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1. Introduction

An important issue in the conduct of tests for a unit root in a time series concerns the

specification of the trend component. In recent years it has become common to detrend the

series prior to carrying out the test regression, and generalised least squares (GLS) detrending

(or quasi-differencing) has earned a prominent place in the literature. Elliott, Rothenberg

and Stock (1996) and Ng and Perron (2001) analysed the properties of a number of statistics

based on GLS-detrended data in a near-integrated model and demonstrated that the limiting

distributions depend on the form of trend function employed for the detrending. When the

data are detrended using only an intercept the limiting distributions are functionals of an

Ornstein-Uhlenbeck (OU) process rather than a standard Wiener process, the parameter

characterising the OU process being the parameter that measures the deviation from a

unit root (sometimes called the local-to-unity coefficient). The moment generating function

(MGF) and characteristic function (CF) of two functionals of the OU process were derived by

Phillips (1987), and Perron (1989) used these functions to derive the cumulative distribution

function (CDF) and probability density function (PDF) in a numerical study of the limiting

distribution of the ordinary least squares (OLS) estimator in a first-order near-integrated

autoregression. When both an intercept and a time trend are used in the GLS detrending

the limiting distributions depend on a more general process that is a function of the GLS-

detrending parameter as well as the local-to-unity coefficient and the OU process. To date,

analytical results relating to certain functionals of this more complicated process, such as

the MGF and CF, appear not to have been derived, and one of the aims of this paper is

to fill this gap in the literature. Another aim is to use such an MGF or CF to analyse the

properties of the limiting distributions of certain test statistics by, for example, deriving the

CDF and PDF, in a similar way to Perron (1989).

The paper is organised as follows. Section 2 describes the GLS detrending procedure and

defines the random processes (and functionals thereof) that are important in characterising

the limiting distributions of certain test statistics, while Section 3 derives the MGF and CF

of the two key random functionals. Sections 4 and 5 use the results of Section 3 to derive

the moments, as well as the CDF and PDF, of two test statistics of interest, before Section

6 provides further discussion and concluding comments. There are also three appendices:

Appendix A provides proofs of the theorems presented in the main text; Appendix B gives

a supplementary result that is used in the proof of one of the theorems; and Appendix C

provides computational details of the results presented in the text.

2. GLS detrending and asymptotics

A common theoretical framework for testing for a unit root in a time series, and one

that is commonly applied in practice, is based on detrending the series of interest using a

deterministic trend function prior to computing the test statistic using the detrended data.

Although a variety of forms of deterministic trend could be envisaged it is usually specified

to be a low-order polynomial and is typically linear in practice. To be precise suppose that

the scalar random variable of interest, yt, has the representation

yt = dt + ut, t = 1, . . . , n, (1)

where dt denotes the deterministic trend and ut is an unobservable scalar random process
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assumed to satisfy

ut = αut−1 + vt, vt = δ(L)ǫt, ǫt ∼ iid(0, σ2ǫ ), t = 1, . . . , n, (2)

where α = 1+ c/n for some constant c, δ(z) =
∑

∞

j=0 δjz
j , δ0 = 1,

∑

∞

j=0 j|δj | <∞ and L de-

notes the lag operator. This specification is consistent with vt being a stationary ARMA(p,q)

process of the form ρ(L)vt = θ(L)ǫt where ρ(z) =
∑p

j=0 ρjz
j and θ(z) =

∑q
j=0 θjz

j , in which

case δ(z) = θ(z)/ρ(z), but it also allows for more general forms of linear processes. Under

these assumptions vt satisfies the functional central limit theorem n−1/2∑[nr]
t=1 vt ⇒ σW (r)

on C[0, 1], where σ2 = σ2ǫ δ(1)
2 denotes the long-run variance and [nr] denotes the integer

part of nr. The deterministic component, dt, in (1) is usually assumed to be of the form

dt = ψ′zt where zt = [1, t, t2, . . . , tp]′, most interest focusing on the cases p = 0 and p = 1.

Under (1) and (2) the detrended series yt − dt satisfies

yt − dt = α(yt−1 − dt−1) + vt,

hence the objective being to test the null hypothesis that α = 1 or, equivalently, that c = 0.

Note that when c < 0 the process is said to be locally stationary while when c > 0 it is

locally explosive.

In view of dt being unobservable a common procedure is to estimate ψ, using an estimator

ψ̂ (to be defined below), and to construct a detrended series of the form ydt = yt − ψ̂′zt to

be used in place of yt − dt above. The GLS procedure, proposed by Elliott, Rothenberg

and Stock (1996), can be described as follows. Let ᾱ = 1 + c̄/n denote the detrending

parameter, c̄ being a suitably chosen constant, and, for any series x0, x1, . . . , xn, define the

quasi-differenced variables xᾱ0 = x0 and xᾱt = xt − ᾱxt−1 (t = 1, . . . , n). Then ψ̂ is obtained

from the OLS regression of yᾱt on zᾱt . Elliott, Rothenberg and Stock (1996) recommend that

when p = 0, c̄ = −7 and when p = 1, c̄ = −13.5, these values being chosen so as to make the

asymptotic local power function of tests tangent to the asymptotic Gaussian power envelope

at the point where power equals one half.

The GLS-detrended series ydt can be used in the construction of a variety of test statis-

tics. Elliott, Rothenberg and Stock (1996) proposed a feasible statistic, Pn, whose limiting

distribution is the same as that of a likelihood-based point-optimal test statistic; it is defined

by

Pn =
S(ᾱ)− ᾱS(1)

σ̂2
, (3)

where σ̂2 is a consistent estimator of the long run variance σ2 and S(α) denotes the sum of

squared residuals from a least squares regression of yαt on zαt for the values of α specified in

(3). However, the most common approach in practice is based on either an estimate of the

parameter α itself (or its equivalent in an alternative representation) or on its associated

t-ratio. Nonparametric treatments of the serial correlation inherent in vt can be conducted

using the methods of Phillips and Perron (1988) based on the OLS regression

ydt = β̃0y
d
t−1 + ṽt, t = 1, . . . , n, (4)

while parametric treatments are often based on an augmented Dickey-Fuller (ADF) regres-

2



sion of the form

ydt = β̂0y
d
t−1 +

k
∑

j=1

β̂j∆y
d
t−j + êtk, t = k + 1, . . . , n, (5)

where k can be chosen, for example, using the modified information criterion proposed by Ng

and Perron (2001). The null hypothesis in either case corresponds to β0 = 1 where β0 is the

coefficient on ydt−1. In (4) the limiting distribution of the normalised estimator β̃0 depends on

nuisance parameters emanating from the dynamics associated with vt, but an asymptotically

pivotal distribution can be obtained by conducting inference using n(β̃0 − 1)+ kn, where kn
denotes the nonparametric data-based adjustment term; see Phillips and Perron (1988) for

details. A similar type of nonparametric adjustment can be applied to the t-ratio based on

β̃0 in order to obtain a pivotal limiting distribution. These limiting distributions correspond

to those that are obtained from the ADF regression (5) using n(β̂0 − 1) and its t-ratio

t0 = (β̂0− 1)/σ̂β̂0
, where σ̂2

β̂0

denotes the OLS estimator of the variance of β̂0, provided that

k is allowed to increase with n at a suitable rate. In order to subsequently save on notation

the focus will be on n(β̂0 − 1) and t0 but it is emphasised at this point that the same

properties of the limiting distributions also apply to n(β̃0 − 1) + kn and the corresponding

nonparametrically adjusted t-ratio from the regression (4). The properties of these limiting

distributions, as well as those of Pn, are investigated in subsequent sections.

