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Abstract-Physical layer security encompasses information the­
oretic approaches that could guarantee perfect secrecy in wireless 
communication systems. In this framework, helping interferer 
strategies rely on intentionally creating confusion at a potential 
eavesdropper by injecting a jamming signal. In cases where the 
information signal has a Gaussian probability density function 
(pdf) it has been demonstrated that the optimal jamming signal, 
under an overall power constraint, should also be Gaussian. 
However, in practical communication systems where data symbols 
are typically drawn from discrete uniform probability mass func­
tions (pmf'), commonly M-ary Quadrature Amplitude and M-ary 
Phase Shift Keying modulation schemes, the structure of the 
optimal jamming signal is still an open question. In the present 
work we aim at shedding light into this question. Our approach 
is based on formulating a secrecy capacity maximization problem 
by expressing the optimal arbitrary helping interferer pdf as a 
mixture of unknown Gaussians. The proposed approximation is 
well-suited for jamming signals of practical interest, i.e. Gaussian 
or M-QAM interferers and reveals that in certain scenarios it is 
advantageous to use jamming signals whose statistical structure 
resembles the data rather than the noise. 

I. INTRODUCTION 

Security in the exchange of information has commonly been 

treated as an inherently applied subject, despite the theoretical 

formulation of perfect secrecy early on [1]. Notwithstanding 

decades of research, the gap between applied cryptography 

and information theoretic security has not yet been bridged. 

Shannon described encryption as a set of reversible trans­

formations, such that the mutual information between the 

message and the enciphered text should be null. However, 

despite its conceptual beauty, the concept of perfect secrecy 

was abandoned as it proved difficult to develop practical codes 

along this line. On the contrary, cryptography mainly evolved 

as a part of computer science and relied on complexity, rather 

than information and communication theory. Commonly, such 

encryption protocols underpin the security of mobile telecom­

munications as well as e-business, e-commerce, e-government, 

banking networks, and are employed at upper layers of the 

network protocol stack. 

Nevertheless, the aforementioned approaches share a com­

mon weakness; they assume ideal transmission and reception 

and do not account for the adverse characteristics of the 

communication medium. Specifically for wireless applications, 

there exists an experimentally established fundamental trade­

off between security and throughput [2], [3]. In order to 

address this important issue in future wireless applications, 

information theoretic physical layer approaches on security 

have been gaining renewed interest. The breakthrough concept 

of physical layer security [4] is to exploit the characteristics 

of the wireless medium such as fading or noise to achieve 

secrecy in wireless transmissions. 

The pioneering works of Wyner [4] and Csiszar and Korner 

[5] have demonstrated that a noisy communication channel 

offers opportunities for non-zero rate secure communication 

when the eavesdropper's channel is on average a degraded 

version of the main channel. Ensuring secrecy through equiv­

ocation, a single letter characterization of the secrecy capacity 

was obtained for Gaussian signals, as the difference between 

the capacities of the legitimate user and the eavesdropper 

[6]. Furthermore, analyses for the wireless fading channel [7] 

and Multiple-Input Multiple-Output (MIMO) systems [8] have 

established positive secrecy capacities for such systems even 

when on average the eavesdropper's channel can be better than 

that of the legitimate user. 

In these approaches, the transmitter needs to know the 

Channel Impulse Response (CIR) at least between the trans­

mitter and the legitimate receiver so that it can adapt the 

transmission rate accordingly, thus achieving a positive secrecy 

capacity. However, from a communication system point of 

view, the highly variable transmission rate might not be 

suitable for a number of applications, while the need for a 

feedback channel to provide the transmitter with the CIR 

is also disadvantageous. In view of this, helping-interferer 

approaches [9], [10], [11] have been proposed, building on the 

idea of intentionally degrading the eavesdropper's channel. In 

this paper, we investigate the optimal design of the jamming 

signal in a helping interferer physical layer security approach. 

