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1. INTRODUCTION.

The analysis of production frontiers and the related problem of efficiency measurement

has generated a substantial flow of research in recent years. The historical roots of a

rigorous approach to efficiency measurement can be traced to the work of Koopmans

(1951), Debreu (1951) and Farrell (1957). This work gave a foundation for the important

techniques of Data Envelopment Analysis (henceforth DEA); the term DEA covers a

variety of related procedures for efficiency measurement, almost all of which rely on

linear programming as the primary computational tool. Excellent recent accounts of the

techniques include Färe et al. (1994) and Charnes et al. (1997).

Until recently almost all of the empirical research in this area comprised reports of various

efficiency measures but without any accompanying statistical assessment of the reliability

of the measures. The reason for this is that the statistical properties of parameter esti-

mates obtained as the solution to linear programming problems are poorly understood,

so that properties of the probability distributions of these estimators are for the most

part unknown. This situation has begun to change within the last decade, following

seminal work by Banker (1993). Some of the recent developments are surveyed in Simar

and Wilson (1999). Although more is now known than before, the problems associated

with obtaining exact finite sample or even asymptotic distribution theoretical results in

this area remain quite intractable. Consequently, in the current state of knowledge, it

is necessary to rely to a considerable extent on simulation techniques such as bootstrap

methods. Application of bootstrap methods to DEA requires some care, as has been

pointed out by Simar and Wilson (1998, 1999, 2000).

The aim of this article is to extend the applicability of the bootstrap approach to a

non-radial efficiency measure. The standard DEA input-oriented measure of technical

efficiency is a gross measure that does not take into account slack in resource usage.

Section two of this article describes a modified net technical efficiency measure which can

be viewed as a decomposition of efficiency as the product of the standard (gross) technical
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efficiency measure and a slack efficiency index. In section two of the article, these measures

are embodied in a statistical model of production that is suitable for bootstrap simulation.

Section three of the article describes in detail how to conduct bootstrap simulation of the

model and section four summarizes the results of an empirical application. Section five

summarises and concludes the article.

2. A STOCHASTIC DATA ENVELOPMENT ANALYSIS MODEL.

The approach adopted throughout the remainder of the paper is based on an input-

oriented DEA model. For simplicity in describing the model it is assumed that only one

output is produced, although this assumption is easy to relax. An initial description of

the model can then be given in terms of a production function which is interpreted, as

usual in studies of efficiency, as a frontier function. Thus, only fully efficient use of inputs

leads to output corresponding to a point on the production frontier. A distinction is

therefore made between the observed input vector and the effective input vector. The

effective input vector differs from the observed input vector because of, on the one hand

slack inputs, and on the other hand technically inefficient use of the inputs employed.

The distinction between slack and technical inefficiency can best be grasped by a simple

example. Suppose three firms are being compared and assume that the first of these

can produce one unit of output with inputs of one machine operated by one person. For

simplicity assume also that the firms being compared all pay the same prices for factor

inputs. If another firm operating the same machine with the same labour input produces

less than one unit of output, then this second firm is technically inefficient, relative to the

first firm. A third firm which does manage to produce one unit of output, but employs

two people to operate the machine, has slack in the use of labour. If the standard input-

oriented (gross) technical efficiency measure is applied to the situation just described (see

(9) below), the technical efficiency index of the first and third firm will be reported as

100% and if no reference is made to the phenomenon of slack, these two firms would be

regarded as fully efficient. Of course, slack and technical inefficiency are not mutually
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exclusive. Typically, both phenomena will be observed together.

Assume that we have observations of inputs and outputs of n firms. Let yk ∈ R denote

observed output of firm k, k = 1, . . . , n and let xk = (x1k, . . . , xmk)
′ ∈ Rm denote the

firm’s observed input vector. Denote by x̂k ∈ Rm the effective input vector of the firm.

