation. Look at the results for the 86-period instan
es, we 
an see that theADPRP_BC with K = 5 might be a little worse than the one with K = 4. This isbe
ause no matter how many 
ontrol point we use in the Bézier Curve model, wealways set their τ -
omponents equidistant within the 
harging period. This mightmake the position of 
ontrol points in the larger model worse than the ones in thesmaller model in the approximation of fun
tion shape, espe
ially in 
ases when Kis small. Nevertheless, generally speaking the performan
e of ADP-Bézier-Curvemodel is getting better with K, though with some noises due to the equidistantsetting up of 
ontrol points.Table 4 
ompares the statisti
s on solution time of the ADP-Bézier-Curve modelwith the original dis
rete ADP model with four 86-period instan
es. The 
olumnsdenoted by βs show the number of regression parameters to be estimated in eithermodel. We 
an see that the ADP-Bézier-Curve model redu
es this value by a fa
torof around 20 for the 86-period instan
es. In addition to this, in the ADP-Bézier-Curve model the number of βs in
reases linearly with the instan
e size (given the



12 ANDREAS GROTHEY, XINAN YANGADP_dis
rete ADP_BCInd.
βs Iterations Time T/I K βs Iterations Time T/I3 32 3,000 6.952s 0.0023sIns.2_86 946 500,000 515.743s 0.0010s 4 42 6,000 13.689s 0.0023s5 52 6,000 14.743s 0.0025sIns.2_216 4968 - - - 4 90 4,000 62.285s 0.0156sIns.2_432 19440 - - - 4 180 3,000 252.951s 0.0843s3 32 3,000 6.051s 0.0020sIns.3_86 946 800,000 748.245s 0.0009s 4 42 5,000 10.016s 0.0020s5 52 5,000 10.305s 0.0021sIns.3_216 4968 - - - 4 90 3,000 38.535s 0.0128sIns.3_432 19440 - - - 4 180 3,000 211.739s 0.0706s3 32 4,000 96.594s 0.0241sIns.4_86 946 1,800,000 13590.433s 0.0076s 4 42 6,000 158.715s 0.0265s5 52 7,000 187.663s 0.0268sIns.4_216 4968 - - - 4 90 7,000 836.776s 0.1195sIns.4_432 19440 - - - 4 180 4,000 2349.898s 0.5875s3 32 4,000 70.995s 0.0177sIns.5_86 946 2,000,000 14351.873s 0.0072s 4 42 4,000 73.869s 0.0185s5 52 5,000 93.914s 0.0188sIns.5_216 4968 - - - 5 112 6,000 732.712s 0.1221sIns.5_432 19440 - - - 5 225 3,000 1810.346s 0.6034sTable 4: Comparison of running time of ADPRP and ADPRP_BCsame number of 
ontrol points used), as opposed to quadrati
ally in the dis
reteADP model. Consequentially, the ADP-Bézier-Curve model 
an be trained in afra
tion of the time required for the dis
rete ADP model, despite the fa
t that asingle iteration (given in 
olumn T/I) takes around twi
e the time longer than thedis
rete ADP model.Results of mean 
ost and running time on larger instan
es are summarised inTable 3 and 4 as well. We 
an see with the 
urrent ADP-Bézier-Curve model,TpTRP instan
es up to 216 periods 
an be solved within reasonable time (around10 mins). However, for larger instan
es (e.g. 432-period) the running time is stilllong (though the routing poli
ies generated performs equally well), whi
h preventsthe appli
ation of the ADP-Bézier-Curve model to larger problems.5.3. Two dimensional approximation with Bézier Surfa
e. From Table 4we 
an see that although the number of 
ontrol points (K) stays the same within
reasing problem size, the number of βs still in
reases linearly with θ. For realsized instan
es whi
h possesses n = 2 network providers, |Γ| = 4320 time intervalsand θ = 215, it requires K · n(θ + 2) = 434K regression parameters. Thus forlarger instan
es, the 
urrent ADP-Bézier-Curve model is still not 
ompa
t enoughto be e�
ient. To redu
e the problem size further, in this se
tion we extend theaggregation to two dimensions with Bézier Surfa
es.The higher dimensional Bézier Curve is 
alled a Bézier Surfa
e. Figure 5.2 gives atwo dimensional view of Figure 4.1(b), whi
h shows how the βτ