In previous analyses, simplified secrecy capacity expres­

sions were obtained assuming that the data have a Gaussian 

probability density function (pdf). On the contrary, in this 

investigation an analysis is presented for actual communi­

cation systems in which the data are drawn from multi­

leveUmultiphase discrete uniform probability mass functions 

(pmf), typically M -ary Quadrature Amplitude Modulation 

(M-QAM) or M-ary Phase Shift Keying (M-PSK) constel­

lations. Preliminary results presented in [12], suggested that 
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M -QAM and M -PSK systems. Motivated by these findings, 

in the present work a closed-form expression is derived for 

the secrecy capacity of M-QAM and M-PSK systems in the 

presence of an arbitrary interferer whose pdf is approximated 

as a mixture of Gaussian components. An extensive set of 

simulation results is presented for the scenario of aSYlmnetric 

jamming, i.e. the helping interferer is located at the proximity 

of the eavesdropper and does not affect on the other hand the 

reception of the legitimate user. In this scenario it is established 

that in a large range of SNRs and Signal-to-Interference Ratios 

(SIRs) it is advantageous to use a jamming signal that shares 

the statistical properties of the data rather than the noise. 

This paper is organized as follows: in Section II the mo­

tivation behind this work is outlined, in Section III capacity 

expressions for M-QAM and M-PSK systems are reviewed 

and the respective secrecy capacities are evaluated. Further­

more, in Section IV the secrecy capacities are derived for 

the case of M-QAM and M-PSK systems in the presence 

of arbitrary jatmning signals. Finally, simulation results for 

the case of asymmetric jamming are presented in Section V, 

while Section VI concludes the present work. 

II. MOTIVATION: CASE STUDY OF BPSK SYSTEMS 

To illustrate the motivation behind this work, we begin 

by assuming a cOlmnunication system in which length N 
observation vectors Zr are obtained at the outputs of matched 

filters at the legitimate (r = l) and eavesdropping receivers 

(r = e): 
(1) 

To allow for a compact notation, the generic index r E {I, e} 
corresponds to the legitimate receiver for r = I and to the 

eavesdropper for r = e. The N x N matrices Hr denote the 

respective legitimate user's and eavesdropper's transformation 

matrices (typically channel or coding matrices) while d = 

[di], i = 1, ... ,N is a sequence of independent and identically 

distributed (i.i.d.) data symbols. Finally, fir = [ni,r V, i = 

1, . . .  ,N are length N noise vectors of i.i.d. Gaussian random 

variables with variances a;;',r = N�,r. 
Based on the findings in [l3] and [14], the normalized, to 

the noise standard deviation, signal space minimum distances 

dmin r> r E {I, e} at the legitimate user and the eavesdropper 

respectively can be upper bounded by the Minkowski bound 

as: 

N 
dminl < JNdetblHlHF) IIN = JNII blAi/IN(2) 

i=1 
N 

dmine < IN detbeHeH�) IIN = IN II be�i) IIN(3) 
i=1 

In (2) and (3), Ai and �i denote the eigenvalues of the legit­

imate user and the eavesdropper Gram matrices HlHF and 

HeH� respectively, while Il and Ie denote the SNR of the 

forward and eavesdropper's channels, respectively. The above 

bounds infer that for typical digital communication systems, 

potential advantages - in terms of error rates - established at the 

legitimate user in respect to an eavesdropper are independent 

of the receivers' complexities. 

Correspondingly, from a capacity point of view, for Gaus­

sian data symbols d the secrecy capacity is simply evaluated 

as the difference between the capacities of the legitimate and 

eavesdropping channels, i.e [15]: 

Cs (Cl - Ce) + (log det(IN + IlHlHfI) - log det(IN + ,eHeH�) ) + 

� (l l+llAi) + 
(4) � og 

1 +,e�i ' 

with (x) + = max (x, 0) and IN denoting the N x N identity 

matrix. Clearly, for those subchannels for which IlAi > le�i' 
we can translnit in perfect secrecy at a maximal rate of log 1

1++
'1/ ��, with ( 'II ;� ) II N being the corresponding ratios 'Yel."I 'Yl o.."I 

of the signal spaces minimum distances in the respective 

dimensions. 