For the detrended variable ydt Elliott, Rothenberg and Stock (1996) established that

n−1/2yd[nr] ⇒











σWc(r), p = 0,

σVc,c̄(r), p = 1,

where Wc(r) and Vc,c̄(r) are random processes on r ∈ [0, 1] and the symbol ⇒ denotes weak

convergence of the relevant probability measures. In fact Wc(r) is the Ornstein-Uhlenbeck

process satisfying dWc(r) = cWc(r)dr + dW (r) where W (r) is a standard Wiener process

with W (0) = 0, and therefore has the representations

Wc(r) =

∫ r

0
exp{c(r − s)}dW (s) =W (r) + c

∫ r

0
exp{c(r − s)}W (s)ds;

see Phillips (1987) for details. The process Vc,c̄(r), on the other hand, is more complicated

and is given by

Vc,c̄(r) =Wc(r)− r

(

λWc(1) + 3(1− λ)

∫ 1

0
sWc(s)ds

)

,

where λ = (1− c̄)/(1− c̄+ c̄2/3).

The processes Wc(r) and Vc,c̄(r) characterise the limiting distributions of the statistics

of interest. These distributions can be expressed in terms of the following functionals of the

underlying random processes:

Nc =
1

2

(

Wc(1)
2 − 1

)

=

∫ 1

0
WcdWc, Dc =

∫ 1

0
W 2

c ,

Nc,c̄ =
1

2

(

Vc,c̄(1)
2 − 1

)

=

∫ 1

0
Vc,c̄dVc,c̄, Dc,c̄ =

∫ 1

0
V 2
c,c̄, (6)

in addition to Wc(1)
2 and Vc,c̄(1)

2 themselves. When p = 0 the limiting distributions, as
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n→ ∞, have the representations

Pn ⇒ c̄2Dc − c̄Wc(1)
2, n(β̂0 − 1) ⇒ Nc

Dc
, t0 ⇒

Nc

D
1/2
c

, (7)

while when p = 1 they take the form

Pn ⇒ c̄2Dc,c̄ + (1− c̄)Vc,c̄(1)
2, n(β̂0 − 1) ⇒ Nc,c̄

Dc,c̄
, t0 ⇒

Nc,c̄

D
1/2
c,c̄

. (8)

Note that the limiting distribution of n(β̂0−β0) is obtained straightforwardly from the results

in (7) and (8) by using the fact that β0 = 1+ c/n and hence n(β̂0−β0) = n(β̂0− 1)− c. For

example, when p = 1 it follows that

n(β̂0 − β0) ⇒
Nc,c̄

Dc,c̄
− c.

For the case p = 0 the joint MGF and CF of Nc and Dc were derived by Phillips (1987)

and were used by Perron (1989) to analyse the properties of the CDF and PDF for different

values of the parameter c using numerical integration techniques. Analagous results for the

joint MGF and CF of Vc,c̄(1)
2 (or Nc,c̄) and Dc,c̄ do not yet appear to have been derived and

so the next section deals with this problem. The results are more complicated than when

p = 0 owing to the fact that the process Vc,c̄(r) is itself a functional of Wc(r).

3. The joint moment generating and characteristic functions of Vc,c̄(1)
2 and

∫ 1
0 Vc,c̄(r)

2dr

All of the limiting distributions for p = 1 in the previous section are characterised by

the random variables Vc,c̄(1)
2 and

∫ 1
0 Vc,c̄(r)

2dr; their joint MGF is defined by

M(t1, t2) = E

[

exp

(

t1Vc,c̄(1)
2 + t2

∫ 1

0
Vc,c̄(r)

2dr

)]

.

Although M(t1, t2) is also a function of c and c̄ this is not stated explicitly for reasons of

notational economy. The CF is then obtained using the expression

Φ(t1, t2) = E

[

exp

(

it1Vc,c̄(1)
2 + it2

∫ 1

0
Vc,c̄(r)

2dr

)]

=M(it1, it2),

where i2 = −1. The precise form of M(t1, t2) is given in Theorem 1 below.

Theorem 1. The joint MGF of Vc,c̄(1)
2 and

∫ 1
0 Vc,c̄(r)

2dr is given by

M(t1, t2) = exp

(

− c
2

)

H(t1, t2)
−1/2,

where

H(t1, t2) = h1(t1, t2) sinh γ + h2(t1, t2) cosh γ,

γ =
√
c2 − 2t2, and h1(t1, t2) and h2(t1, t2) are functions of t1 and t2 of the form

hi = (−1)i +
4
∑

j=1

hijaj(t1, t2), i = 1, 2,
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where

ai(t1, t2) = ai0 + ai1t1 + ai2t2, i = 1, 2, 3,

a4(t1, t2) = a1(t1, t2)a3(t1, t2)− a2(t1, t2)
2,

and the coefficients hij (i = 1, 2; j = 1, . . . , 4) and aij (i = 1, 2, 3; j = 0, 1, 2) are defined in

Table 1.

The CF is easily derived from the MGF in Theorem 1 and has the representation

Φ(t1, t2) = exp

(

− c
2

)

H(it1, it2)
−1/2.

The method used to derive the MGF in Theorem 1 is described as the “stochastic process

approach” in Tanaka (1996) and involves a change of measure (using Girsanov’s Theorem)

allied with the normality of the underlying OU process to evaluate the expectation of interest.

The separate MGFs of Vc,c̄(1)
2 and

∫ 1
0 Vc,c̄(r)

2dr follow straightforwardly (with some further

algebra) from the joint MGF in Theorem 1.

Corollary to Theorem 1. The MGF of Vc,c̄(1)
2 is given by

M1(t1) =M(t1, 0) = [1 + ec (k1 sinh c+ k2 cosh c) t1]
−1/2 ,

and the MGF of
∫ 1
0 Vc,c̄(r)

2dr is given by

M2(t2) =M(0, t2) = e(γ−c)/2
[

1 + eγ
(

k10 sinh γ + (k11 sinh γ + k21 cosh γ) t2

+ (k12 sinh γ + k22 cosh γ) t
2
2

)]

−1/2

,

where k10 = h11a10, the ki (i = 1, 2) and kij (i, j = 1, 2) are of the form

ki = hci1a11 + hci2a21 + hci3a31,

ki1 = hi1a12 + hi2a22 + hi3a32 + hi4a10a32,

ki2 = hi4(a12a32 − a222),

and the coefficients hcij (i = 1, 2; j = 1, . . . , 3), hij (i = 1, 2; j = 1, . . . , 4) and aij (i =

1, 2, 3; j = 0, 1, 2) are defined in Table 1.