1,j 
hange in dire
tion
τ and j (j is the index of tra�
 while tra�
 volumes are in non-de
reasing order).Comparing with Figure 4.1(b), we see that the surfa
e is smooth in j-dire
tion aswell, thus should be well approximated with less than θ parameters.In this part, we intend to approximate the surfa
e shown in Figure 5.2 with aBézier Surfa
e, and then integrate it into the ADP model. We 
all this model, theADP-Bézier-Surfa
e model. The 
ontrol points in the Bézier Surfa
e model are nowde�ned as (τ, j, β) and given by a (�xed) 
oordinate (τ̂k

i , ĵr
i ) in (τ, j)-spa
e and a
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orresponding parameter βk,r
i . Assuming that we set K τ -
omponents of 
ontrolpoints {τ̂k

i , k = 1, ..., K} and R j-
omponents of 
ontrol points {ĵr
i , r = 1, ..., R},the Bézier Surfa
e approximation to β̄i(τ, j) is given by





τ
j

β̄i(τ, j)



 =

K
∑

k=1

R
∑

r=1

(

K
k

)

(uτ )k(1−uτ)K−k

(

R
r

)

(vj)
r(1−vj)

R−r





τ̂k
i

ĵr
i

βk,r
i



 ,

where uτ ∈ [0, 1] is the root of equation K
∑

k=1

(

K
k

)

(uτ )k(1 − uτ )K−k τ̂k
i = τ and

vj ∈ [0, 1] is the root of R
∑

r=1

(

R
r

)

(vj)
r(1 − vj)

R−r ĵr
i = j.Similarly to the ADP-Bézier-Curve model, we �x the values of {τ̂k, k = 1, ..., K}and {ĵr, r = 1, ..., R} for all iterations:

{

τ̂k = k
K
|Γ|, k = 1, ..., K,

ĵr = r
R

θ, r = 1, ..., R,



14 ANDREAS GROTHEY, XINAN YANGand iteratively update the values of βk,r
i (whi
h are initialised to 0) to approximate

βi(τ, j). The updating formulation is thus:
β

k,r,(m)
i

= β
k,r,(m−1)
i − αm−1[V̄

(m−1)
τ (Sτ ) − v̂

(m)
τ ][

θ
∑

j=1

(∇
β̄

(m−1)
i,j

V̄
(m−1)
τ (Sτ )∇

β
k,r,(m−1)
i

β̄
(m−1)
i,j )]

= β
k,r,(m−1)
i − αm−1[V̄

(m−1)
τ (Sτ ) − v̂

(m)
τ ]

·

(

K
k

)

(uτ )k(1 − uτ )K−k · [
θ
∑

j=1

(T̂ j,τ
i ·

(

R
r

)

(vj)
r(1 − vj)