The firm’s technology is given by the production function

yk = f(x̂k) (1)

where the effective input vector and the actual input vector are related by

x̂k = θk(xk − hk). (2)

In (2), hk = (h1k, . . . , hmk) ∈ Rm denotes a vector of slacks in input use and θk ∈ R

represents the degree of technical efficiency in the use of inputs. It is assumed that

0 < θk ≤ 1, hk ≥ 0 and that xk − hk > 0. Let

hk = Γkxk (3)

where

Γk = diagonal(γ1k, . . . , γmk) (4)

is a diagonal matrix with elements γik, 0 ≤ γik < 1, and define

sk = θkhk. (5)

If the θk and γik are treated as firm specific random variables, we can interpret this model

in the following way. Firm k uses inputs given by xk. A random proportion γik of the

ith input used is slack; the net of slack input vector used by the firm is then xk − hk.

This net of slack input vector is used in a more or less technically efficient manner by the

firm, depending on the random value of the technical efficiency parameter θk, so that the

effective input vector of the firm is x̂k. Allowing for the effect of technical inefficiency,

the effective vector of slack in the inputs is given by sk. The effective input vector yields

an output yk determined by the production function f , assumed to be common to all the

firms in the sample.
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Within this framework, the variable θk is a direct radial measure of the technical effi-

ciency of the kth firm. This measure of technical efficiency does not take slack resources

into account and for many purposes it may be desirable to compute indicators of the

overall extent to which inputs are slack as well as input specific measures of the degree

of slackness, the γik in the model.

If data on input prices are available then in the context of the model described above, an

obvious overall indicator of slack efficiency is given by one minus the proportion of input

costs that could be saved by the elimination of the slack. Let qk ∈ Rm denote the vector

of input prices facing the kth firm and define an index of slack efficiency by

SEk = 1− qkhk/qkxk (6)

(here and elsewhere, for two vectors w ∈ Rn and z ∈ Rn, wz denotes the inner product∑n
i=1 wizi). Note that 0 < SEk ≤ 1. With this definition of slack efficiency in mind, net

technical efficiency of the kth firm can be defined as

TEN
k = SEkθk (7)

=
qx̂k

qxk

. (8)

Estimates of θk for each k can be computed using standard DEA techniques. The DEA

procedure uses linear programming methods and concomitantly produces values for slack

variables which can be used to construct measures of slack efficiency. Use the notation

Y = (y1, . . . , yn)′, X = (x1, . . . , xn)′ and Q = (q1, . . . , qn)′ to denote the observations

for all the firms in the sample on, respectively, outputs, inputs and input prices. Gross

technical efficiency of the kth firm in the sample is measured by

θ̂k = min
θk,λk

{θk : Y ′λk ≥ yk, X
′λk ≤ θkxk, λk ≥ 0, θk free} . (9)

One approach to measuring slack efficiency is described in Lynde and Richmond (2000).

The method proceeds in two steps. The first step is to estimate technical efficiency using

(9). This estimate is then used in the second step to estimate the maximum cost saving
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from the elimination of slack by solving the following linear program

max
λk,sk

{
qksk : Y ′λk ≥ yk, X

′λk + sk = θ̂kxk, λk ≥ 0, sk ≥ 0
}

. (10)

The linear programs in (9) and (10) are linked by the fact that if (λk, sk) is feasible for

(10) then (λk, θ̂k) is feasible and hence optimal for (9). Thus if (λ̂k, ŝk) solves (10) then

(λ̂k, θ̂k) solves (9) and

X ′λ̂k + ŝk = θ̂kxk. (11)

Now define ĥk by

ĥk = ŝk/θ̂k. (12)

Slack efficiency and net technical efficiency can now be estimated by1

SEk = 1− qkĥk/qkxk (13)

and

TEN
k = SEkθ̂k. (14)

Although it is relatively straightforward to compute the estimators described here, only a

little is known concerning the statistical properties of estimators that use DEA techniques.