Various uses of the MGF in Theorem 1 are described in the following sections.

4. The limiting distribution of Pn

The limiting distribution of Pn was given in (8) and can be represented by the random

variable

Sc,c̄ = (1− c̄)Vc,c̄(1)
2 + c̄2

∫ 1

0
Vc,c̄(r)

2dr. (9)

Let m(t) = E exp(tSc,c̄) denote the MGF of Sc,c̄. It follows from Theorem 1 that

m(t) =M
(

(1− c̄)t, c̄2t
)

,
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and the first two moments of Sc,c̄ can be obtained using

E(Sc,c̄) =
dm(t)

dt

∣

∣

∣

∣

t=0
=
dM((1− c̄)t, c̄2t)

dt

∣

∣

∣

∣

∣

t=0

,

E(S2
c,c̄) =

d2m(t)

dt2

∣

∣

∣

∣

∣

t=0

=
d2M((1− c̄)t, c̄2t)

dt2

∣

∣

∣

∣

∣

t=0

.

Precise expressions for these moments are presented in Theorem 2.

Theorem 2. Let Sc,c̄ be defined in (9). Then

E(Sc,c̄) =



















−1

2
ec
(

c̄2

c
e−c + η1 sinh c+ η2 cosh c

)

, (c 6= 0),

1

30

(

6(1− c̄)(1− λ)2 + 2c̄λ2 + 3c̄2
)

, (c = 0),

E(S2
c,c̄) =











































3

4
e2c
(

c̄2

c
e−c + η1 sinh c+ η2 cosh c

)2

− 1

2
ec
(

c̄4

c2
e−c

(

1 +
1

c

)

)

−1

2
ec
((

η3 − 2
c̄2

c
η2

)

sinh c+

(

η4 − 2
c̄2

c
η1

)

cosh c

)

, (c 6= 0),

c̄2

315

(

36(1− c̄)(1− λ)2 + 56c̄2λ4 + 12c̄λ2 + 9c̄2
)

, (c = 0),

where ηi =
∑7

j=1 ηijc
−j (i = 1, . . . , 4) and the ηij coefficients are given in Table 2.

The mean and variance of Sc,c̄ for a range of values of c from −20 to +2 are given in

Table 3. Both the mean and variance rise as c approaches zero from below and then fall

slightly before increasing rapidly when c exceeds unity and extends further into the explosive

region.

The CF of Sc,c̄, denoted φ(t) = E exp(itSc,c̄), is obtained from the MGF by replacing t

with it in its definition, yielding

φ(t) = m(it) =M
(

(1− c̄)it, c̄2it
)

.

It can be used to derive the CDF, F (z), and PDF, f(z), of Sc,c̄ using the following formulae:

F (z) =
1

2
− 1

2πi

∫

∞

−∞

e−itzφ(t)

t
dt =

1

2
− 1

π

∫

∞

0

Im{(e−itzφ(t)}
t

dt,

f(z) =
1

2π

∫

∞

−∞

e−itzφ(t)dt =
1

π

∫

∞

0
Re{e−itzφ(t)}dt,

where, for a complex-valued variable x, Re{x} and Im{x} denote the real and imaginary

parts, respectively; the second expressions for F (z) and f(z) were used in the computations

reported below.

The CDF and PDF of Sc,c̄ are plotted in Figures 1 and 2, respectively, for values of

c ∈ {−10,−5, 0, 2}. As c increases through this range of values the distribution can be seen

to shift to the right and become more dispersed in accordance with the values for the mean

and variance in Table 3. Selected percentage points for the same range of values of c as used

in Table 3 are given in Table 4; these were computed using the bisection method described

in Tanaka (1996, p.203). Of particular relevance are the values when c = 0 which are those
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that would be needed under the null hypothesis of a unit root using the statistic Pn. It is of

interest to compare these values with those reported in Elliott, Rothenberg and Stock (1996)

and Ng and Perron (2001) which were obtained by simulation. The 1%, 5% and 10% values

– 3.9756, 5.6900 and 6.9853, respectively – obtained using the exact methods compare with

3.96, 5.62 and 6.89 obtained by the former authors and 4.03, 5.48 and 6.67 obtained by the

latter. The simulation methods appear to understate the 5% and 10% critical values with

the reported 1% values being closer to the exact value.

5. The limiting distributions of n(β̂0 − 1) and n(β̂0 − β0)

The limiting distribution of n(β̂0 − 1) is characterised by the ratio Nc,c̄/Dc,c̄, and the

joint MGF of the numerator and denominator, Q(θ1, θ2), can be obtained straightforwardly

from the MGF M(t1, t2) given in Theorem 1, as follows:

Q(θ1, θ2) = E [exp (θ1Nc,c̄ + θ2Dc,c̄)]

= E

[

exp

(

θ1
2

(

Vc,c̄(1)
2 − 1

)

+ θ2

∫ 1

0
Vc,c̄(r)

2dr

)]

= exp

(

−θ1
2

)

E

[

exp

(

θ1
2
Vc,c̄(1)

2 + θ2

∫ 1

0
Vc,c̄(r)

2dr

)]

= exp

(

−θ1
2

)

M

(

θ1
2
, θ2

)

.

The CF of Nc,c̄ and Dc,c̄ is then given by Ψ(θ1, θ2) = Q(iθ1, iθ2). The moments of the ratio

Nc,c̄/Dc,c̄ can then be obtained using

E

(

Nc,c̄

Dc,c̄

)k

=
1

(k − 1)!

∫

∞

0
θk−1
2

∂kQ(θ1,−θ2)
∂θk1

∣

∣

∣

∣

∣

θ1=0

dθ2; (10)

see, for example, Mehta and Swamy (1978) and Magnus (1986). Expressions for the first

two moments are given below.

Theorem 3. Let Nc,c̄ and Dc,c̄ be defined as in (6). Then the first two moments of the ratio

Nc,c̄/Dc,c̄ are given by

E

(

Nc,c̄

Dc,c̄

)

= −(I1 + I2), E

(

Nc,c̄

Dc,c̄

)2

= I3 + I4 + I5,

where

I1 =
1

2
exp

(

− c
2

)∫

∞

0

1

p(θ2)1/2
dθ2,

I2 =
1

2
exp

(

− c
2

)∫

∞

0

q(θ2)

p(θ2)3/2
dθ2,

I3 =
1

2
exp

(

− c
2

)∫

∞

0
θ2

q(θ2)

p(θ2)3/2
dθ2,

I4 =
1

4
exp

(

− c
2

)∫

∞

0
θ2

1

p(θ2)1/2
dθ2,

I5 =
3

4
exp

(

− c
2

)∫

∞

0
θ2

q(θ2)
2

p(θ2)5/2
dθ2,
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p(θ2) = p1(θ2) sinh
√

c2 + 2θ2 + p2(θ2) cosh
√

c2 + 2θ2,

q(θ2) = q1(θ2) sinh
√

c2 + 2θ2 + q2(θ2) cosh
√

c2 + 2θ2,

and for i = 1, 2,

pi = (−1)i +
4
∑

j=1

hijaj(0,−θ2), qi =
4
∑

j=1

hij
∂aj(θ1,−θ2)

∂θ1

∣

∣

∣

∣

θ1=0
,

the hij and aj coefficients being defined in Theorem 1 and Table 1.