The idea behind injecting noise-like Gaussian jamming sig­

nals in helping interferer strategies is to "tune" in a controlled 

manner the value of Il and Ie' The underlying strategy is to 

degrade Ie to a greater extent than Il. From the eavesdropper's 

point of view, any such noise-like jammer is equivalent to 

having a Gaussian random secret key superimposed on the 

transmitted data. 

A simple example that illustrates the limitations of this ap­

proach in M-QAM and M-PSK systems is presented in [12]. 

Through a counterexample we show that Gaussian jamming 

is a sub-optimal strategy in M-QAM and M-PSK systems: 

Let us assume a Binary PSK (BPSK) broadcasting system in 

which a friendly jammer injects a signal i( t) that affects the 

eavesdropper alone (e.g. the jammer is located close to the 

eavesdropper and sufficiently far from the legitimate user). In 

ideal Additive White Gaussian Noise (AWGN) channel condi­

tions the legitimate user's and the eavesdropper's observations, 

reduced to scalars in the following for simplicity, are in this 

case expressed as: 

Zl d + "'li + an,lnl, 
d + "'ei + an,ene, 

(5) 

(6) 

where i denotes the projection of the helping interferer i( t) 
on the signal space, "'l = 0 and without loss of generality we 

have assumed that all variables involved are normalized to the 

data standard deviation, so that i has unit variance. 

In a hypothetical noiseless scenario with "'e = 1 and a;;',e = 

0, we exatnine the following two distinct approaches: (i) The 

jatmning signal has a Gaussian pdf; in this approach the Bit­

Error-Rate (BER) is evaluated at 0.1624. (ii) The jamming 

signal is a BPSK signal, with similar statistical properties to 

that of the data instead of the noise. In this approach, the 

eavesdropper is able to identify the transmitted symbol with 

certainty only in 50% of the cases, as illustrated in Table I, 

leading to BER of 0.25. This increase in the BER corresponds 

to a decrease in the signal space minimum distance as shown 

in [12], expressed as: 



TABLE I 
WHITE BPSK JAMMER 

Tx -1 -1 1 1 

Jx -1 1 -1 1 

Ex -2 0 0 2 

d -1 ? ? 1 

a __ ,21=-6dB e 
---a- ,21=-9 dB e 

-0.5 � <=-12 dB 

�<=-�dB 
-1 �--�----L---�----�-------L----� 

a 5 10 
�indB 

15 20 25 

Fig. 1. Effective minimum distance in a BPSK constellation when using a 
BPSK jammer of normalized power K�. 

with Pb,UI denoting the probability of bit error at the eaves­

dropper when a BPSK jammer is employed, i.e. [14] 

Pb,UI Pr(d #- d) 

- eriC + eriC . 
1 [ c (dmin/2-K,e) c (dmin/2+K,e)] 
4 V2(Jn,e V2(Jn,e 

(8) 

The nominal lllllllmum distance is dmin = 2. There is a 

substantial decrease in the lattice effective minimum distance 

as depicted in Fig. 1. In effect, instead of increasing the 

denominator of the arguments of the complementary error 

functions, we are decreasing the numerators, in a sense de­

creasing the eavesdropper Gram matrices eigenvalues in (4). 

III. SECRECY CAPACITY OF M-QAM AND M-PSK 

SYSTEMS 

We revisit the model described in (5) and (6) in absence of a 

jamming signal, i.e. K,r = 0, r E {Z, e}. Furthermore, the data 

symbol d is drawn from a discrete uniform pmf of M -QAM or 

M -PSK constellations from the set ::D = {dl, ... , dM}. The 

system capacity Cr(M) at the legitimate user (r = l) and the 

eavesdropper (r = e) can then be expressed as a function of 

the constellation size M as 

3 

1 M IzrI2-lzr+<l.�=12 ) 
X log (M f1 

e - 20"f"r dzr, (9) 

where D K L (' , .) denotes the Kullback -Leibler divergence and 

�km 
= 

dk -dm 
r 

V2(Jn,r 
(10) 

is the normalized to the noise standard deviation distance 

between any two constellation points [16], [17]. 