It is only recently that some progress has been made. This work includes articles by

Banker (1993), Simar (1996), Grosskopf (1996), Gijbels et al. (1999), and Simar and

Wilson (1999). In the single output case DEA estimators of technical efficiency have

been shown, under suitable assumptions about the underlying stochastic structure, to be

maximum likelihood estimators of the production frontier Banker (1993). For the case of

multiple outputs Kneip et al. (1998) have proved consistency of the DEA estimator. In

the special case of a single output produced by a single input, the asymptotic distribution

of the estimator has been obtained Gijbels et al. (1999). However, for the general case

of multiple outputs and inputs, the relevant distribution theory remains to be developed.

1To avoid notational clutter we use SE, not ŜE in(13)to refer to the estimate of slack efficiency;

similarly for TEN and the estimate of x̂.
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For this reason, the currently feasible approach to statistical inference in the context

of DEA methods must largely rely on computer intensive methods such as bootstrap

techniques.

3. A BOOTSTRAP PROCEDURE.

In this section we describe a procedure for conducting a bootstrap analysis of the efficiency

measures discussed in section two; the method outlined here is based upon the work by

Simar and Wilson (1998), extended to take account of slack efficiency measures. As these

authors point out, the naive approach to generating bootstrap samples that simply uses

the empirical distribution function (EDF) of the original data (attaching probability 1/n

to each observation) is unsatisfactory in the context of DEA, which involves estimation

of a frontier, and can lead to inconsistent estimates of relevant confidence sets. A more

sophisticated approach is necessary.

In order to conduct the bootstrap analysis, it is necessary first to clarify the assumptions

made concerning the underlying stochastic model. The firm specific random variables in

the model are

ηk = (θk, γ1k, . . . , γmk), k = 1, . . . , n. (15)

We shall assume that the elements of ηk are continuous random variables with joint

distribution function G, which is the same for all k, and that the set of random vari-

ables {ηk} are independent. The support of the distribution function is the set {ηk =

(θk, γ1k, . . . , γmk) : 0 < θk ≤ 1, 0 ≤ γik < 1, i = 1, . . . ,m}.

From (2) and (3)

x̂k = θk(I − Γk)xk. (16)

Inverting this equation we have

xk = (I − Γk)
−1θ−1

k x̂k. (17)
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Conditional on x̂k and yk, we may regard the data generating process for the xk as that

summarized by (17) and the distribution function G.

To perform a bootstrap simulation, artificial samples of data are required. To do so,

it is first necessary to estimate θk, the γik and x̂k for each k. The gross technical effi-

ciency estimate θ̂k is obtained from (9). Estimates of the individual input slack efficiency

parameters are given by

γ̂ik = ĥik/xik (18)

where the ĥik are obtained from (12). An estimate of the effective input vector x̂k can

then be obtained by substituting these estimates in (2). The next step is to use the

estimates θ̂k and γ̂ik to generate intermediate pseudo sample estimates θ̂++
k and γ̂++

ik ; the

precise method for doing so will be described shortly. Treating the observations on input

prices as fixed, and conditional on the observed outputs yk and the observed (estimated)

effective input vectors x̂k, we can now generate pseudo sample values

x∗k = (I − Γ̂++
k )−1(θ̂++

k )−1x̂k. (19)

Let X∗ = (x∗1, . . . , x
∗
k)
′. The final step in the bootstrap simulation procedure is to use this

artificially generated input sample matrix X∗, together with the observed sample values

Y and Q, of output and prices respectively, to generate new pseudo sample estimates θ̂∗k

and γ̂∗ik and new net technical efficiency and slack efficiency estimates TEN∗
k and SE∗

k .

This is done by replacing X in (9) and (10) by X∗ and using (12), (13) and (14). When

this process is replicated many times, the distribution of the resulting estimates θ̂∗k and

γ̂∗ik may be used to approximate properties of the the distribution of the DEA estimators

of efficiency.