The means and variances of Nc,c̄/Dc,c̄ are provided for a range of values of c in Table 5;

in all cases c̄ = −13.5. It can be seen that the mean increases with c apart from a slight fall

around c = 0 while the variance falls with c apart from a small increase around c = 0.

The CDF of the ratio Nc,c̄/Dc,c̄ can be obtained using a result of Gurland (1948), in

view of Pr(Dc,c̄ ≤ 0) = 0, as follows:

G(z) = lim
n→∞

Pr
(

n(β̂0 − 1) < z
)

=
1

2
− 1

2πi

∫

∞

−∞

Ψ(θ1,−θ1z)
θ1

dθ1

=
1

2
− 1

π

∫

∞

0

Im {Ψ(θ1,−θ1z)}
θ1

dθ1, (11)

Ψ(θ1, θ2) being the CF of Nc,c̄ and Dc,c̄ defined earlier. Furthermore, the PDF can be

obtained either by computing another integral of the form

g(z) =
d

dz
G(z) =

1

2πi

∫

∞

−∞

∂Ψ(θ1, θ2)

∂θ2

∣

∣

∣

∣

θ2=−θ1z
dθ1,

or by numerically differentiating the CDF using

g(z) =
G(z + h)−G(z)

h

for some small value of h; see Tanaka (1996, p.197). The latter approach avoids issues

involved with the integration of a further derivative of the CF and follows straightforwardly

once the integral in (11) can be computed. The results for the PDF reported below were

obtained with h = 10−6. Figures 3 and 4 depict the CDF and PDF, respectively, for the same

range of values of c as were used in Figures 1 and 2. It can be seen that as c increases in value

the distribution shifts to the right and becomes less dispersed which is in accordance with

the computed values for the mean and variance in Table 5. In addition, selected percentage

points of the distribution for a range of values of c are given in Table 6. Of particular

relevance for unit root testing are the entries for c = 0 which could be used as critical values

for testing for a unit root using the statistic n(β̂0 − 1).

Results for the limiting distribution of n(β̂0−β0) follow straightforwardly from the above

results. As noted at the end of section 2

n(β̂0 − β0) ⇒
Nc,c̄

Dc,c̄
− c,

and hence the CDF, G0(z), can be obtained from G(z) as follows:

G0(z) = lim
n→∞

Pr
(

n(β̂0 − β0) < z
)

= lim
n→∞

Pr
(

n(β̂0 − 1)− c < z
)

= G(z + c).

Similarly, the PDF, g0(z), satisfies g0(z) = g(z + c). The CDF and PDF are depicted in

8



Figures 5 and 6, respectively, for the same values of c as were used in Figures 1–4. The

curves in Figures 5 and 6 are closer together than those in Figures 3 and 4 owing to the

horizontal translation by an amount equal to −c.

6. Discussion and concluding comments

The results presented in the preceding sections are potentially of use whenever certain

calculations concerning the limiting distributions are required. One such possible application

is in the comparison of the asymptotic power of the two statistics, Pn and n(β̂0−1), in testing

for a unit root. For example, in the case of Pn, let zα denote the α-percentage point of the

limiting distribution when c = 0 i.e. under the null hypothesis of a unit root; when α = 0.05

this value can be seen from Table 4 to be z0.05 = 5.69. Then the power of the size-α test for

testing the null against stationary alternatives is given by computing F (zα) for c < 0 using

the expression in section 4; a similar procedure for the statistic n(β̂0 − 1) can be followed

using the expression for the CDF in section 5 allied with the critical value obtained from

Table 6. The results of such a power comparision of Pn and n(β̂0 − 1) are given in Table 7

for values of α corresponding to 1%, 5% and 10% level tests. Both tests have broadly the

same power although n(β̂0 − 1) tends to have slightly higher power than Pn particularly for

values of c furthest from zero; however, the differences cannot be said to be large.

As mentioned in section 2 another important test statistic, and one that is widely used

in practice, is the t-ratio of the parameter β0 in the ADF regression (5). The moments of

the limiting distribution of the t-ratio, given by Nc,c̄/
√

Dc,c̄, can be computed using

E

(

Nk
c,c̄

Db
c,c̄

)

=
1

Γ(b)

∫

∞

0
θb−1
2

∂kQ(θ1,−θ2)
∂θk1

∣

∣

∣

∣

∣

θ1=0

dθ2; (12)

see Meng (2005, Lemma 1). Obviously, when b = k is integer, this expression coincides with

(10). The following integrals define the first two moments of interest.

Theorem 4. Let Nc,c̄ and Dc,c̄ be defined as in (6). Then the first two moments of the ratio

Nc,c̄/D
1/2
c,c̄ are given by

E





Nc,c̄

D
1/2
c,c̄



 = −(I∗1 + I∗2 ), E

(

N2
c,c̄

Dc,c̄

)

= I∗3 + I∗4 + I∗5 ,

where

I∗1 =
1

2
exp

(

− c
2

)∫

∞

0
θ
−1/2
2

1

p(θ2)1/2
dθ2,

I∗2 =
1

2
exp

(

− c
2

)∫

∞

0
θ
−1/2
2

q(θ2)

p(θ2)3/2
dθ2,

I∗3 = I2, I
∗

4 = (1/2)I1,

I∗5 =
3

4
exp

(

− c
2

)∫

∞

0

q(θ2)
2

p(θ2)5/2
dθ2,

and the functions p(θ2) and q(θ2), and integrals I1 and I2, are defined in Theorem 3.

Note that numerical computation of the first moment has to deal with an additional

9



singularity at the origin introduced by the component θ
−1/2
2 . The means and variances of

Nc,c̄/
√

Dc,c̄ are given in Table 8. It can be seen that the mean remains negative over the

range of values of c considered and rises with c while the variance also rises with c apart

from a small fall around c = 0.

Computation of the PDF and CDF of t0 are also not as straightforward as in the case for

n(β̂0−1), the reason being that it is
√

Dc,c̄ appearing in the denominator of the distribution

rather than Dc,c̄ itself. If the joint MGF/CF of Nc,c̄ and
√

Dc,c̄ were known then the

expression in (11) would apply equally well here for the CDF. Unfortunately, this is a difficult

function to derive and the methods used to obtain Q(θ1, θ2) do not appear to be well-suited

to this task due to the presence of the square root term. An alternative approach proceeds

in two steps. The first step is to use the CF Ψ(θ1, θ2) to derive the joint PDF of Nc,c̄ and

Dc,c̄ using a Fourier inversion of the form

h(x, y) =
1

4π2

∫

∞

−∞

∫

∞

−∞

exp{−i(θ1x+ θ2y)}Ψ(θ1, θ2)dθ1dθ2.