A useful closed-form approximation of (9) was proposed in 

[17] so that in AWGN channel we have that 

-� t, log (� t, e-I��=12 
) 

1 M M e-I��=12 �=�� _ e-I��=12 
M 2..= 2..= L:M _1��112(1-vr) k=1 m=1 1=1 e 

where in (11) we denote 

I/r = 2(1 � I'r)
,r E {Z,e} 

(11) 

(12) 

while I'r denotes the SNR at the legitimate receiver (r = l) 
and the eavesdropper (r = e), respectively. 

Measuring secrecy through the equivocation Re, the secrecy 

capacity of M-QAM and M-PSK systems in AWGN is 

therefore expressed as: 

(I(ZI; D) - I(Ze; D) ) + 
(C1(M) - Ce(M) ) +  

with C1 and Ce given in (11). 

IV. SECRECY CAPACITY OF M-QAM AND M-PSK 

SYSTEMS W ITH A HELPING INTERFERER 

(13) 

Now we revisit the model described in (5) and (6) in the 

presence of a jamming signal with an unknown pdf PI( i). 
Due to the independence of the random variables involved, 

the capacity of the legitimate receiver and the eavesdropper 

respectively can in this case be expressed as 

lED { DKL (PZrID (Zr Id) Ilpzr (Zr))} 

lED { DKL (PI (i) Q9 pNrID(nrld)11 

t �PI(i) Q9 PNrID(nrldk)) }, 
k=1 

where Q9 denotes convolution. 

(14) 

In order to simplify calculations, in the following we assume 

that PI(i) can be approximated by a mixture of L complex 

(two-dimensional) Gaussians centered on J..l).. and with vari­

ances (J1, ). = 1, ... ,L, i.e, 

L 1 Ii-I'" 12 
PI(i) c:::: 2..= L2-rm2 e - � .  

)..=1 ).. 
(15) 

Justification of the above choice is twofold. Firstly, evaluations 

of the convolutions in (14) can be simplified and secondly, the 

approximation in (15) becomes equality for a list of practically 
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important functions PI(i) including the case of Gaussian pdf 

and discrete multilevel/multiphase pmf interferers. In partic­

ular, based on a weak convergence argument [18], a discrete 

uniform M-QAM or M-PSK PInf with alphabet 1) may be 

approximated as: 

with 

(17) 

and <5 (x) denoting the delta function. 

Using the model in (15), the pdfs of the random variables 

Wr = K,ri + (In ,rnr are simply 

(18) 

where P� ,r = (J� + (J�,r' The capacity C; of the legitimate 

receiver and the eavesdropper in AWGN in the presence of an 

arbitrary interferer i( t) can then be respectively expressed as 

(19) 

where 

per's channels by 

C* r 

x 

1 
J
oo 1 - Izrl2 -- L --e 2p1,r 

Q �EQ - 00 27rpt 

I 
(1 '""" _lzrI2-;�I+T;i3 1 2 ) 

og - � e >',r 
Q (3EQ 

10g M - log L 2 
-� L log (� L e-1T$i312

) 
Q �EQ Q (3EQ 1 e-1T$i312 �=�� _ e-1T$i312 

Q L L L e-IT;"12(1-vr) �EQ (3EQ nEQ 
10g M - log L 2 

(24) 

(25) 

An approximation for the secrecy capacity can be obtained 

by noticing that the second sum in (25) is negligible compared 

to the first sum, so that 

( 1 (L(3EQe-ITfi312) ) + 
Cs � -

Q L log L _IT�i312 �EQ (3EQ e 
(26) 

The optimal jamming signal maXllllizes (26) subject to an 

overall power constraint at the legitimate receiver, 

(27) 

The maximization of (26) s.t. (27) is an integer mutlivariate 

and multiparametric optimization problem. In the following we 

present simulation results in aSYlllinetric interferer scenarios, 

evaluating the respective secrecy capacities in the case of 

Gaussian and M -QAM jamming signals. 