We turn now to the precise method to be used for the generation of the intermediate

pseudo sample estimates θ̂++
k and γ̂++

ik that are used to produce the values x∗k. A property

of the DEA estimates of θ̂k and γ̂ik is that with probability one, for some k and i, θ̂k = 1

and γ̂ik = 0. Since by assumption the random variables θk and γik are continuous, this

has the consequence that the empirical distribution function is a poor estimator of the

7



true distribution function of these random variables, at least near the upper boundary of

the support of θk and the lower boundary of the support of γik. As a result, the simple

EDF approach may fail to provide consistent bootstrap confidence sets. Note that in

practice, values of θ̂k equal to zero and values of γ̂ik equal to unity are not observed.

In each case, the difficulty only arises at one of the boundaries of the support. The

bootstrap approach can fail in this situation because the problem of efficiency estimation

in effect requires the estimation of a boundary. This is analogous, in the univariate case

of a random variable uniformly distributed on [0, τ ], to the estimation of τ(Wilson and

Simar (1995)), a situation in which artificial resampling from the EDF is known to fail

to provide accurate confidence sets (see Efron and Tibshirani 1993).

An alternative procedure, recommended by Wilson and Simar (1995) as a way to cir-

cumvent this problem with DEA estimation procedures, is based on a modification of the

smoothed bootstrap, which uses kernel density estimation techniques. The kernel density

estimator is modified by the reflection method of Silverman (1986), to take account of

the problem with boundary values associated with the DEA estimates.

Let V1, . . . , Vn denote a random sample of a continuous random variable V with unknown

continuous density function f . Under fairly general conditions a consistent kernel density

estimator of f is given by

f̂(v) =
1

nb

n∑
i=1

K
(

v − vi

b

)
(20)

where K is a continuous and symmetric density function with mean zero and variance

equal to unity and b is a bandwidth parameter. Corresponding to f̂ is a distribution

function estimate F̂ . Instead of using the EDF to produce artificially simulated resamples

of V , the estimated distribution function F̂ is used. In practice, given the observed sample

v1, . . . , vn simulation is achieved by constructing variables

V ∗
j = vIj

+ bεj (21)

where the Ij are independent and uniformly distributed on the integers 1, . . . , n and the

εj are a random sample from a variable with density K and are independent of the Ij.
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Define Zj = bεj; the density function of Zj is h(z) = (1/b)K(z/b) and by the convolution

theorem (Grimmett and Stirzaker 1992, p. 113) the density function for V ∗
j = vIj

+ Zj is

fV ∗
j
(v) =

∫ ∞

−∞
fVIj

(x)
1

b
K

(
v − x

b

)
dx. (22)

Since

fvIj
(x) =

1

n
if x = vj (23)

= 0 otherwise (24)

then

fV ∗
j
(v) =

1

nb

n∑
i=1

K
(

v − vi

b

)
(25)

= f̂(v). (26)

Thus the V ∗
j defined in (21) have a distribution which is precisely that of the kernel

density estimate of f . Note that in (21), if b = 0, the V ∗
j would simply correspond

to resampling from the EDF. When the support of the random variable V is bounded,

simulation of bootstrap samples using (21) is inappropriate when b > 0 because it can

produce pseudo-sample values that violate the boundary condition.

The reflection method is a modification of this approach to take account of the problem

of bounded support (Silverman (1986)). Consider first the γ̂ik, for which the problem

arises at the lower boundary of the support (recall that 0 ≤ γik < 1), and reflect around

zero in the following way. Define

γ̂+
ik = γ̂iIk

+ biεik if γ̂iIk
+ biεik ≥ 0 (27)

= −(γ̂iIk
+ biεik) otherwise (28)

where the Ik are independent and uniformly distributed on the integers 1, . . . , n, bi is a

bandwidth parameter and the εik are a random sample from a variable with density K

and are independent of the Ik. Then it can be shown that the density function of the

γ̂+
ik generated in this way is a consistent estimator of the density function of the random
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variables γ̂ik. For some detail of the argument here, see the appendix to this article. Thus

the γ̂+
ik can be treated as approximations to random samples from the distribution of the

γ̂ik.

Similarly, in the case of the θ̂k, for which the relevant boundary is at the upper end of the

support (0 < θk ≤ 1), the reflection method now is applied by reflecting around unity.