This PDF can then be used in the second step to derive the PDF of the ratio Nc,c̄/
√

Dc,c̄

using the expression

h(z) =

∫

∞

0

√
yh(z

√
y, y)dy

=
1

4π2

∫

∞

0

√
y

∫

∞

−∞

∫

∞

−∞

exp{−i(θ1z
√
y + θ2y)}Ψ(θ1, θ2)dθ1dθ2dy;

see, for example, Abadir and Rockinger (1997, p.1221). In the case of no detrending Abadir

(1995) has used this type of expression to derive closed form analytical expressions for the

relevant PDF and CDF, although in the present case, where the CF is of a rather more

complicated form, such an outcome appears not to be feasible. The alternative is then to

attempt numerical integration, which for the PDF h(z) requires three-fold integration, while

the CDF requires a further integration:

H(z) = Pr(t0 < z) =

∫ z

−∞

h(w)dw

=
1

4π2

∫ z

−∞

∫

∞

0

√
y

∫

∞

−∞

∫

∞

−∞

exp{−i(θ1w
√
y + θ2y)}Ψ(θ1, θ2)dθ1dθ2dydw.

Given the nature of the function to be integrated this would appear to be a particularly

challenging computation to attempt and great care would need to be given to the potential

(in)accuracy of the result.
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Appendix A. Proofs

Proof of Theorem 1. The MGF of interest is

M(t1, t2) = E

[

exp

(

t1Vc,c̄(1)
2 + t2

∫ 1

0
V 2
c,c̄

)]

.

Using the dependence of Vc,c̄(r) on Wc(r) it is straightforward, but somewhat tedious, to

show that

t1Vc,c̄(1)
2 + t2

∫ 1

0
V 2
c,c̄ = ā1Wc(1)

2 + 2a2Wc(1)

∫ 1

0
sWc(s)ds

+a3

(∫ 1

0
sWc(s)ds

)2

+ t2

∫ 1

0
Wc(s)

2ds,

where ā1 = (1−λ)2t1+(λ2/3)t2, a2 = −3(1−λ)2t1−λ2t2 and a3 = 9(1−λ)2t1−3(1−λ2)t2.
Now consider the auxiliary Ornstein-Uhlenbeck (O-U) process Y (t) given by

dY (t) = γY (t)dt+ dW (t), Y (0) = 0,

and let µY be the measure induced by Y . The measures µY and µWc
, the measure induced

byWc, are equivalent and, by Girsanov’s Theorem (see, for example, Theorem 4.1 of Tanaka,

1996),

dµWc

dµY
(x) = exp

(

(c− γ)

∫ 1

0
x(s)dx(s)− (c2 − γ2)

2

∫ 1

0
x(s)2ds

)

is the Radon-Nikodym derivative evaluated at x(t), a random process on [0, 1] with x(0) = 0.

The change of measure will be used because, for some functional f(·),

E (f(Wc)) = E

(

f(Y )
dµWc

dµY
(Y )

)

,

which will enable the term involving
∫ 1
0 W

2
c to be eliminated from the MGF. The expression

of interest becomes

M(t1, t2) = E

{

exp

[

ā1Y (1)2 + 2a2Y (1)

∫ 1

0
sY (s)ds+ a3

(∫ 1

0
sY (s)ds

)2

+t2

∫ 1

0
Y (s)2ds+ (c− γ)

∫ 1

0
Y (s)dY (s)− (c2 − γ2)

2

∫ 1

0
Y (s)2ds

]}

.

But
∫ 1
0 Y (s)dY (s) = (1/2)[Y (1)2 − 1]; making this substitution yields

M(t1, t2) = exp

(

−(c− γ)

2

)

E

{

exp

[

a1Y (1)2 + 2a2Y (1)

∫ 1

0
sY (s)ds

+a3

(∫ 1

0
sY (s)ds

)2

+
t2 − (c2 − γ2)

2

∫ 1

0
Y (s)2ds

]}

.

But the parameter γ is arbitrary, and so we can set γ =
√
c2 − 2θ2 so as to eliminate the

term
∫ 1
0 Y

2, thereby obtaining

M(t1, t2) = exp

(

−(c− γ)

2

)

E
[

exp
(

w′Aw
)]

,
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where

w =





Y (1)
∫ 1

0
sY (s)ds



 , A =

(

a1 a2
a2 a3

)

, a1 = ā1 +
c− γ

2
.

Lemma B1 establishes that w ∼ N(0,Ω) and so it follows that

E
[

exp(w′Aw)
]

= |I2 − 2ΩA|−1/2

where I2 is the 2× 2 identity matrix and | · | denotes the determinant of a matrix. Then

M(t1, t2) = exp

(

− c
2

)

H(t1, t2)
−1/2,

where H(t1, t2) = exp(−γ)|I2 − 2ΩA|. Some algebra establishes that

|I2 − 2ΩA| = 1− 2a1ω
2 − 4a2ρ− 2a3s

2 + 4a4|Ω|,

where a4 = |A| and ω2, ρ and s2 are the elements of Ω whose definitions can be found in

Lemma B1. Taking the product of e−γ and |I2− 2ΩA| yields, after some manipulations, the

expression for M(t1, t2) in the Theorem. ✷

Proof of Corollary to Theorem 1. First note that

M1(t1) =M(t1, 0) = e−c/2H(t1, 0)
−1/2

and that γ = c when t2 = 0. Furthermore, H(t1, 0) = h1(t1, 0) sinh c+ h2(t1, 0) cosh c while

ai(t1, 0) = ai1t1 (i = 1, 2, 3) and a4(t1, 0) = 0. Letting hcij (i = 1, 2; j = 1, 2, 3) denote the

corresponding hij coefficients evaluated at t2 = 0 (and hence at γ = c) it follows that

hi(t1, 0) = (−1)i + (hci1a11 + hci2a21 + hci3a31)t1 = (−1)i + kit1, i = 1, 2.

The result for M1(t1) follows by substituting the above expressions into H(t1, 0) and noting

that cosh c − sinh c = e−c. The derivation of M2(t2) follows in a similar fashion by noting

that

M2(t2) =M(0, t2) = e−c/2H(0, t2)
−1/2

and that H(0, t2) = h1(0, t2) sinh γ + h2(0, t2) cosh γ. It is possible to show that h1(0, t2) =

−1 + k10 + k11t2 + k12t
2
2 and h2(0, t2) = 1 + k21t2 + k22t

2
2. The result follows by substition

and noting that cosh γ − sinh γ = e−γ . ✷

Proof of Theorem 2. First note that

m(t) =M
(

(1− c̄)t, c̄2t
)

= exp

(

− c
2

)

H((1− c̄)t, c̄2t)−1/2

and so

dm(t)

dt
= −1

2
exp

(

− c
2

)

H((1− c̄)t, c̄2t)−3/2 dH((1− c̄)t, c̄2t)

dt
,

which needs to be evaluated at t = 0. From Theorem 1

H(t1, t2) = h1(t1, t2) sinh γ + h2(t1, t2) cosh γ,

where γ =
√
c2 − 2t2. The condition t = 0 equates to t1 = t2 = 0 and so immediately we

find that γ = c in this case. The quantities h1 and h2 are linear functions of a1, . . . , a4, all of

which are zero when t = 0 and γ = c and so it follows that h1(0, 0) = −1 and h2, (0, 0) = 1.
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Combining these results yields

H(0, 0) = h1(0, 0) sinh c+ h2(0, 0) cosh c = cosh c− sinh c = exp(−c).