V. ASYMMETRIC INTERFERER, NON-DEGRADED 

EAVESDROPPER CHANNEL 

In this scenario the injection of the noise is performed by 
(20) a helping node in the vicinity of the eavesdropper, located 

sufficiently far from the legitimate receiver so that 

are the normalized to the combined standard deviation dis­

tances between the constellation points and the mean values 

of the Gaussian components. 

After some algebraic manipulations, we conclude that 

C*(M ( .)) = 
Cr(M· L) - log M + 10g L 

r ,PI t 2 . (21) 

Denoting the set Q as the product of the sets M = {I, . . .  , M} 
and 1: = {l, . . .  , L} and setting 

we may approximate the capacity in the main and eavesdrop-

(28) 

Furthermore, we assume that the legitimate user and the 

eavesdropper experience similar degradation due to white 

noise, i.e. 

(29) 

so that the SNR in the main and the eavesdropper's channel is 

equal to ')'0. We will examine two distinct strategies. According 

to the first strategy, the interferer is a zero-mean Gaussian 

signal while according to the second it is a discrete multi­

level/multiphase signal (M-QAM or M-PSK), mimicking the 

statistical properties of the data. 

In the Gaussian interferer strategy, denoted as the GI ap­

proach in the following, we have 

(30) 
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Fig. 2. Capacity of 4-QAM systems in the presence of a jamming signal. 
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Fig. 4. Capacity of 64-QAM systems in the presence of a jamming signal. 
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Fig. 3. Capacity of 16-QAM systems in the presence of a jamming signal. Fig. 5. Difference in secrecy rates for 4-QAM systems. 

The second strategy, denoted as V niform Interferer (UI) ap­

proach in the following, is summarized as 

L = M, /-L)" = /'i,ed, fJ)., = 0, A = 1, ... , L. (31) 

The capacities GCI and Gu I in the GI and UI strategies 

respectively are evaluated in Figs 2, 3 and 4 for 4-QAM, 16-

QAM and 64-QAM systems. The achievable rates in the GI 

and UI strategies follow distinctly different trends. Increasing 

the SNR increases the achievable rate in the case of the GI 

strategy, On the other hand, the effect is more complex in the 

UI strategy and further depends on the SIR. 

Based on the above results, we expect that depending on 

the SNR and the SIR either the GI or the UI approach may 

be advantageous in terms of achievable secrecy rates, The 

difference in secrecy rates can be quantified in bits/symbollHz 

as 

(32) 

In Figs 5, 6 and 7 6.Rs is depicted for 4-QAM, 16-QAM 

and 64-QAM systems. In the high SNR and high SIR region 

an advantage of more than log2 M - 1 bits/symbollHz in the 

achievable secrecy rate can be established when the VI strategy 

is used, 

VI. CONCLUSIONS 

Vnlike previous helping interferer approaches in the frame­

work of physical layer security, the present work does not 

assume Gaussianity of the interferer as the optimal jamming 

strategy. On the contrary, we have shown through a counterex­

ample that for practical communication systems that employ 

M-QAM or M-PSK modulations this is a sub-optimal choice. 

We have derived a closed-form approximate expression for the 

secrecy capacity in such systems by approximating an arbitrary 

helping interferer pdf as a mixture of Gaussian components. 

Through simulation, we have demonstrated that in the high 

SNR and high SIR region there is a clear gain in terms 

of secrecy rates in asymmetric helping interferer scenarios 

when the jamming signal shares the statistical properties of 

the data rather than the noise. Future work will quantify 



6 

Yo in dB -10 0 

30 

Es/cr2 in dB 
I 

Fig. 6. Difference in secrecy rates for 16-QAM systems. 

6 

4 

� � 
<l 0 

-2 

-4 
30 

Yo in dB -10 0 
Es/crt in dB 

Fig. 7. Difference in secrecy rates for 64-QAM systems. 

30 

the corresponding reduction in the mutual information of the 

strategies examined making use of the Hirschman entropy. 
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