Now define

θ̂+
k = θ̂Ik

+ bεk if θ̂Ik
+ bεk ≤ 1 (29)

= 2− (θ̂Ik
+ bεk) otherwise (30)

where b is a bandwidth parameter and the εk are a random sample from a variable with

density K and are independent of the Ik. The density function of the θ̂+
k is a consistent

estimator of the density of θ̂k and the θ̂+
k are approximations to random samples from

the distribution of the θ̂k.

It is standard practice with kernel estimators to rescale so that the resulting bootstrap

samples have the same variance as unsmoothed bootstrap samples. Estimators so mod-

ified are commonly referred to as shrunk smoothed bootstrap estimators. In the case

considered here this is achieved by the transformation

θ̂++
k = (1− a)

¯̂
θ + aθ̂+

k (31)

where

a = (1 + b2/σ̂2)−1/2 (32)

σ̂2 =
1

n

n∑
i=1

(θ̂k − ¯̂
θ)2 (33)

¯̂
θ =

1

n

n∑
k=1

θ̂k (34)

and by the transformations

γ̂++
ik = (1− ai)¯̂γi + aiγ̂

+
ik (35)
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where

ai = (1 + b2
i /σ̂

2
i )
−1/2 (36)

σ̂2
i =

1

n

n∑
k=1

(γ̂ik − ¯̂γi)
2 (37)

¯̂γi =
1

n

n∑
k=1

γ̂ik. (38)

Finally, the kernel function K and the bandwidth parameters b and bi, i = 1, . . . ,m need

to be chosen. For K, a simple choice is the density function of the standard Normal

distribution; this was used in the application described in the next section. There is a

trade-off between choosing values of a bandwidth parameter that is too high, leading to

oversmoothing with a loss of efficiency in estimation, and choosing too small a value,

which can lead to density estimates with a mode at each data point. Following Simar

and Wilson (1998), it was decided to adopt an automatic bandwidth selection procedure

recommended in Silverman (1986).

To summarize, values of θ̂++
k and γ̂++

ik are generated using (31) and (35). These values

are then used in (19) to generate values x∗k which in turn can be used to generate new

bootstrap pseudo sample estimates θ̂∗k and γ̂∗ik and new net technical efficiency and slack

efficiency estimates TEN∗
k and SE∗

k . This procedure is repeated many times to generate a

set of bootstrap replicate values of these parameters, the empirical distribution of which

can be used to approximate statistical properties of the efficiency estimators.

4. AN EMPIRICAL APPLICATION.

In this section we briefly describe the results obtained from an application of the boot-

strap methodology to the well-known data set used in the study by Christensen and

Greene (1976) of electricity generation in the USA. A subset comprising 155 firm level

observations for the year 1970 was used2. The data include observations of output and

2A few observations for which factor shares did not sum to unity were dropped from the original data

set. My thanks to W. H. Greene for making the data available.
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total cost, as well as prices and quantities for capital, labour and fuel inputs. A detailed

description of the data set may be found in Christensen and Greene (1976). Good de-

scriptions of the bootstrap methodology may be found in Davison and Hinkley (1997),

Efron and Tibshirani (1993) and Hall (1992).

A set of estimates of the three efficiency measures {θ̂k, SEk, TEN
k : k = 1, . . . , n} was

generated from the original sample using equations (9), (10), (12), (13) and (14). The

bootstrap methodology described in section three was then applied to obtain a set of r

pseudo estimates for each firm {θ̂∗k(b), SE∗
k(b), TEN∗

k (b) : k = 1, . . . , n; b = 1, . . . , r}. For

each value of k, the resulting set of bootstrapped estimates was used to approximate

properties of the gross and net technical efficiency and the slack efficiency measures θ̂k,