Differentiating H(·, ·) with respect to t we find that

dH((1− c̄)t, c̄2t)

dt
=
dh1
dt

sinh γ + h1
d sinh γ

dt
+
dh2
dt

cosh γ + h2
d cosh γ

dt
.

For i = 1, 2 we have

dhi
dt

=
d

dt

4
∑

j=1

hijaj =
4
∑

j=1

{

dhij
dt

aj + hij
daj
dt

}

.

But, as the aj = 0 when t = 0 we can ignore the first components and therefore concentrate

on their derivatives. Note that

aj((1− c̄)t, c̄2t) = aj0 + aj1(1− c̄)t+ aj2c̄
2t

and so

daj
dt

=
daj0
dt

+ aj1(1− c̄) + aj2c̄
2.

Now a20 = a30 = 0 while a10 = (c− γ)/2 and so

da10
dt

= −1

2

dγ

dt
=
c̄2

2γ

in view of dγ/dt = −c̄2/γ. It then follows that

da1
dt

=
c̄2

2γ
+ (1− c̄)(1− λ)2 +

c̄2λ2

3
,

da2
dt

= −3(1− c̄)(1− λ)2 − c̄2λ2,

da3
dt

= 9(1− c̄)(1− λ)2 − 3c̄2(1− λ2),

da4
dt

=
da1
dt
a3 + a12

da3
dt

− 2a2
da2
dt

= 0.

Evaluating the hij at γ = c and using the above results yields (after some simplification)

dh1
dt

= −2

c

(

c̄2

2c
+ (1− c̄)(1− λ)2 +

c̄2λ2

3

)

− 4

c3

(

3(1− c̄)(1− λ)2 + c̄2λ2
)

+6

(

1

3c2
+

1

c4
− 1

c5

)

(

3(1− c̄)(1− λ)2 − c̄2(1− λ2)
)

,

dh2
dt

=
2

c2

(

3(1− c̄)(1− λ)2 + c̄2(1 + λ2)
)

−6

(

1

c3
− 1

c4

)

(

3(1− c̄)(1− λ)2 − c̄2(1− λ2)
)

.

We also need

d sinh γ

dt
=
d sinh γ

dγ

dγ

dt
= − c̄

2

c
cosh γ,

d cosh γ

dt
=
d cosh γ

dγ

dγ

dt
= − c̄

2

c
sinh γ,
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both evaluated at t = 0, to obtain

dH

dt

∣

∣

∣

∣

t=0
=

dh1
dt

sinh c+
c̄2

c
cosh c+

dh2
dt

cosh c− c̄2

c
sinh c

=
c̄2

c
e−c + η1 sinh c+ η2 cosh c,

where ηi = dhi/dt (i = 1, 2); the form of the ηi given in Table 2 is derived from the expressions

given earlier in terms of inverse powers of c. It then follows that

E(Sc,c̄) = −1

2
e−c/2(e−c)−3/2 dH

dt

∣

∣

∣

∣

t=0
= −1

2
ec
(

c̄2

c
e−c + η1 sinh c+ η2 cosh c

)

as required (for c 6= 0). Care has to be taken when c = 0 because the ηi are expressed in

terms of inverse powers of c. However, closer inspection of the terms of the products η1 sinh c

and η2 cosh c, allied with the expansions

sinh c = c+
c3

3
+
c5

5
+ . . . , cosh c = 1 +

c2

2
+
c4

4
+ . . . ,

yields the expression stated in the Theorem.

Turning to the second moment, a further differentiation of m(t) yields

d2m(t)

dt2
=

3

4
e−c/2H((1− c̄)t, c̄2t)−5/2

(

dH((1− c̄)t, c̄2t)

dt

)2

−1

2
e−c/2H((1− c̄)t, c̄2t)−3/2 d

2H((1− c̄)t, c̄2t)

dt2
.

The second derivative of H(·, ·) is given by

d2H

dt2
=

d2h1
dt2

sinh γ + 2
dh1
dt

d sinh γ

dt
+ h1

d2 sinh γ

dt2

+
d2h2
dt2

cosh γ + 2
dh2
dt

d cosh γ

dt
+ h2

d2 cosh γ

dt2
.

When t = 0 the second derivatives of sinh γ and cosh γ are equal to

d2 sinh γ

dt2
=
c̄4

c2

(

sinh c− 1

c
cosh c

)

,
d2 cosh γ

dt2
=
c̄4

c2

(

cosh c− 1

c
sinh c

)

,

while the second derivatives of h1 and h2 take the form

d2hi
dt2

=
4
∑

j=1

(

d2hij
dt2

aj + 2
dhij
dt

daj
dt

+ hij
d2aj
dt2

)

, (i = 1, 2).

Calculation of the appropriate derivatives ultimately results in

d2h1
dt2

= −3
c̄4

c4
+ 8c̄4λ4

(

1

3c3
+

1

c5

)

− 4c̄2
(

1

c3
+

8

c5

)

(

3(1− c̄)(1− λ)2 + c̄2λ2
)

+12c̄2
(

1

c4
+

5

c6
− 5

c7

)

(

3(1− c̄)(1− λ)2 − c̄2(1− λ2)
)

d2h2
dt2

= 16
c̄2

c4

(

3(1− c̄)(1− λ)2 + c̄2λ2 +
1

2
c̄2(1− λ4)

)

−48c̄2
(

1

c5
− 1

c4

)

(

3(1− c̄)(1− λ)2 − c̄2(1− λ2)
)

.
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Combining all these results and evaluating at t = 0 yields the expression in the Theorem for

c 6= 0. The expression for c = 0 is obtained by analysing appropriate expansions in c and

showing that all those with negative powers cancel out. ✷

Proof of Theorem 3. From the definition of Q(θ1, θ2) we obtain

∂Q(θ1, θ2)

∂θ1
= −1

2
exp

(

−θ1 + c

2

)

H(θ1, θ2)
−1/2

−1

2
exp

(

−θ1 + c

2

)

H(θ1, θ2)
−3/2∂H(θ1, θ2)

∂θ1
.

Partial differentiation of H(θ1, θ2) yields

∂H(θ1, θ2)

∂θ1
=
∂h1
∂θ1

sinh γ +
∂h2
∂θ1

cosh γ

where ∂hi/∂θ1 =
∑4

j=1 hij∂aj(θ1, θ2)/∂θ1. Hence

∂H(θ1, θ2)

∂θ1

∣

∣

∣

∣

θ1=0
= q1(θ2) sinh

√

c2 + 2θ2 + q2(θ2) cosh
√

c2 + 2θ2

where the qi are defined in the Theorem. Also

H(0,−θ2) = h1(0,−θ2) sinh
√

c2 + 2θ2 + h2(0,−θ2) cosh
√

c2 + 2θ2

= p1(θ2) sinh
√

c2 + 2θ2 + p2(θ2) cosh
√

c2 + 2θ2

where the definition of the pi is obvious. Setting k = 1 in (10) and using the above expressions

yields the result for the first moment.