R−r)],for all k = 1, ..., K; r = 1, ..., R.Numeri
al results on instan
es with 432 periods are shown in Table 5 and 6.Ind. SRP TMRP ADPRP_BC ADPRP_BS DRPIns.2_432 135935.06±0.84 135727.89±0.88 132965.84±1.28 132931.12±1.26 132054.59±1.15Ins.3_432 133770.80±1.24 132930.47±1.39 129602.03±1.88 129964.61±1.75 127826.36±1.60Ins.4_432 116454.96±1.02 116212.32±1.03 113844.21±1.07 113829.03±1.05 112898.46±0.83Ins.5_432 123720.58±1.05 122900.68±1.08 120906.23±1.32 120934.34±1.20 119804.31±0.87Table 5: Comparison of mean 
ost (± s.d.) of ADPRP_BC and ADPRP_BS on 432-period instan
esInd. K βs Iterations Time T/I K R βs Iterations Time T/IIns.2_432 4 180 3,000 252.951s 0.0843s 4 3 28 1,000 90.013s 0.0900sIns.3_432 4 180 3,000 211.739s 0.0706s 4 3 28 1,000 75.648s 0.0756sIns.4_432 4 180 4,000 2349.898s 0.5875s 4 3 28 1,000 684.169s 0.6842sIns.5_432 5 225 3,000 1810.346s 0.6034s 5 3 35 1,000 752.156s 0.7522sTable 6: Comparison of running time of ADPRP_BC and ADPRP_BS on 432-periodinstan
esWe 
an see that the routing poli
ies generated with the ADP-Bézier-Surfa
emodel 
an be 
ompared with their 
ounterparts of ADP-Bézier-Curve model, whi
hare all better than any naive routing poli
y. However, Table 6 shows the ADP-Bézier-Surfa
e model saves about 2/3 of the training time of the model, thus makingthe TpTRP instan
es with 432 periods solvable within reasonable time.5.4. Real-sized Instan
es. Though we make the above aggregation to redu
e thenumber of regression parameters, it is still hard to solve the real-sized problem withthe 
urrent ADP-Bézier-Surfa
e model. We 
an see from Table 6 that the number ofiterations we need to train the model is signi�
antly redu
ed from the original ADPmodel. The only problem left is the long running time it requires to go throughevery iteration, where we have to solve |Γ| (in real-sized instan
es is 4320) de
isionproblems and then update the value fun
tion estimation.As an alternative, we 
an simplify the solution step by redu
ing the time tosolve de
ision problems. Instead of solving the de
ision problem for every timeinterval, for the real-sized problem we solve one de
ision problem for every 10 timeintervals and use this de
ision for all these 10 time intervals. As the regressionparameters 
hange smoothly with time, this simpli�
ation will not introdu
e largeerrors. Numeri
al results (tested on 100 random s
enarios) are shown in Table 7and 8.



ADP WITH BÉZIER CURVES/SURFACES FOR TPTRP 15Ind. SRP TMRP ADPRP_BS DRPIns.2_4320 136012.25±27.86 135812.07±29.09 133550.22±34.52 132029.70±39.71Ins.3_4320 133900.08±38.82 133075.17±42.18 130901.60±41.23 127857.37±46.14Ins.4_4320 116477.31±32.59 116228.23±33.36 114042.22±34.89 112820.29±24.56Ins.5_4320 123733.71±28.14 122892.62±33.26 120994.18±32.10 119768.49±24.52Table 7: Comparison of mean 
ost (± s.d.) of ADPRP_BS on 4320-period instan
esInd. K R βs Iterations Time T/IIns.2_4320 4 6 52 300 2036.554s 6.7885sIns.3_4320 4 6 52 300 1527.347s 5.0912sIns.4_4320 4 6 52 350 3801.735s 10.8621sIns.5_4320 5 6 65 400 3741.024s 9.3526Table 8: Comparison of running time of ADPRP_BS on 4320-period instan
esWith the ADP-Bézier-Surfa
e model and a simple de
ision aggregation step,real-sized TpTRP instan
es are solvable, providing very good routing poli
y forall four instan
es with di�erent distributions. Due to the small number of 
ontrolpoints we used in the ADP-Bézier-Surfa
e model, it 
an be trained after severalhundred of iterations within around 1 hour, while 
al
ulating the optimal routingpoli
y from the trained model for a given set of observed tra�
 required 5 − 10se
onds, 
omparable to one training iteration. Indeed, while applying the trainedmodel as a routing ora
le, the β update 
an be left in pla
e at (virtually) no extra
ost to 
ontinually improve the model.6. Con
lusions and Future WorksIn this work, we a
hieved to modify the original dis
rete ADP model for theTpTRP by aggregating regression 
oe�
ients β over both time interval τ and indexof tra�
 order j with Bézier Surfa
es. This redu
es the number of parametersin the ADP model, thus drasti
ally improves the model. The TpTRP instan
esup to 432-period are tra
table with this ADP-Bézier-Surfa
e model, giving routingpoli
ies whi
h perform better than all naive routing poli
ies.For real-size problem (whi
h possesses 4320 time intervals, network providers
harge the ISP based on the 216th highest volume of shipped tra�
), we developeda way to aggregate de
ision problems, thus a

elerate the speed of going throughevery single iteration and make it solvable with the ADP-Bézier-Surfa
e model.Referen
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