TEN
k and SEk. The bootstrap estimates were used to compute, for these efficiency

measures, estimates of the bias and mean squared error as well as bootstrap confidence

intervals. In the case of θ̂k, these estimates were constructed as follows (the computations

for TEN
k and SEk are similar). The bootstrap estimate of bias is

B̂(θ̂k) =
1

r

r∑
b=1

θ̂∗k(b)− θ̂k (39)

=
¯̂
θ
∗
k − θ̂k, (40)

giving the bias-corrected estimate

θ̃k = θ̂k − B̂(θ̂k). (41)

To approximate the variance of θ̂k, the bootstrap estimate

σ̃2
k =

1

r

r∑
b=1

(θ̂∗k(b)−
¯̂
θ
∗
k)

2 (42)

is used and the mean squared error is then estimated by

MSEk = σ̃2
k + B̂(θ̂k)

2. (43)

The bootstrap confidence intervals reported are symmetric bias-corrected intervals, cen-

tred at the biased corrected estimates θ̃k. These are constructed as follows. First trans-

form the bootstrap estimates so as to centre them on θ̃k. Let W (b) = θ̂∗k(b) − 2B̂(θ̂k);
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it is easy to show that the mean value W = θ̃k. Now let Z(b) = W (b) − θ̃k and use

the empirical distribution of the Z(b) to find Cα, the 100α percentile of the empirical

distribution of the absolute value |Z(b)|. The 100α% bootstrap confidence interval for θk

is given by

CIk = (θ̃k − Cα, θ̃k + Cα). (44)

In order to conserve space, rather than report a complete set of results for all three

efficiency measures for each of the 155 firms in the sample, we report here detailed results

for only 15 of the firms analyzed, selected at random, and representing approximately

ten percent of the original sample. These results for gross and net technical efficiency

and slack efficiency are reported in Tables 1, 2 and 3 respectively. In these tables, the

final column gives the efficiency ranking in the full sample of the firms selected; thus,

for example, the 6th sample observation (k = 6) was ranked 123rd out of the 155 firms

in the full sample by the gross technical efficiency measure. Table 4 contains some

summary statistics for the full sample of 155 firms. In the results reported in these

tables, r = 500 bootstrap replications were used, and the confidence intervals reported

are approximate 95% confidence intervals. In these tables, the column marked ’BC’

denotes the bias-corrected efficiency estimate. Since the estimates of efficiency relate

in effect to an estimated production frontier which must lie within the true production

frontier, then a priori these estimates are upward biased. In a small number of cases

the bootstrap bias estimates indicate downward (negative) bias; in these cases the bias

estimate has been truncated at zero. Similarly, in a very few cases the confidence interval

for the efficiency estimates is just above unity; these values have been truncated at unity.

The most obvious feature to emerge from the results reported in these tables is that slack

efficiency levels, as measured by SEk, are typically quite high; most firms have slack

efficiency levels of at least 90%. Consequently the extent to which net and gross technical

efficiency levels differ is quite limited, although it is clear that the rank ordering of firms by

the slack efficiency measure can differ considerably from that by the gross or net technical
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efficiency measures. Although the efficiency measures are biased, the order of magnitude

of the bias is only of the order of 3% for the technical efficiency measures, and rather less

than this for the slack efficiency measure. The technical efficiency measures are typically

somewhat lower than the slack efficiency measures, by around 15% on average over the

full sample. This suggests that for most of these firms, the most important source of

inefficiency is not slack input usage; instead it appears to be a consequence of technically

inefficient use of inputs.3 In Table 2, the estimates indicate that five of the 15 firms in the

subsample were fully efficient with respect to the slack efficiency measure—even to the

extent that the confidence interval width has collapsed to zero. The subsample results for

the slack efficiency measure are mirrored in the full sample for which approximately one

third of the sample, 56 firms, were fully efficient. Although it can be seen from Tables 1

and 3 that none of the firms in the subsample were fully technically efficient, by either

the gross or net measures, in the full sample 11 firms were fully technically efficient by

both the gross and net measures.