Turning to the second moment, setting k = 2 in (10), we need to find

∂2Q(θ1, θ2)

∂θ21
=

1

4
exp

(

−θ1 + c

2

)

H(θ1, θ2)
−1/2

+
1

2
exp

(

−θ1 + c

2

)

H(θ1, θ2)
−3/2∂H(θ1, θ2)

∂θ1

+
2

4
exp

(

−θ1 + c

2

)

H(θ1, θ2)
−5/2

[

∂H(θ1, θ2)

∂θ1

]2

−1

2
exp

(

−θ1 + c

2

)

H(θ1, θ2)
−3/2∂

2H(θ1, θ2)

∂θ21
.

The components of the first three terms have been derived above, so we therefore need

∂2H(θ1, θ2)

∂θ21
=
∂2h1
∂θ21

sinh γ +
∂2h2
∂θ21

cosh γ = 0

upon inspection of the relevant derivatives when evaluated at θ1 = 0 and θ2 = −θ2. The

second moment is, therefore, the sum of the integrals of the first three terms which are

defined in the Theorem. ✷

Proof of Theorem 4. This follows straightforwardly from (12) using the derivatives derived

in the proof of Theorem 3. ✷
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Appendix B. Supplementary result

Lemma B1. Let Y (t) satisfy dY (t) = γY (t)dt + dW (t), where W (t) is a Wiener process

on C[0, 1] and Y (0) = 0. Then the vector

w =





Y (1)
∫ 1

0
sY (s)ds



 ∼ N(0,Ω),

where

Ω =

(

ω2 ρ

ρ s2

)

and its elements are defined by

ω2 =
e2γ − 1

2γ
, ρ =

e2γ

2γ

(

1

γ
− 1

γ2

)

+

(

1

2γ2
+

1

2γ3

)

,

s2 = e2γ
(

1

2γ3
− 1

γ4
+

1

2γ5

)

+
1

3γ2
+

1

2γ3
− 1

2γ5
.

Proof. The process Y (t) has the solution Y (t) =
∫ t
0 e

(t−r)γdW (r) and hence E[Y (t)] = 0

for all t. Setting t = 1 it then follows that

ω2 = E[Y (1)2] = E

(∫ 1

0
e(1−r)γdW (r)

)2

=

∫ 1

0
e2(1−r)γdr =

e2γ − 1

2γ

as required. From the above solution we obtain
∫ 1

0
sY (s)ds =

∫ 1

0
s

∫ s

0
e(s−r)γdW (r)ds =

∫ 1

r
s

∫ 1

0
e(s−r)γdW (r)ds =

∫ 1

0
v(r)dW (r),

where v(r) = e−rγ
∫ 1
r se

sγds. Clearly E[tY (t)] = 0 while the variance of
∫ 1
0 sY (s)ds is equal

to s2 =
∫ 1
0 v(r)

2dr. Some tedious algebra establishes that s2 has the stated form. Finally

we need an expression for

ρ = E

[

Y (1)

∫ 1

0
sY (s)ds

]

=

∫ 1

0
E [Y (1)sY (s)] ds.

For t < 1 we have tY (t)Y (1) = t
∫ t
0 e

(t−r)γdW (r)
∫ 1
0 e

(1−s)γdW (s) and so

E [tY (t)Y (1)] = E

[

t

∫ t

0
e(t−r)γdW (r)

(∫ t

0
e(1−s)γdW (s) +

∫ 1

t
e(1−s)γdW (s)

)]

= t

∫ t

0
e(t+1−2r)γdr =

eγ

γ
t sinh tγ.

The required integral is therefore
∫ 1
0 t sinh tγdt. Using (2.473.1) of Gradshteyn and Ryzhik

(1994) we find that
∫ 1

0
t sinh tγdt =

cosh γ

γ
− sinh γ

γ2

and hence ρ = (eγ/γ2)(cosh γ − γ−1 sinh γ) which can also be written in the form in the

Lemma by recalling that cosh γ = (eγ + e−γ)/2 and sinh γ = (eγ − e−γ)/2. ✷
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Appendix C. Computational details

Computations based on the CF Φ(t1, t2) and other related functions involve the square

root of the complex-valued function H(it1, it2) which is defined in Theorem 1. Care must be

taken when computing such square roots as most software computes the principal value that

can lead to discontinuities in the function. The approach adopted here to ensure continuity

of the real and imaginary parts of the square root function follows the method outlined

in Tanaka (1996, p.183) which proceeds by first computing the CF at the origin and then

checking the bahaviour of the function when avaluated at successive small increments. An

alternative (but essentially equivalent) method was used by Perron (1989).

The integrals used to compute the first two moments of the ratio Nc,c̄/Dc,c̄ in Theorem 3

and of Nc,c̄/D
1/2
c,c̄ in Theorem 4 were computed using the change of variable x = (c2+2θ2)

1/2.

For example, the integral I1 becomes

I1 =
1

2
exp

(

− c
2

)∫

∞

c

x

p((x2 − c2)/2)1/2
dx

where p((x2 − c2)/2) = p1((x
2 − c2)/2) sinhx + p2((x

2 − c2)/2) coshx. The upper limit for

these integrals was chosen as the value of x for which the modulus of the integrand was less

than 1× 10−8. For the integrals used to compute CDFs and PDFs the range of integration

was taken as [ǫ, Ū ] with ǫ = 1 × 10−8 and Ū determined as in Perron (1989, p.254). All

numerical integration was carried out using Romberg’s method which, as a by-product,

enables a measure of accuracy of the final value to be determined from the last step in the

approximation. For example, the largest absolute error of the integrals used to construct

Table 5 was 4.16 × 10−10. As a further accuracy check the integrals were also computed

using Simpson’s method and the results were verified.
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Table 1

The coefficients in Theorem 1 and its Corollary

i hi1 hi2 hi3 hi4

1 −2

γ

4

γ3
2

(

1

3γ2
+

1

γ4
− 1

γ5

)

4

(

1

3γ3
+

1

γ5

)

2 0 − 4

γ2
−2

(

1

3γ2
+

1

γ3
− 1

γ4

)

− 4

γ4

i ai0 ai1 ai2

1 1
2(c− γ) (1− λ)2 1

3λ
2

2 0 −3(1− λ)2 −λ2

3 0 9(1− λ)2 −3(1− λ2)

i hci1 hci2 hci3

1 −2

c

4

c3
2

(

1

3c2
+

1

c4
− 1

c5

)

2 0 − 4

c2
−2

(

1

3c2
+

1

c3
− 1

c4

)
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Table 2

The coefficients in Theorem 2

j η1j η2j η3j η4j

1 −2
3g1 0 −4c̄2

(

g1 − 2
3 c̄

2λ4
)

0

2 2
(

g2 − 1
2 c̄

2
)

2g3 0 0

3 −4g1 −6g2 −4c̄2
(

g1 − 2
3 c̄

2λ4
)

0

4 6g2 6g2 12c̄2
(

g2 − 1
4 c̄

2
)

16c̄2
(

g1 +
1
2 c̄

2(1− λ2)
)

5 −6g2 0 −32c̄2
(

g1 − 1
4 c̄

2λ4
)

−48c̄2g2

6 0 0 60c̄2g2 48c̄2g2

7 0 0 −60c̄2g2 0

Note: g1 = 3(1− c̄)(1− λ)2 + c̄2λ2, g2 = 3(1− c̄)(1− λ)2 − c̄2(1− λ2)

and g3 = 3(1− c̄)(1− λ)2 + c̄2(1 + λ2).
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Table 3

Means and variances of Sc,c̄
for c̄ = −13.5

c Mean Variance

−20.0 4.3113 1.8740

−10.0 7.6733 10.9986

−5.0 12.2591 48.3724

−2.0 17.6668 154.4212

−1.0 19.6251 214.1051

−0.5 20.3058 237.3413

0.0 20.5662 245.4562

0.5 20.3166 233.4255

1.0 20.0035 217.2866

2.0 34.9408 1196.8373

Table 4

Percentage points of Sc,c̄ for c̄ = −13.5

c 0.01 0.05 0.10 0.50 0.90 0.95 0.99

−20.0 2.0289 2.4780 2.7633 4.1015 6.1273 6.8608 8.4666

−10.0 2.7698 3.5967 4.1622 7.0126 12.0214 14.0193 18.5015

−5.0 3.3943 4.6316 5.4914 10.5484 21.1692 25.7770 37.2201

−2.0 3.8232 5.3954 6.5555 14.1492 33.1657 42.1791 66.1949

−1.0 3.9305 5.6011 6.8544 15.3280 37.7705 48.6688 78.3244

−0.5 3.9635 5.6660 6.9499 15.7249 39.4042 50.9817 82.7480

0.0 3.9756 5.6900 6.9853 15.8750 40.0304 51.8768 84.4433

0.5 3.9640 5.6669 6.9513 15.7310 39.4304 51.0193 82.8208

1.0 3.9476 5.6353 6.9052 15.5455 38.6855 49.9640 80.8151

2.0 4.2962 6.4318 8.1519 22.7660 77.8535 106.9800 208.8539
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Table 5

Means and variances of

Nc,c̄/Dc,c̄ for c̄ = −13.5

c Mean Variance

−20.0 −24.1340 56.8631

−10.0 −14.4969 38.2772

−5.0 −9.9330 29.9027

−2.0 −7.6137 26.0755

−1.0 −7.0848 25.3166

−0.5 −6.9238 25.1033

0.0 −6.8648 25.0286

0.5 −6.9213 25.1021

1.0 −6.9929 25.2712

2.0 −4.8549 25.4507

3.0 −0.6006 18.8752

4.0 1.6832 9.4307

5.0 2.8293 4.2145

Table 6

Percentage points of Nc,c̄/Dc,c̄ for c̄ = −13.5

c 0.01 0.05 0.10 0.50 0.90 0.95 0.99

−20.0 −46.3421 −38.0513 −34.1640 −23.0867 −15.4533 −13.7906 −11.1524

−10.0 −33.6978 −26.1695 −22.7289 −13.4120 −7.6697 −6.5295 −4.8175

−5.0 −27.6011 −20.4199 −17.1956 −8.8069 −4.1406 −3.2949 −2.0746

−2.0 −24.5493 −17.5098 −14.3820 −6.4524 −2.3766 −1.6871 −0.6995

−1.0 −23.8758 −16.8604 −13.7504 −5.9136 −1.9676 −1.3112 −0.3738

−0.5 −23.6744 −16.6653 −13.5602 −5.7495 −1.8410 −1.1940 −0.2718

0.0 −23.6014 −16.5945 −13.4910 −5.6895 −1.7941 −1.1505 −0.2337

0.5 −23.6716 −16.6626 −13.5575 −5.7470 −1.8387 −1.1916 −0.2694

1.0 −23.7737 −16.7601 −13.6517 −5.8222 −1.8822 −1.2251 −0.2855

2.0 −21.7352 −14.6888 −11.5655 −3.6464 0.2361 0.7907 1.5616
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Table 7

Asymptotic power of Pn and n(β̂0 − 1)

α = 0.01 α = 0.05 α = 0.10

c Pn n(β̂0 − 1) Pn n(β̂0 − 1) Pn n(β̂0 − 1)

−20 0.4602 0.4717 0.8519 0.8542 0.9557 0.9568

−19 0.4082 0.4187 0.8126 0.8159 0.9370 0.9380

−18 0.3579 0.3673 0.7675 0.7689 0.9126 0.9133

−17 0.3101 0.3185 0.7170 0.7178 0.8817 0.8821

−16 0.2654 0.2728 0.6618 0.6622 0.8440 0.8439

−15 0.2245 0.2309 0.6032 0.6031 0.7991 0.7985

−14 0.1876 0.1930 0.5424 0.5419 0.7475 0.7465

−13 0.1549 0.1595 0.4810 0.4802 0.6900 0.6885

−12 0.1257 0.1303 0.4217 0.4195 0.6272 0.6260

−11 0.1017 0.1053 0.3631 0.3613 0.5623 0.5607

−10 0.0814 0.0842 0.3082 0.3068 0.4963 0.4945

−9 0.0645 0.0666 0.2581 0.2569 0.4312 0.4294

−8 0.0507 0.0524 0.2133 0.2125 0.3690 0.3674

−7 0.0396 0.0409 0.1743 0.1738 0.3113 0.3099

−6 0.0308 0.0318 0.1412 0.1408 0.2594 0.2583

−5 0.0240 0.0247 0.1136 0.1135 0.2141 0.2133

−4 0.0188 0.0193 0.0914 0.0914 0.1759 0.1754

−3 0.0150 0.0153 0.0741 0.0741 0.1450 0.1447

−2 0.0123 0.0124 0.0614 0.0614 0.1215 0.1214

−1 0.0106 0.0107 0.0531 0.0531 0.1059 0.1059

0 0.0100 0.0100 0.0500 0.0500 0.1000 0.1000
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Table 8

Means and variances of

Nc,c̄/
√

Dc,c̄ for c̄ = −13.5

c Mean Variance

−20.0 −3.3975 0.3499

−10.0 −2.5898 0.3538

−5.0 −2.0913 0.3889

−2.0 −1.7717 0.4489

−1.0 −1.6867 0.4745

−0.5 −1.6597 0.4832

0.0 −1.6559 0.4659

0.5 −1.6592 0.4836

1.0 −1.6690 0.4848

2.0 −1.1582 0.9326
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Figure 1. CDF of Limit Distribution of Pn

Figure 2. PDF of Limit Distribution of Pn
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Figure 3. CDF of Limit Distribution of n(β̂0 − 1)

Figure 4. PDF of Limit Distribution of n(β̂0 − 1)
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Figure 5. CDF of Limit Distribution of n(β̂0 − β0)

Figure 6. PDF of Limit Distribution of n(β̂0 − β0)
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