What does emerge strongly from the bootstrap simulations is the need to exercise some

caution in the interpretation of DEA results that are not supplemented by some as-

sessment of the statistical reliability of the efficiency measures. While the bias in these

measures appears to be quite small, it is clear from the tables that the confidence intervals

associated with the gross and net technical efficiency measures are generally sufficiently

wide to prohibit too strict a reliance on the accuracy of the point estimates.

5. CONCLUSIONS.

In using DEA techniques for the analysis of efficiency a distinction can be drawn between

gross and net technical efficiency. The latter concept corresponds to a non-radial measure

of efficiency that takes separate of account of slack in the use of employed resources. In

the approach outlined in this article, a measure of net technical efficiency is the product

3Another possible source of inefficiency not considered here is allocative inefficiency.
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of a slack efficiency measure and a standard input oriented (gross) technical efficiency

measure. In order to assess the reliability of these measures, some assessment of their

statistical properties is required. In the current state of knowledge, such an assessment

is only possible using simulation methods such as the bootstrap. Implementation of the

bootstrap in this context requires some care, as has been shown by Wilson and Simar

(1995). This article has shown how to extend bootstrap methods developed for gross

technical efficiency measurement to measures of slack and net technical efficiency. The

practicality of the method was exemplified using the Christensen and Greene (1976) data

set on electricity production in the US. The results indicated that slack efficiency esti-

mates are quite high, typically of the order of 90% or above, compared with gross and

net technical efficiencies that averaged around 80% and 76% respectively in the sample.

Analysis of the bootstrap simulation suggests that, at least for this data set, technical effi-

ciency measures have a small downward bias and that the confidence intervals obtainable

from the bootstrap analysis, although wide enough to suggest cautious interpretation of

the efficiency measures, are nonetheless good indicators of the likely order of magnitude of

the efficiency measures. These results enhance the usefulness of the DEA approach to ef-

ficiency measurement by demonstrating the viability of bootstrap methods in performing

statistical assessments of the resulting efficiency measures.
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Table 1.

Gross Technical Efficiency: results for subsample.

k θ̂k Bias θ̃k RMSE Confidence Rank

Interval

6 0.697 0.033 0.663 0.052 0.585 0.741 123

37 0.775 0.031 0.744 0.050 0.666 0.822 96

48 0.846 0.026 0.820 0.047 0.746 0.894 55

53 0.801 0.030 0.771 0.052 0.690 0.852 76

54 0.837 0.029 0.807 0.051 0.726 0.888 60

58 0.962 0.015 0.947 0.031 0.892 1.000 19

71 0.896 0.027 0.869 0.047 0.792 0.947 33

72 0.744 0.034 0.710 0.054 0.631 0.789 111

85 0.597 0.032 0.565 0.051 0.490 0.640 146

100 0.763 0.034 0.729 0.053 0.648 0.811 101

113 0.874 0.030 0.845 0.052 0.763 0.927 43

119 0.802 0.032 0.770 0.052 0.690 0.851 75

120 0.883 0.028 0.854 0.050 0.774 0.935 39

149 0.806 0.029 0.777 0.050 0.697 0.857 71

155 0.783 0.031 0.752 0.054 0.667 0.837 91
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Table 2

Slack Efficiency: results for subsample.

k SEk Bias SEk RMSE Confidence Rank

(BC) Interval

6 0.896 0.010 0.886 0.019 0.855 0.917 133

37 1.000 0.000 1.000 0.004 0.996 1.000 38

48 1.000 0.000 1.000 0.000 1.000 1.000 33

53 1.000 0.000 1.000 0.000 1.000 1.000 52

54 0.964 0.011 0.953 0.018 0.928 0.978 105

58 1.000 0.000 1.000 0.003 0.996 1.000 29

71 1.000 0.000 1.000 0.001 1.000 1.000 24

72 1.000 0.000 1.000 0.015 0.958 1.000 51

85 0.853 0.014 0.839 0.026 0.796 0.883 143

100 0.945 0.014 0.931 0.019 0.908 0.954 116

113 0.969 0.000 0.969 0.013 0.946 0.992 102

119 1.000 0.000 1.000 0.000 1.000 1.000 58

120 1.000 0.000 1.000 0.011 0.973 1.000 14

149 1.000 0.000 1.000 0.000 1.000 1.000 3

155 0.961 0.024 0.937 0.028 0.909 0.965 106
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Table 3

Net Technical Efficiency: results for subsample.

k TEN
k Bias TEN

k RMSE Confidence Rank

(BC) Interval

6 0.624 0.037 0.587 0.055 0.507 0.667 129

37 0.775 0.031 0.744 0.050 0.665 0.824 84

48 0.846 0.026 0.820 0.047 0.746 0.894 46

53 0.801 0.030 0.771 0.052 0.690 0.852 68

54 0.807 0.038 0.769 0.056 0.689 0.848 62

58 0.962 0.015 0.947 0.031 0.891 1.000 16

71 0.896 0.026 0.869 0.047 0.792 0.947 28

72 0.744 0.024 0.719 0.050 0.634 0.805 99

85 0.509 0.036 0.473 0.053 0.399 0.547 145

100 0.721 0.043 0.678 0.060 0.597 0.759 106

113 0.847 0.028 0.819 0.052 0.732 0.907 45

119 0.802 0.032 0.770 0.052 0.690 0.851 66

120 0.883 0.022 0.861 0.047 0.780 0.942 33

149 0.806 0.029 0.777 0.050 0.697 0.857 63

155 0.752 0.049 0.703 0.068 0.614 0.791 95
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Table 4.

Averages over Full Sample.

Efficiency Estimate Bias Estimate RMSE Width

Index (BC) CI

TE 0.798 0.027 0.772 0.046 0.143

SE 0.956 0.014 0.942 0.023 0.060

TEN 0.765 0.036 0.729 0.057 0.164
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APPENDIX.

Assume that n observations v1, . . . , vn of a continuous random variable V are available.

Consider a consistent kernel density estimator of the density function f of V given by

f̂(v) =
1

nb

n∑
i=1

K
(

v − vi

b

)
(45)

where K is a continuous and symmetric density function with mean zero and variance

equal to unity and b is a bandwidth parameter. Let

V ∗
j = vIj

+ bεj (46)

where the Ij are independent and uniformly distributed on the integers 1, . . . , n and the

εj are a random sample from a variable with density K and are independent of the Ij. It

is easy to show that the density function for V ∗
j is (see (25))

fV ∗
j
(v) = f̂(v). (47)

In the case in which the support of V is bounded below by zero, let Tj = |V ∗
j |. The

density function for Tj is

fTj
(t) = fV ∗

j
(t) + fV ∗

j
(−t) (48)

= f̂(t) + f̂(−t) t ≥ 0 (49)

= 0 otherwise. (50)

Since f̂(v) is a consistent estimator of f(v), and since f(v) = 0 for v < 0, then, as the

sample size n becomes large, f̂(−t) converges in probabilitv to zero when t > 0. Thus

fTj
(t) converges in probability to f(t); in other words the density function for Tj is a

consistent estimator of the density function for V . This argument applies to (27) with

γ̂+
i corresponding to T and γ̂i corresponding to V .

A similar argument applies to (29). In this case assume that V is bounded above by 1

and now define

Sj = V ∗
j if V ∗

j ≤ 1 (51)

= 2− V ∗
j if V ∗

j > 1. (52)
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Then it is straightforward to show that the density function for Sj is

fSj
(s) = fV ∗

j
(s) + fV ∗

j
(2− s) (53)

= f̂(s) + f̂(2− s), s ≤ 1 (54)

= 0, s > 1. (55)

Since by assumption in this case V ≤ 1 then f(v) = 0 if v > 1. Thus if s ≤ 1 then

2 − s > 1 and f(2 − s) = 0. Hence, since f̂(v) is a consistent estimator of f(v), it

follows that fSj
(s) converges in probability to f(s). Apply this argument to (29) with θ̂+

corresponding to S and θ̂ to V .
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